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Abstract- The purpose of the project is to design and          
implement a 12 bit Binary Coded Decimal (BCD) to         
binary converter on an FPGA board through use of a          
keyboard input as well as 7-segment displays and LED         
outputs. The 12 typed bits are stored through the use of           
D-Flip Flops, which are controlled by a Finite State         
Machine (FSM). The 12 BCD bits are then converted         
into a 10 bit unsigned output using an algorithm. The          
project was completed well within the group’s initial        
expectations and tested with a high degree of success.         
The project could be improved by using a multiplexer to          
make the full output displayed all at once, rather than          
changing every time a 1 or 0 is pressed on the keyboard.  

I. INTRODUCTION 
This report covers the design and implementation of a         

BCD to binary converter. The 12 bit BCD is typed into a            
PS/2 keyboard, and a field-programmable gate array       
(FPGA) board shows its binary and decimal equivalents.        
The next sections of the report give an overview of the top            
level design, a detailed description of the individual circuit         
components, as well as a summary of the results obtained          
from experimental trials. 

 
The motivation behind this project was for the group to           

demonstrate their knowledge of digital circuits, as well as         
Very High Speed Integrated Circuit Hardware Description       
Language (VHDL) coding. All knowledge necessary to       
carry out this project was taught in class. The project was           
designed using components such as FSM, encoders, adders,        
Flip Flops, and counters. Additionally, the design is        
implemented in VHDL using a myriad of commands such as          
generic and port map statements. 

  
BCD is commonly used in computer memory through        

address numbers [1]. In Addition, BCD is becoming        
increasingly useful in embedded microprocessors and are       
still used in real-time clock chips [1]. This project allows for           
the conversion of any 12 digit BCD to its binary equivalent. 

 

II. METHODOLOGY 

A. Top Level Design 
 

For this design, a PS/2 keyboard is connected to an 
FPGA board via a USB port; the user then types in a 12 
digit Binary Coded Decimal.  The circuit then  stores all 12 
bits using a FSM. At this point, the circuit implements an 
algorithm that uses adders and multipliers to convert the 
BCD to its decimal and binary equivalents, with the Binary 
equivalent shown on 10 LEDs and the decimal equivalent 
shown on three 7 segment displays. The top level block 
diagram is shown in Figure 1. 

 

 
 

Figure 1: Top Level Block Diagram 
 



B. Keyboard Reader 

The keyboard reader portion of the project consists 
of an already made file taken from the class notes, the 
main FSM for the entire project, the binary encoder, and 
12 D-Flip Flops, as shown in Figure 2, in Appendix A. 
The file, called my_ps2keyboard, consists of the two 
main components: ps2read and ps2keyboard. When a 
key is pushed on the keyboard, the ps2read component 
reads the hexadecimal scan code associated with the 
pressed key and outputs a 10-bit binary number in the 
form of TTL communication[2]. This 10-bit output then 
has its two most significant bits (MSB) dropped. This is 
because those two bits are the stop bit and the parity bit, 
which are not needed for the purposes of this project [6]. 
The resulting 8-bit hexadecimal number is then fed into 
a D-Flip Flop and a FSM. The enable to the D-Flip Flop 
is controlled by the FSM and also feeds into a counter 
that outputs a 1-bit “done” signal once the count is 
reached. 

 
Once the 8-bit number is put through the D-Flip 

Flop, it then feeds into a binary encoder that outputs a 
1-bit input into the main FSM along with the 1-bit 
“done” signal from the previously mentioned counter. 
The FSM then controls which of the 12 D-Flip Flops 
will be storing which digits. These D-Flip Flops store all 
of the 12 typed inputs. 
 

C. Binary Encoder 
 

When the user types the number ‘1’ into the 
keyboard, the 8 bit scan code 0x16 is outputted from the 
keyboard receiver block. Similarly, when the user types 
in ‘0’ into the keyboard, the scan code 0x45 is outputted 
from the keyboard receiver block [4]. The binary 
encoder is responsible for converting these scan codes 
into the digit that was typed into the keyboard (either 0 
or 1). That way, the circuit can store the actual typed 
digits, rather than their hexadecimal scan codes, into the 
D-Flip Flops. 
 

D. Main FSM  
 

If the user types in more than one digit into the 
keyboard, the previous scan code is overridden and replaced 
with the scan code of the newly typed digit. As a result, 12 
D-Flips Flops are required to store all the 12 typed digits 
into memory. In order to control the storing of all the typed 
digits, a FSM was used. In addition to receiving a clock and 
“resetn” signal, the FSM receives a one bit signal from the 
binary encoder, which represents the digit typed into the 
keyboard. The FSM also receives a one bit “done” signal 
from the keyboard receiver block, which indicates that the 
scan code output of the keyboard receiver block is valid. 
The FSM outputs 12 bit signals named “D” and “E”, with 

each bit of the output signals being connected to the “D” 
and “E” signals, respectively, of 12 separate D-Flip Flops. A 
Block Diagram of the FSM is shown in Figure 3. 

 

Figure 3: Main FSM Block Diagram 
 

The FSM contains 12 states, with one state for each 
typed number[4]. To start off, the “resetn” input is set to 0, 
and the FSM remains in State 1. Once the “done” input is 
high, the FSM moves to State 2. When this happens, the 
Binary Encoded Input is outputted from the FSM, and it 
becomes the “D” input to the most significant flip flop, and 
only the MSB of the FSMs “E” output is high. This way, 
each typed value can be stored into its appropriate flip flop, 
and the entire 12 bit typed input can be saved. For example, 
if the FSM is at State 2 and it receives a “done” signal, the 
2nd MSB of “D” is set to the Binary Encoded input. In 
addition, the 2nd MSB of “E” is set to ‘1’ and the rest of the 
bits of E are set to ‘0’. As a result, the value of the second 
bit typed into the keyboard will be stored only into the 
second flip flop, as the rest of the flip flops are not enabled. 
This cycle repeats until all 12 states have been completed, 
meaning that all 12 typed numbers have been input into the 
keyboard. At that point, the FSM moves to State 1 and the 
process repeats. An Algorithmic State Machine (ASM) chart 
of the FSM is shown in Figure 4 in Appendix B. 

 
  
 
 
E.  7 Segment Displays 
 

The seven segment display portion of the project 
uses 3 different components: a counter, a FSM, and a 
hex-to-7 segment converter. This portion of the project 
consists of code from a provided example. Its XDC file, 
counter, and number of active displays were modified to fit 
the project’s desired specifications. Its FSM has an input of 
3 nibbles, which are taken from the 12 bit output of the 
D-Flip Flops from the keyboard receiver block, along with 
an input from the counter. The input from the counter 
controls both the “AN” and “segs” signal. The AN signal is 
responsible for controlling which seven segment displays 
are turned on. The “segs” signal maps to the hex-to-7 
segment converter, which then maps directly to the currently 



active 7-segment display in order to show the correct 
nibble[4]. The FSM changes both the “AN” signal and 
“segs” signal during the same clock tick so that the 
7-segment displays show their corresponding numbers. A 
block diagram of the 7-segment display is shown in Figure 
5. 
 

 
Figure 5:  Seven-Seg Display Block Diagram 
 

F. BCD to Decimal Conversion Algorithm 
 

The BCD to Decimal converter uses a pair of multiplier          
blocks and a pair of 10 bit adders. The block takes a 12 bit              
BCD input, which is divided into three 4 bit nibbles named           
“nib0-2”. “Nib0” gets six 0's concatenated to it to become a           
10 bit "nib0a" signal. “Nib1” gets multiplied by ten, then          
gets two 0's concatenated to it to become a 10 bit "nib1b"            
signal. “Nib2” receives three 0's concatenated to it, then is          
multiplied by 100, producing a 14 bit "nib2b" signal.         
Because “nib2” can take on values from 0-9, the largest          
value “nib2b” can take is 900, which requires 10 bits in           
Binary. Thus, the leading four digits are always '0' and can           
be removed to create a 10 bit "nib2c" signal. The “nib1a”           
and “nib2b” signals are then fed into a 10 bit adder, with the             
output and “c” signals feeding into a second 10 bit adder,           
along with the “nib2c” signal. The result of this calculation          
is a 10 bit unsigned binary output [3][4]. A block diagram of            
the BCD converter is shown below in Figure 6.  

 

 
Figure 6: BCD Converter Block Diagram 

III. EXPERIMENTAL SETUP 
To verify the functionality of the project, a testbench         

was written in VHDL, through Vivado, in order to simulate          
the converter’s behavior. Additionally, an external interface       
test was performed on an FPGA board in order to test the            
project.  

 
For the behavioral simulation, the keyboard reading       

block was removed, and a pair of simulated keyboard inputs          
were provided to the BCD converter and 7-segment blocks.  
The BCD converter was expected to correctly convert the 12          
bit BCD input to a 10 bit binary signal , and the 7-segment             
displays were expected to correctly display the decimal        
equivalent 

 
For the external interface test, the project code was         

programmed onto a Basys 3 FPGA board, and a PS/2          
keyboard was connected to the board via a USB port. A set            
of five sample 12 bit BCD test inputs were used to test the             
functionality of the board. The five inputs were randomly         
selected to determine how the code would perform given a          
variety of inputs. Each test input was then typed into the           
PS/2 keyboard (MSB to LSB) for the circuit to interpret and           
convert. The FPGA was expected to show the correct binary          
equivalent on the LEDs and the correct decimal equivalent         
on the 7-segment display. 

IV. RESULTS 
The results from the external interface test were well         

within expectations and are viewable in the linked video         
provided in Appendix A. For each of the five external          
interface trials, the decimal outputs on the seven segment         
displays matched the hand-calculated values that were       
computed using the skills learned in class. Similarly, the         
binary outputs matched the hand-calculated values that were        
computed using the skills learned in class. One unexpected         
result that occurred while checking the LED results was that          



one of the hand-calculated binary values was incorrect; the         
project was used to correct said value. The only time the           
LED binary values deviated from normal values was when         
an invalid BCD was input into the keyboard, since the          
maximum value of a 4 bit BCD cannot exceed 1001. The           
BCD to binary conversion code was not designed to         
correctly handle these types of inputs, so it output         
meaningless data to the FPGA’s LEDs. By using knowledge         
gained from class, the group ensured that both tests did not           
contain any invaild BCD values. 

 
The second set of results were obtained from a test          

bench file run in Vivado. For these test results, the keyboard           
reader block was removed, so that a 12 digit BCD could be            
directly input into the BCD to binary converter. The results          
from this test are shown in Appendix B in Figure 7.The           
results from this test were also as expected. For each 12 bit            
BCD input, the correct 10 bit binary output was observed.          
These results prove the statement made in class that BCD is           
a less efficient way to store data, since a 12 bit BCD value             
can be represented with only 10 bits when converted to          
binary. While setting up the test, the group determined that          
it was beneficial to avoid meaningless data, so only valid          
BCD numbers were used as inputs. As a result, all binary           
value outputs had an explainable reason as to how they were           
calculated in the code. 

CONCLUSIONS 
This project was able to successfully convert a 12 bit          

BCD input from a PS/2 keyboard to a displayed binary          
output on a set of LEDs, as well as a decimal output on the              
seven segment displays of a Basys 3 FPGA board. 

 
Through the knowledge gained in class, it was        

determined that a binary encoder, an FSM, and a set of           
D-Flip Flops were necessary to correctly read and interpret         

the signals from a PS/2 keyboard. This project also showed          
that a serializer is necessary to correctly display multiple         
digits at a time on a seven segment display on the Basys 3             
board. One issue that remains to be solved would be coding           
a testbench file that includes the keyboard reader block.         
Simulating the testbench with the keyboard reader block        
proved to be difficult, so it was more efficient to test the            
keyboard reader block using an external interface rather        
than a coded testbench. 

 
The project could be improved by changing the design to          

display the final converted output of the circuit all at once,           
rather than sequentially as each individual bit of the BCD          
input is typed. A multiplexer could have been used to          
accomplish this, with a signal from the main FSM         
controlling the selector signal. 

 
Despite these potential improvements, the project was       

still completed with a high degree of success and the          
knowledge gained through this project can be applied        
towards the group member’s continued learning experience. 
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APPENDIX A 

 

 

(https://drive.google.com/file/d/1vA4av1TpVnwTqaM3dTbfXN0yEs8A_fMb/view?usp=sharing)  
 

 

 

 

 

APPENDIX B 

 
 

Figure 2: Keyboard Reader Block Diagram 

 
 

Figure 7: Keyboard Reader Block Diagram  
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Figure 4: ASM Chart of Main FSM 


