
Four Digit Decimal Locking System

Nexys A7

Foster Caragay, Marko Wassef, Vincent Tran, Athanathios Bebawy

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: facaragay@oakland.edu, markowassef@oakland.edu, vincenttran@oakland.edu, abebawy@oakland.edu

Abstract—This paper details the process of developing and

implementing a 4-digit locking system with decimal input. This

system utilizes 8 4-bit registers, 2 decoders, an FSM, 7-segment

decoder, a comparator, and a debouncer/decoder. The system

contains both datapath and control circuitry implemented

together on a Xilinx xc7a50t csg324.

I. INTRODUCTION

Figure 1. Block Diagram of Locking System

Our circuit resembles the logic of digital safes. A

combination is set, and to unlock the system the same
combination must be entered. The option to reset the
combination is available if the system is unlocked, or the
system can be re-locked. The option to set a new
combination or re-lock the system is selected by the select
switch (sw15). The combination is selected by putting a
switch high (with an assigned decimal value) and selecting
the “next” button (btnC). As the 4-digit combination is
entered the 7-segment display will show the index of which
digit in the combination the user is setting. Ex: if the user is

setting the third digit of the combination, the 7-segment will
show a 3. Once a combination has been set, the system
awaits an input from the user.

The input process for unlocking the system is the same as
that used to set the combination. Upon entering the correct
combination, the system will illuminate a LED (led0) and
display a U on the 7-segment display. If the wrong
combination is entered, the system will display an E and at
the next button press, allow the user to enter a combination
again.

II. METHODOLOGY

A. Decimal to Binary Decoder

Designing the means to input decimal digits into a system
that operates in binary posed challenges. The solution to this
issue was to assign 10 switches decimal values 0-9, that were
then decoded by a decoder component. The decoder
component has a 10-bit input, with a 4-bit output. The 10-bit
input is comprised of the high/low state of the 10 switches
representing the decimal input. Ex; “0000000100” would
represent a decimal value of 2. In cases where multiple
switches have high states, the decoder will output a “0000”
as no conclusion can be met. The decoder utilizes a LUT that
has entries for all expected values, and for the unexpected
values outputs a “0000”.
Example:

Input: “0000000100” = Output: “0010”
Input: “9876543210” = Output: “2”

B. Memory/Registers

The inherent nature of a lock means that a combination
must be set and stored into “memory”. First, the use of
parallel access left shift registers was considered to allow for
the data bits (set combination and entered combination) to be
shifted in and read via the parallel access. However, this
design was not the most optimized. Reviewing constraints
for the design it occurred that the logic structure employed
by RAM would be the most efficient, and work effectively.
Thus 8 4-bit shift registers were used to store a total of 32-
bits of data. The 4-bit data line fed from the Decimal to
Binary Decoder is tied to all 8 registers, thus an enable
decoder must be implemented. The enable decoder has a 4-

bit input and an 8-bit output. The 4-bit input is fed from the
FSM control system to enable the appropriate register. The
8- bit output feeds one bit to the enable input of the
appropriate register. Ex: to enable register 3, the FSM would
input the 4-bit data “0011”, and the decoder would output
“00100000”. To allow functionality to disable all registers,
the decoder will recognize the input “1111” and disable all
enable outputs to prevent overwriting of values in states
where the registers are not utilized.

C. Comparator

To determine whether the entered combination matches

the set combination a simple comparator was implemented.

The comparator has a 1-bit output and two 16-bit inputs

comprised of the concatenation of the binary values stored

in registers 0-3 (set combination) and registers 4-7 (entered

combination). The comparator outputs a “1” when both 16-

bit inputs match, otherwise the comparator outputs a “0”.

D. Debouncer/Counter

As the system utilizes a button as a means of user input,

a debouncing circuit was developed and implemented. The

debouncing circuit utilized a pulse counter that counts the

rising edge of X amount of clock pulses. If the button signal

remains high for X amount of clock pulses, the 4-bit counter

will increase by a value of one. The 4-bit counter is used to

track the state of the system and is fed to the FSM for use

elsewhere in the system. The count has a maximum binary

value of “1011” representing the last user action before

returning to a count of “0000”. This is best displayed by

figure 2.

E. FSM/Control System

The FSM/Control system is used to track the state of the

system, control which register is enabled, the state of the

LED, and the 7-segment display. Below is a diagram of

the FSM’s logic (figure 2).

Figure 2. FSM Logic Diagram

III. EXPERIMENTAL SETUP

In order to verify and test each component used in the
system, separate test benches were used. However, due to the
nature of the system generating a testbench to test every
possible combination of set and entered combinations proved
infeasible and inefficient. To test the entire system, we
generated a bit stream and using a multitude of edge-cases
and test values we were able to verify the functionality for
20+ set and entered combinations.

IV. CONSIDERATIONS/CONCLUSIONS

For the duration of the project, the biggest issue
experienced was the use of a button for user input. The
debouncing portion of the circuit is where the most

uncertainty is presented as with each button press, the
mechanical components of the button deteriorate and thus
cause more bouncing. Additionally, the implementation of a
memory structure that utilized the least amount of
component proved challenging. However, the use of a
similar structure to that of RAM was a solution that met our
constraints and works without flaw.

REFERENCES

[1] D. Llamocca, “VHDLforFPGAs,” VHDL coding for fpgas. [Online].

Available:
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html.
[Accessed: 11-Nov-2022].

