
4-Way Traffic Light Regulator

Beau Tucker, Ben Bonham, Nick Schneider
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: bstucker@oakland.edu, bmbonham@oakland.edu, nschneider@oakland.edu

Abstract- Outdated analog control systems have become
problematic for aging infrastructure. This work attempts to
characterize and simulate a four-way traffic indicator
controller by way of FPGA digital design. Traffic controller
logic will be achieved using FSM theory in parallel with
various combinational digital circuitry. This design will then
be implemented and demonstrated via a Nexys A7-100T board.

I. INTRODUCTION

The streets around Oakland county are plagued
with lights running off of old electrical architectures. These
include systems based on outdated analog circuitry,
resulting in increased disturbances to traffic patterns. Often
these control devices do not allow for quick upgrades to be
made as many physical components would need to be
altered. This project seeks to address this issue by
implementing the use of a Finite State Machine (FSM) and
other various digital asynchronous systems to construct a
controllable four-way traffic signal (shown in figure 1
below). This traffic signal will be capable of state changes,
allowing for alternative configurations for various output
types. To achieve this, the system will be modeled utilizing
a Field-Programmable Gate Array (FPGA) board to
synthesize the transistor-to-transistor logic.

II. METHODOLOGY

A. Basic Intersection Design

Figure 1: Proposed Block Diagram

To begin the process of designing a 4-way traffic
intersection, it is critical to understand the physical layout
and structure. Figure 2 represents the proposed intersection
and the lights required to control it. The design here is
simple in that both the North and South facing lights (blue
quadrant) will function in unison while the East and West
lights (yellow quadrant) follow a similar scheme. From a
design standpoint, this means that six individual lights will
be needed, for a total combination of five discrete lighting
configurations. These different combinations will be
described in more detail when discussing the proposed finite
state machine that will control the intersection.

Figure 2: Basic Intersection Layout

Lighting control can be completed in a number of
different ways, however the most common method is based
solely on timing. Here, a timed approach will be
implemented as it can readily be adjusted to account for
various traffic conditions. Intersection control logic will be
designed using VHSIC Hardware Description Language
(VHDL) code, and implemented with a Nexys A7-100T
FPGA board. It is important to note that this board provides
a continuous 100 Mhz internal clock that will be utilized to
provide intersection timing, as well as other button inputs to
simulate real-world intersection inputs.

B. Timing Control - Pulse Clock Dividers
As shown in the block diagram of Figure 1, timing

for the FSM controlled intersection will be achieved using
pulse generating clock dividers. Here there are two that will
be implemented, known as P1 & P2 (pulse 1, pulse 2). This
form of clock divider was chosen because it can provide the
FSM with a timed logic high or logic low signal.
Referencing Appendix A for the pulse generator code, it is
important to note two variables that can be easily changed to
provide various intersection timing conditions. The first
variable located in Line 10 “signal b” can be changed to
alter the starting logic of the pulse timer. This was done to
provide two alternating one second pulses, P1 and P2, that
work directly inverse of each other. The second variable of
interest is located in Line 20. Here the “count” number can
be changed to generate different pulse widths. Since the
internal clock of the Nexys A7-100T board runs at 100 Mhz,
a count number of 100,000,000 provides a 1-second pulse
(count = 100000000). Changing this number by a factor of
2 (count = 200000000) will then generate a 2-second pulse.
It is clear to see that this bit of code is particularly useful in
its potential for quick alterations to the timing scheme.

C. The Finite State Machine (FSM)
Of the two types of Finite State Machines (FSM)

currently utilized in entry-level computing, the Mealy style
FSM has been chosen here. Mealy-type FSM logic is
important because the outputs of the device depend on the
current state of the FSM, in addition to various external
inputs [1]. This means that for the proposed FSM, the
individual outputs are decided by the state of the device as
well as the input signals (P1 and P2). For the purposes of
controlling a traffic intersection containing signal lights, the
FSM here is proposed to have six individual states as shown
in Figure 3.

Figure 3: FSM Diagram

Close inspection of the state diagram would
indicate that two states, 3 and 6, are interchangeable,
however they are treated as unique states with identical
outputs. Table 1 shows the excitation table for the designed
FSM with the expected inputs from each pulse generator, P1
and P2, as well as the expected outputs from each given
state. This design utilizes a logic low signal to transition
from state to state, while a logic high indicates that the state
should remain the same.

Table 1: Excitation Table

D. LUT
The Look-Up Table (LUT) in this design is to

function as a read-only memory (ROM), and read from the
FSM and output a 6-bit number for each state (shown in
Table 1). As the FSM generates a 3 bit output, the number is
sent to the LUT in the form of an enable signal (FSM
Output in Table 1). The 6-bit stored number for that state is
then output to LED’s simulating the traffic indicator lights.
Since the LED’s are set to illuminate when a logic high is
sent, the 6-bit number is interpreted as follows:
“RYGRYG”. where the three most significant bits indicate
the N/S facing lights, and the three least significant bits for
E/W facing lights. Lines 11 to 16 of Appendix C shows the
various six-digit combinations needed to fulfill the
requirements of the intersection lighting.

III. EXPERIMENTAL SETUP

All coding was completed using Vivado design
suite and VHDL language. To simulate the function of the
circuit, a test bench was created that allowed the full system
to run for a total of six seconds. Figure 4 shows the final
output of the device where the signals (sig[0-5]) indicate the
6-bit digit output that is used to power each individual LED.
Indeed these values match up with the expected outputs
shown on the excitation table.

With the simulation completed, the final circuit
design was then programmed onto the Nexys A7 100T
board. Traffic lights were then simulated by wiring each
LED input signal to one of the Pmod outputs and connecting
that to a breadboard. N/S and E/W lights were then wired
together so that a total of four traffic lights would be
functioning. To ensure proper functioning of each LED,

220 Ω dropdown resistors were used. This can be seen in
Figure 5.

IV. Results
Figure 4 shows the results from the experimental

simulation of the traffic control system. Column one shows
that within the first second, the generated output is “sig =
100001” which is equivalent to state 1 (S1) of the FSM
diagram. Continuing on to later intervals of time such as
column four, output is then “sig = 001100”, meaning that S4
has been achieved. Further examination of each column
indicated that the desired states and outputs have been
achieved as intended. To further verify the system is running
properly, the values match up with the excitation table
shown in Table 1.

Figure 4: Simulation Results

Figure 5: FPGA board with Circuit Connection

CONCLUSIONS

Finite state machines can provide a relatively
simple means to solve some outwardly difficult problems.
In the case of this traffic control system, the FSM model
provided the ideal solution for creating a time based
intersection. In addition to the benefits the FSM provides, it
remains clear that implementing other simple combinatorial
circuits around them can provide an even greater tool. The
use of VHDL coding language also provides a modular
approach to the problem that allows for significant
upgradability. Should one have an intersection with more
lights, or simply need different timing cycles, only a few
lines of code need to be altered to achieve the desired

outcome. Additionally, the use of HDL code allows for
quick modeling of a circuit without having to undergo
tedious circuitry design by hand. Some additional work to
follow this study should include the addition of various
traffic indication signals, further improving the experience
of traffic intersections. Although timed lights can
potentially alleviate traffic congestion, the implementation
of in-the-road sensors to dynamically vary signal timing
could be of greater use. It is also possible that this design
could be used in parallel with other signal logic systems to
include additional lighting indicators such as crosswalks or
turn indicators.

REFERENCES

[1] Llamoca slides VHDL Coding for FPGAs Unit 6
https://moodle.oakland.edu/pluginfile.php/7846507/mo
d_resource/content/3/Unit%206.pdf

[2] Radio Electronics, Computer Science, Control -
National University. The Scientific Journal

[3] Llamoca “4 to 1 LUT” VHDL coding for FPGAs
http://www.secs.oakland.edu/~llamocca/VHDLforFPG
As.html

[4] “Clock Divider In VHDL.” Stack Overflow.
https://stackoverflow.com/questions/61878127/clock-di
vider-in-vhdl-from-100mhz-to-1hz-code

[5] “Design of a VHDL LUT Module” Stack Overflow
https://stackoverflow.com/questions/21976749/design-o
f-a-vhdl-lut-module

[6] Nexys A-7 FPGA Trainer Board-Reference Manuel
https://digilent.com/reference/programmable-logic/nexy
s-a7/reference-manual?redirect=1

APPENDIX

A. Pulse Generator [4]

1. entity pulse_1 is
2. port (clk1 : in std_logic;
3. clr : in std_logic;
4. clk : out std_logic);
5. end pulse_1;
6.
7. architecture Behavioral of pulse_1 is
8.
9. signal count : integer :=0;
10. signal b : std_logic :='0';
11. begin
12.
13. process(clk1)
14. begin
15. if clr = '0' then
16. count <= 0;
17. elsif(rising_edge(clk1)) then
18. count <=count+1;
19. --1 SECOND PULSE
20. if(count = 100000000) then
21. b <= not b;
22. count <=0;
23.
24. end if;
25. end if;

26. clk<=b;
27. end process;
28. end Behavioral;

B. FSM [1]

1. entity FSM is
2. Port (resetn, clk, p1, p2, p3: in std_logic;
3. s: out std_logic_vector(2 downto 0));
4. end FSM;
5.
6. architecture behavioral of FSM is
7.
8. type state is (S1, S2, S3, S4, S5, S6);
9. signal y: state;
10. begin
11. transistions: process (resetn, clk)
12. begin
13. if resetn = '0' then y <= S1;
14. elsif (clk'event and clk = '1') then
15. case y is
16. when S1 => --R/G NS/EW
17. if p2 = '0' then
18. y <= S2;
19. else
20. y <= S1;end if;
21. when S2 => --R/Y NS/EW
22. if p1 = '0' then
23. y <= S3;
24. else
25. y <= S2;end if;
26. when S3 => --R/R NS/EW
27. if p2 = '0' then
28. y <= S4;
29. else
30. y <= S3;end if;
31. when S4 => --G/R NS/EW
32. if p1 = '0' then
33. y <= S5;
34. else
35. y <= S4;end if;
36. when S5 => --Y/R NS/EW
37. if p2 = '0' then
38. y <= S6;
39. else
40. y <= S5;end if;
41. when S6 => --R/R NS/EW
42. if p1 = '0' then
43. y <= S1;
44. else
45. y <= S6;end if;
46. end case;
47. end if;
48. end process;
49.
50. output: process (y)

51. begin
52. s <= "000";
53. case y is
54. when S1 => s <= "001"; --if p1 = '0' then r1 <=

'0'; r2 <= '1'; r3 <= '1'; end if;
55.
56. when S2 => s <= "010"; --if p2 = '0' then r1 <=

'1'; r2 <= '0'; r3 <= '1'; end if;
57.
58. when S3 => s <= "011"; --if p3 = '0' then r1 <=

'1'; r2 <= '1'; r3 <= '0'; end if;
59.
60. when S4 => s <= "100"; --if p1 = '0' then r1 <=

'0'; r2 <= '1'; r3 <= '1'; end if;
61.
62. when S5 => s <= "101"; --if p2 = '0' then r1 <=

'1'; r2 <= '0'; r3 <= '1'; end if;
63.
64. when S6 => s <= "011"; --if p3 = '0' then r1 <=

'1'; r2 <= '1'; r3 <= '0'; end if;
65.
66. end case;
67. end process;
68. end behavioral;

C. LUT [5]

1. entity LUT is
2.
3. port (state: in std_logic_vector (2 downto 0);
4. OLUT: out std_logic_vector (5 downto 0));
5. end LUT;
6.
7. architecture struct of LUT is
8. begin
9. with state select
10.
11. OLUT <= "100001" when "001", --
12. "100010" when "010",
13. "100100" when "011",
14. "001100" when "100",
15. "010100" when "101",
16. "000000" when others;
17.
18. end struct;

