
FPGA Snake Game

Eric Wyman, Peyton Schmid

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: ewyman@oakland.edu, peytonschmid@oakland.edu

Abstract— The purpose of this project is to create a snake

game using a Nexys A7 FPGA board. The game utilizes a

keyboard input for directional control and a VGA output to

display the game on a computer monitor.

I. INTRODUCTION

This application was implemented with an asynchronous
keyboard input that was converted into simpler logic for
user-inputted control. This input was used to calculate the
next state of the game, which includes initialization, snake
movement, snake lengthening, the production of food tiles,
and finally the “game over” state. This logic ensures that the
displayed snake movement complies with the rules of the
classic computer game, “Snake.” From here, the game state
logic is converted to a VGA output display using 12-bit RGB
color.

The primary motivations for this project are to better
understand the interface between a computer and its
keyboard or display and to understand the process of
implementing a basic game using a hardware description
language like VHDL. To finish this project, knowledge on
finite state machines, counters, and registers from class were
used. It was also necessary to learn more about different data
types in VHDL and the innerworkings of PS/2 and VGA
communications.

II. METHODOLOGY

A. VGA Display

The snake game requires a display to show the user what
is happening. A VGA display was chosen because VGA
control is relatively simple, and all of the required hardware
is built in to the Nexys A7 board.

To stay within the time constraints of the project, Prof.
Llamocca’s vga_ctrl code from the class website was used
[1]. After looking through this code, it was determined that
the simple color configurations were better suited for this
project than the memory configuration. The focus of the
project was not on graphical detail so using memory to store
pixel data would add unnecessary complexity. When
configured to the simple 12-bit color mode, vga_ctrl
generates several signals that are important for the rest of the
game. Vga_ctrl uses a 12-bit vector called SW to set the
color value for pixels. In the original code this is mapped to
on-board switches so a user can enter a 12-bit color with
switches and display that color across the entire VGA
monitor [1]. For this project, control over individual pixels

was necessary to display the game. To accomplish this, three
different signals were used: hcount, vcount, and vga_clk.
Hcount and vcount are basic 10-bit counters that keep track
of the horizontal and vertical pixel count. Together they form
pixel coordinates ranging from (0,0) at the top left corner of
the screen to (639, 479) at the bottom right. Vga_clk is a
clock used for pixel color timing. On every pulse of the
clock, the color of the pixel at the location (hcount, vcount)
is written from the SW vector. To draw the different colors
on the screen, the game needed to write appropriate color
values to SW on this vga_clk pulse.

The gameDisplay block is responsible for this task. This
block uses the locations of each piece of the snake, the food,
and the walls to determine the correct color for a pixel and
writes that value to SW on the vga_clk.

B. gameDisplay

To keep the project simple, a square play area was used.
The play area (not including walls) spans from pixel (20, 20)
to pixel (399, 399). This play area was divided into a 20x20
grid of squares that are each 20x20 pixels. This allows for
the game logic to use a smaller “snake” coordinate system to
map the positions of the snake and food that can later be
converted to their respective pixel ranges. For example, a
snake piece at position (1,1) on the 20x20 grid would have a
snakeH value of 1 and a snakeV value of 1. When these
values are sent to the gameDisplay block, they are converted
to min and max horizontal and vertical pixel count values
using the following equations.

When hcount and vcount are within the range of values

for the snake, the color green (0x0F0) is written to the SW
vector on the vga_clk tick. Every piece of the snake and the
food is converted and displayed in this way. Figure 1 below
displays the ASM chart for this logic.

Figure 1: ASM Logic gameDisplay

C. PS/2 Keyboard Interface

A USB keyboard was integrated as the input to allow for

user control of the game. Digilent FPGA boards are

compliant with PS/2 protocols and can seamlessly convert

input data from ASCII characters as input functions to a

program [2]. A USB keyboard can also use this same PS/2

logic with some coding conversions and a debounce

function, as the scan codes are sent from the keyboard every

100 milliseconds. The code used in order to convert the

logic of the keyboard to a readable input by the FPGA was

implemented through Professor Daniel Llamocca [1]. By

applying this code, the keyboard input was further

simplified due to the five keys that are used to control the

Snake application: the four arrow keys and the space bar.

The arrow keys were parsed into a 2-bit binary vector, while

the spacebar was set to a one-bit binary value that is high

when pressed, and low when unpressed. Table 1 below

displays the conversion values for the arrow keys.

Table 1: Keyboard Movement Input Conversions

Up Arrow Key “00”

Right Arrow Key “01”

Down Arrow Key “10”

Left Arrow Key “11”

From here, the PS/2 input is implemented into the logic of

the game. Figure 2 displays the ASM diagrams that explain

the operation of the PS/2 interface, while Figure 3 displays

the top diagram of the PS/2 converter component.

Figure 2: PS/2 ASM Diagram

Figure 3: PS/2 Top Diagram

D. Game Clock

The gameClock block is used as a basic clock divider to

bring the 25MHz, vga_clk down to a much lower speed for

the game to update at. After some experimentation, it was

found that around 5Hz or 5 movements of the snake per

second was an appropriate speed to run the game at. The

counters used to divide the clock are also used for the pseudo

random food generation. Figure 4 below shows the operation

of the game clock.

Figure 4: gameClock Diagram

E. Game Logic

The game logic is comprised of 6 different game states,

each handling different functions of the game. This block

uses two special data types. The first is called snake, this is a

15 slot array of integers that holds one half of the location of

the snake pieces in the 20x20 coordinate system. The size of

this array sets the limit on the length of the snake. The other

data type is state which can have one of the following values:

start, getDir, checkTile, move, food, and gameOver. The

state data type is used to set up the main gameLogic state

machine.

The game starts in the “start” state. The only purpose of

this state is to hold the current positions of the snake until the

next tick of the gameClock. Without this state, the game

would run at the speed of the vga_clk, so the snake would be

moving at 25Mhz which is far too fast to be a playable game.

After the gameClock tick, the logic moves to the

“getDir” state which writes the current keyboard input to a

direction variable to be used in the next state.

On the next tick of the vga_clk, the game moves to the

“checkTile” state. In this state, the head of the snake is used

with the direction input from the last state to determine the

position of the tile the user is trying to move to. This position

is stored in the nextTile variable. This nextTile position is

then compared to each tile of the snake, the walls, and the

food to determine whether the game will move to the

“move”, “food”, or “gameOver” state.

If the nextTile is the same as the current food tile, the

game moves to the “food” state where the snake length

variable is increased, and a new food position is obtained

from the pseudo random food generator. In this state, the

logic checks to make sure the new food position is a valid

one (not the same as the current position or inside the snake)

and moves to the “move” state when the new food position is

valid.

In the “move” state, the positions of each piece of the

snake are shifted and the head is moved to the targeted next

tile. After moving the snake positions, the game loops back

to the “start” state and waits for the next tick of the

gameClock.

If a wall or snake is hit or the snake has gotten too long,

the game enters the “gameOver” state, where everything is

reset to the starting positions and the game waits for the

spacebar to be pressed to restart the game. Once the spacebar

is pressed, the game loops to the “start” state. Figure 5 below

illustrates the full ASM chart for the logic of the game.

Figure 5: gameLogic ASM Chart

F. Pseudo Random Food Generator

The genFood block generates a new food position on every

tick of the vga_clk. This new position is only ever used

when the game logic is in its “food” state, meaning the

current food has just been eaten and a new piece needs to be

generated. The equations used to generate new locations are

as follows:

Where foodHIn and foodVIn are the current food

coordinates, 7 and 3 are arbitrarily chosen multipliers, and

count and count1 are counters from the clock divider. The

modulo operator is used at the end to convert the large

random values to a scale between 0 and 19 that fits the

20x20 tile coordinate system. Figure 6 below demonstrates

the ASM logic behind the pseudo-random food generator.

Figure 6: Pseudo-Random Food Generator ASM Chart

III. EXPERIMENTAL SETUP

The function of the application was verified using
progressive trial and error. First, the VGA display code was
tested using a Nexys A-50T FPGA board. Switches were
used to ensure that the screen had a full functioning range of
color that corresponded with the correct designated 12-bit
vector. From here, the game logic was implemented without
the PS/2 keyboard. The provided switches on the FPGA
board were used to control the direction input. The code was
troubleshooted and tested by hand in order to ensure that the
game complied with the operation of the classic snake game.
From here, the keyboard was implemented. The code was
edited until the keyboard input seamlessly worked with the
rest of the project. Once the structure of the project was
verified, slight edits were made to the playing field to
provide a more aesthetic and familiar set up to this rendition
of the classic game. For example, the snake was changed to a
green color and the generated food was set to red, while the
game field was set to gray with a blue border.

IV. RESULTS

The program was implemented seamlessly, although a bit
rough around the edges in terms of visual design. The
controls of the game allowed for proper function, and the
display provided a visual rendition of the input for game
operation. When the game was “lost” due to a collision with
either the border or the snake itself, the game was able to be

reset and played again by pressing the spacebar key. The link
below redirects to a video of the function of the project:

https://www.youtube.com/watch?v=05jZkSMZmzs

Figure 7 below shows the top-level diagram of the project.

Figure 7: Top Level Diagram of Snake Game

CONCLUSIONS

This project allowed the group to delve deeper into the
programming of FPGAs using VHDL through the
implementation of the PS/2 keyboard as well as the VGA
display. Components such as shift registers were utilized
within the provided code documents. As these topics were

further explored, the implementation of the logic units that
were discussed within the class became clearer. The project
also allowed for skills of troubleshooting and
implementation to become stronger, as this project was
implemented out of creativity and not just from simply
following a laboratory rubric. Although the application ran
quite seamlessly, more could be done to make the
application more visually aesthetic. For example, a playing
grid with a greater density of pixels could be use for higher
resolution graphics in both the snake and the generated food.
More detail could have also gone into the playing ground to
make it more visually pleasing as well. Different difficulty
levels could also have been added by increasing the snake
speed through the game clock. A scoreboard would also be a
pleasing addition so that the user could attempt to beat their
high score.

REFERENCES

[1] Llamocca, Daniel. “RECRlab - VHDL Coding for FPGAs.”

Reconfigurable Computing Research Laboratory (RECRLab),
Electrical and Computer Engineering Department, Oakland
University.

[2] Brown, Arthur. “Nexys A7 Reference Manual.” Nexys A7 Reference
Manual [Digilent Documentation], Digilent,
reference.digilentinc.com/reference/programmable-logic/nexys-
a7/reference-manual.

https://www.youtube.com/watch?v=05jZkSMZmzs

