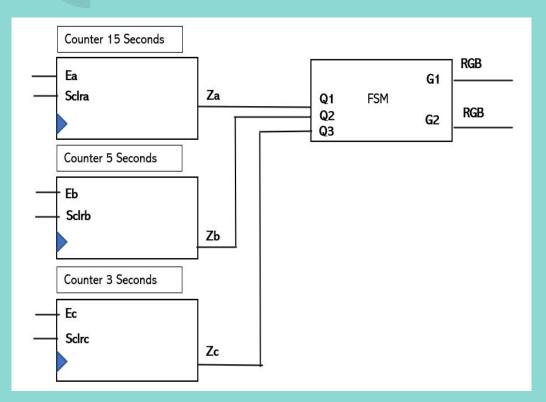
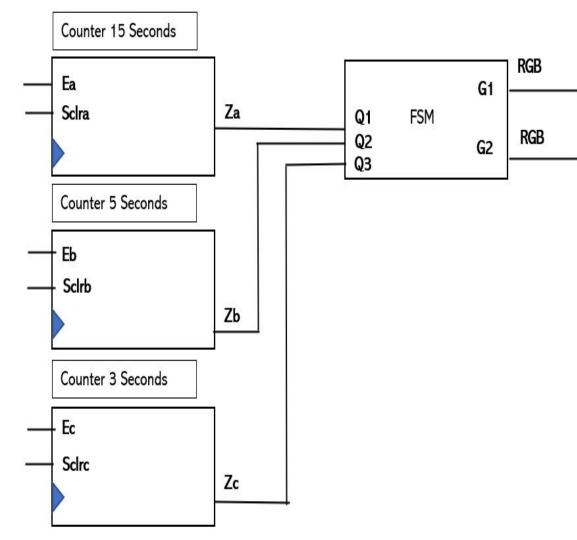

4 Way Traffic Light Controller

Cali Malone, Bianca Muller, Azra Jakupovic, Marielly Perez



Methodology


- A 4 way traffic light controller was created in order to simulate a real life scenario of how traffic light timing works in an intersection.
- The traffic lights are divided into two perpendicular groups. One group goes north and south and the other goes from east and west.
- When group 1 is green, group 2 will be red, and vise versa.
- Each group will have different timing for the yellow and then green lights so that the cars may slow down before they transition to red.
- There will be a period where both groups will be red, acting as the reset of the cycle.
- Hardware: Artix-7 Nexys A7 DDR Board
- Software: Xilinx Vivado using VHDL

Circuit for Traffic Light

- We will be utilizing 3 counters and an FSM machine.
- Each counter will be responsible for a specific period of time.
- We have 6 inputs in total from the counters
- **Ea, and Sclra** inputs for the first counter.
- **Eb, and Sclrb** inputs for the second counter.
- **Ec and Sclrc** inputs for the third counter.
- Q1 Input from Za
- Q2- Input from Zb
- Q3- Input from Zc
- The output from the FSM will be
 - **G1** Group 1 for **RGB**
 - G2- Group 2 for RGB

Counter :

This counter will be used to sequence pulses. This digital device is a form of a flip-flop.

-Counter A will pulse the clock for 15 seconds.

-Counter B will pulse the clock for 5 seconds.

-Counter C will pulse the clock for 3 seconds.

FSM :

FSMs are used to represent system with a finite number of states. In our case it will have states S1-S5, which will control the RBG lights.

States S1-S5 will be controlled by -Inputs **Q1, Q2, Q3** -Outputs **G1, G2**

Inputs/ Outputs

Name	Inputs	Outputs	
Counter 1	Ea	Za	
	Sclra	Za	
Counter 2	Eb	Zb	
	Sclrb		
Counter 3	Ec	Zc	
	Scirc		
FSM	Q1, Q2, Q3	G1, G2, RGBs	

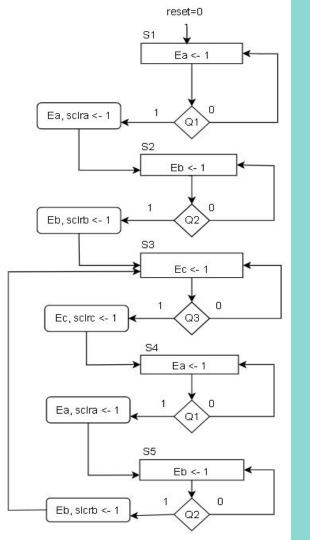
Outputs	Group	Signal	Description
		G1G	Group 1 Green Light
Road 1 Road 3	1	G1Y	Group 1 Yellow Light
Ttoad 5		G1R	Group 1 Red Light
Road 2 Road 4	2	G2G	Group 2 Green Light
		G2Y	Group 2 Yellow Light
		G2R	Group 2 Red Light

- Road 1 and 3, which are relatively N and S are in Group 1, represented with (G1G) for green, (G1Y) for yellow, (G1R) for red.
- Road 2 and 4, which are relatively E and W will be Group 2, represented with (G2G) for green, (G2Y) for yellow, (G2R) for red.

Group 1	Green	Yellow	
Group 2	Red		
Time (seconds)	15	5	

Group 2	Green Yellow		
Group 1	Red		
Time (seconds)	15 5		

Group 1	Red
Group 2	Red
Time (seconds)	3


- Group 1 will be green for 15 seconds, and yellow sequentially following for 5 seconds. Simultaneously, group 2 will be red for the entirety of the 20 seconds.
- Afterwards, both groups will be red for 3 seconds serving as a reset. This will allow all the cars to come to a halt before the process cycles again.
- The process is the same vice versa for Group 2.

State Table/Excitation Table

(za	Input zb :	zc)	Present State	Next State	Output	
1	Х	Х	S1	S2	G1G	G2R
Х	1	Х	S2	S3	G1Y	G2R
Х	Х	1	S3	S4	G1R	G2R
1	Х	Х	S4	S5	G1R	G2G
Х	1	Х	S5	S3	G1R	G2Y
0	Х	Х	S1	S1	G1G	G2R
Х	0	Х	S2	S2	G1Y	G2R
Х	Х	0	S3	S3	G1R	G2R
0	Х	Х	S4	S4	G1R	G2G
Х	0	Х	S5	S5	G1R	G2Y

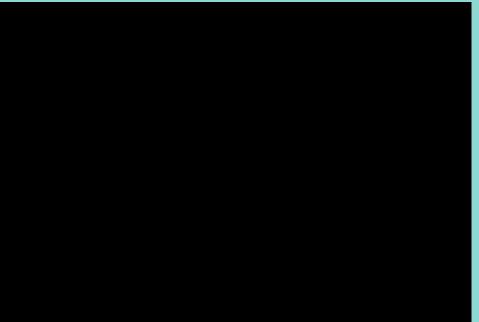
Input (za zb zc)		Present State	Next State			
1	х	х	000	001	010	100
Х	1	Х	001	010	110	100
Х	х	1	010	011	100	100
1	х	х	011	100	100	010
х	1	х	100	010	100	110
0	х	х	000	000	010	100
Х	0	Х	001	001	110	100
Х	Х	0	010	010	100	100
0	х	х	011	011	100	010
Х	0	х	100	100	100	110

- Inputs za, zb, and zc control the states.
- Only one input is need at a time.
- When za, zb, or zc is 1 it will prompt the circuit to move to the next state.
- If za, zb, or zc is 0, the circuit remains in the same state.
- When the input in S3 is 1, it changes to S4.

S1:

-

S2:


- In S1 Group 1 would be green and Group 2 would be red.
- When $\mathbf{Q1} = \mathbf{0}$ stays in $\mathbf{S1}$. -
- When **Q1** = 1 the state changes **S2** the counter runs for 15 seconds. sclra will also be 1. While Ea will always be 1.
- In S2 Group 1 would be yellow and Group 2 would stay red.
- **Q2** = **0** stays in **S2**.
- $\dot{Q2} = 1$ the state changes to S3 and the counter runs for 5 seconds. sclrb will also be 1. While **Eb** will always be 1.
- S3:
 - In S3 Group 1 would be red and Group 2 would be red. -
 - **Q3** = **0** stays in S3. _
 - $\dot{Q3} = 1$ the state changes to S4 and the counter runs for 3 seconds. Sclrc will also be 1. While **Ec** will always be 1.
 - **S3** is the rest state where both lights will be red.
- S4:

S5:

- In S4 Group 1 would stay red and Group 2 would be green.
- 01 = 0 stays in S4. 01 = 1 the state changes to S5, and the counter runs for 15 seconds. sclra will also be 1. While Ea will always be 1.
- In S5 Group 1 would stay red and Group 2 would be yellow. -
- Q2 = 0 goes to S5.
- $\dot{Q2} = 1$ changes the state to S3 and the counter runs for 5 seconds.. sclrb will also be 1. While **Eb** will always be 1.

Simulation

[1] Llamocca. "RECRlab." VHDL Coding for Fpgas, http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html.

[2] "Finite State Machines: Sequential Circuits: Electronics Textbook." All About Circuits, https://www.allaboutcircuits.com/textbook/digital/chpt-11/finite-state-machines/.

[3] "Digital Circuits - Finite State Machines." *Digital Circuits - Finite State Machines*, https://www.tutorialspoint.com/digital_circuits/digital_circuits_finite_state_machines.htm.

[4] Vivado Tutorial - Xilinx. https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2013x/Nex ys4/Verilog/docs-pdf/Vivado_tutorial.pdf.