
FPGA Stacker Game

Jacob Lamberson, Benjamin Rojewski, Nicholas Spanos
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: jlamberson@oakland.edu, brojewski@oakland.edu, nspanos@oakland.edu

Abstract — Implementation of the arcade game “Stacker” on a
programmable FPGA board as a demonstration of knowledge
gained in class.

I. INTRODUCTION

The scope of our project was to come up with a
functioning device that showcased our knowledge and
comprehension of the topics presented throughout the
semester. This report will walk you through our journey
towards accomplishing this goal, and we will start with our
methodology.

Here, we will discuss our reasoning behind choosing
stacker, and we will expand on the three major proponents
of the project: the oscillators, the memory storage, and the
memory selection and display. We will then discuss our
experimental setup and explain how we tested our design's
functionality. Afterward, the report will highlight the group's
results and discuss the importance of our findings.

Additionally, we should mention that our project
incorporates almost all of the learning objectives specified
in the course. For example, the project has both
combinational and sequential elements, such as registers and
finite state machines representing the latter; and decoders
and multiplexers representing the former. VHDL was used
to implement our design and seamlessly incorporate these
components; this implementation was only possible thanks
to our grasp of the software. This takeaway is important, as
it implies that we have come away from this course learning
a practical skill that may serve us well in our future as
engineers.

II. METHODOLOGY

The game we attempted to implement on our board is
commonly present in many arcades and called “Stacker.”
The following video provides context:

Game Reference

The following is a description of the design
methodology of the project, which was subdivided into three
distinct sections based on their functions; oscillators to
generate the necessary data signal, some form of memory to
store data when the user indicates the stop, and a
custom-made serializer to send the data concurrently to the
8x8 LED matrix display.

A. Oscillators
The idea behind this part was that a signal of oscillating

bits was needed to store in memory to play the game. To
implement this portion of the project, three unique FSMs
were leveraged along with three genpulse counters and three
flip-flops with enable. The genpulse counters are constantly
running, and their z outputs that indicate the reset are what
signals the FSMs to enter the next or previous state. The
FSMs also control the flip-flops’ input “D” and their
enables. The flip-flops’ output “Q” holds onto a value that
tells the FSMs whether to go to the next state, or the
previous state, in order to make an efficient oscillating
signal for later use. There are three of these units in the
“Oscillators” portion that are responsible for generating a
signal with three blocks, two blocks, or one block,
depending on the player’s performance during the game.
The player may select between each signal using onboard
switches as the select line of a multiplexor connected to the
three signals. The output of the multiplexor, which is called
“data'' is sent over to the next portion of the project, the
memory of the system.

B. Memory
The memory of the system consists of eight registers

with enables that are each eight bits wide. Therefore we
have eight rows and eight columns of data, one for each
LED on the matrix display. Each register is connected to the
“data” output of the oscillator multiplexor at the same time.
The register that receives the data for storage is selected
through 3 onboard switches that operate a 3-to-8 decoder
with an enable. The decoder’s 8 outputs are each attached to
an enable of a register in the memory bank. The enable of
the decoder determines whether it has any output or not, and
it is tied to yet another onboard switch, which we have
opted to call the “drop switch,” since turning it on lets the
player see the blocks oscillating on the display, and turning
it off stops the blocks where they are, which we called
“dropping.” The game requires a total of 6 onboard
switches; three for memory address, one for memory enable,
or the “drop switch,” and two to operate the oscillator
multiplexor to select how many blocks are in play. The data
stored in the eight registers are then sent to the final stage of
the datapath, the display portion.

https://youtu.be/L0A5PABiT5A?t=44

C. Display Serializer
The display portion of the project is possibly the most

important component of the entire project’s design, as it
creates the user interface that the player uses to actually play
the game. Without it, the board would be doing seemingly
nothing, according to the end user. With that being said, the
display portion had to begin with the physical component
that would be doing the displaying: the LED matrix. For this
project, we opted to use the 1088AS 8x8 LED matrix as our
display, simply because that is what we had on hand. As the
datasheet shows, wiring the matrix is not very
straightforward to wire for controllability, but after some
testing, it was sorted out. The way the matrix works is as
follows: the unit has sixteen pins, eight anodes and eight
cathodes. The anodes and cathodes can be thought of as
rows and columns controls. When a powered anode lines up
with a grounded cathode, current flows, and the LED lights
up. For example, if you ground all the cathodes and power
one anode, eight leds in the same row will all light up. In
order to send our register data to the display, we would
need to quickly scan across each register, and send its data
to a row of the display to be shown to the player. Since
anywhere the power and ground intersect, the current will
flow, we couldn't simply ground all the cathodes and send
the register data for display, or we wouldn't be able to show
separate rows as their own data. To work around this issue,
we had to design our own serializer to send data to each row
individually, at a rate fast enough that it is undetectable to
the human eye. This was implemented using an 8-to-1
multiplexor, a 3-to-8 decoder, a custom FSM, and a
genpulse counter. The counter is the beginning of the
display subsystem, counting high enough to emit a “z” reset
signal every 500 μs, fast enough to be invisible to the
human eye. This “z” reset signal is sent to the FSM, which
changes states as the “z” becomes high for one clock tick.
The FSM outputs a three bit signal that counts up in binary,
which is connected to the select line of the 8-to-1
multiplexor. The multiplexor’s inputs are connected to each
of the eight registers from the memory section, and its
output is the data sent to the eight cathode pins of the matrix
display. The three bit counting FSM output is also sent to
the 3-to-8 decoder, and this decoded output is sent to the
anodes, making only one column grounded at a time. With
all these components together, the basic function of the
display circuit is to send one row of data to the cathodes and
ground the respective anodes in order to turn on the correct
LEDs in their rows, without impacting the function of any
other row on the board. The FSM output is changed so
frequently that the LEDs light up and do not flicker to the
human eye.

With all of our subdivisions completed, the last step is to
put them all together. Once connected, the data is generated
by the oscillators, told where to be stored by the memory
bank, and quickly scanned through to be displayed by the
display serializer.

III. EXPERIMENTAL SETUP

Our project setup incorporated both software and
hardware solutions to test the functionality of our final
design. As previously mentioned, we coded our project in
VHDL, programmed it into an FPGA board, and then
translated our code into a hardware application via an 8x8
LED matrix board. This may sound simple, but there were a
few hiccups along the way that we were able to correct
thanks to VHDL's tools and our experience with hardware.
On the software end, VHDL's synthesis and behavioral
simulation were critical in highlighting our errors. For
example, the initial code for the memory storage and
address section ignored the address input in the decoder, as
each register enable was mapped to the same enable used
for the decoder. This was not something we initially
realized, but after running a few simulations and retracing
our code, we found the issue in the local top file and fixed it.
Once we had finished diagnosing errors and our simulations
ran according to plan, we created an xdc file for the FPGA
board to talk with our code.

As far as hardware goes, we had three main components:
Our Artix A7-50T board, a breadboard, and an 8x8 LED
matrix board. The Artix-A7 is undoubtedly the most
important of the three as it served as the foundation for the
project. The board was used to implement the code, but we
also incorporated six of its switches, the CPU reset button,
and both sets of p-mod ports into our project. The switches
and reset button were particularly important as they were
used as inputs to the system. Flipping switch 1 dictates
when to stop the oscillation and switches 2 & 3 were used to
count in 2- bit binary to select the block count displayed.
Switches 13, 14, and 15 were used as a 3-bit binary address
for the memory storage section and the CPU reset button
can be pressed to reset the board. The p-mod ports were
used to connect the FPGA with the bread board and the 8x8
LED board, where we visually displayed our code. The
visuals took the form of 3, 2 or 1 lit LEDs oscillating back
and forth in a predetermined row, where the row was sent
3.3 volts and then the individual diodes were grounded, in
order to prevent the entire row from lighting up. When we
first tested our design, we burnt out our matrix board
because the current was too high, so we decided to add a
220-ohm resistor in series with each row of the display.

http://www.ledtoplite.com/uploadfile/2017/1088/TOP-CC-1088AS.pdf

IV. RESULTS

After the project was set up as described in the
experimental setup, the project operated as shown below.

Video Demonstration

We can see that each row is able to be controlled by
address switches, as well as how many blocks appear on that
row. It is also shown that previous rows persist on the
matrix. We had three separate major components to this
project, and we learned from each. The oscillator portion
involved FSM’s, which required unique construction of each
one, as well as how to time them properly for the rest of the
circuit. The data storage component required taking what we
learned from Lab 5’s RAM emulator example, and
expanding on it so it could handle the data given from the
oscillators, as well as pass it to the display efficiently.
Finally, the display portion required taking inspiration from
the seven-segment display example for a stopwatch and
adding a serializer to make sure the data is cycled through in
order to display game data correctly.

There were several challenges faced while completing
this project. During development, there were three major
issues we had to overcome and solve; the first was the
wiring diagram of the 8x8 display, as it was very confusing,
but after some time with it, we were able to wire it up
correctly to our needs. After it was wired up correctly, we
had an issue where the display was inverted, meaning the
blocks that needed to be lit were unlit, and the background
was lit. This was then fixed by inverting the cathode signal
to the columns on the display. Finally, there was an issue we
still don’t fully understand, but have solved. For some
unexplained reason, the oscillators were generating data that
would skip every other position on the display, only on odd
sets of blocks, or even. to get smooth block movement, we
had to tune the genpulse counters attached to each FSM
until it gave smooth output. The hypothesis as to why this
was happening is that it may simply be a nuance of the
display hardware used, but this issue only required some
guess-and-check tuning until all the oscillators were
outputting smooth signals for use.

Besides these brief interruptions, development went
smoothly and had no major setbacks or troubles, and the
results we got from the project were to be expected from the
amount of work and effort we put into it.

CONCLUSIONS

We gained a lot of experience during the development of
this project. The points that stood out the most were
adjusting scope and working as a team to complete our goal.
Our scope originally included a VGA display along with
game logic, so all we would need is a button to “drop” the
blocks and a button to reset. Partway through development,
it became clear that a system like that would simply not be

possible in the amount of time we had. Collectively
agreeing to simplify the scope to a 8x8 display, and to use
switches and the honor system to control game logic gave us
the time we needed to complete our project and make it
function. If we had more time, we would be able to add
these functions to the project. However, our lack of these
things is not from lack of knowledge, but instead of time.
We can all say that we are very proud of how we did, and
are happy with the results and how they function.

https://www.youtube.com/watch?v=ojBa_g__okM

