
BCD to Binary Converter

Androw Attya, Josh Biriiac, Rachelle Galan, Rami Sulaiman
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: androwattya@oakland.edu, bethuelbiriiac@oakland.edu, rachellegalan@oakland.edu, ramisulaiman@oakland.edu

Abstract—A binary-coded decimal (BCD) to binary and
hexadecimal converter designed, implemented and written in
VHDL. With the use of an FPGA (Field Programmable Gate
Array) switches and a keyboard to input the BCD number to
obtain an 8-bit binary and hexadecimal number on to the seven-
segment display.

I. INTRODUCTION
The analysis of the report will cover a thorough process in

designing a conversion between binary-coded decimal (BCD)
to an 8-bit binary formatted and hexadecimal number
operating with VHDL. The inputs will be controlled by a
keyboard and three switches on the FPGA (Nexys 4) board.
The outputs of the conversion will be displayed on the built-
in 7 segment display, with binary operated by one switch and
hexadecimal operated by another.

The binary-coded decimal (BCD) is a proficient way of
encoding binary numbers. Each digit of a decimal number is
represented by its binary form in 4 bits that holds the place of
the decimal number it represents. As for binary code, the
whole decimal number is converted into its binary form. The
hexadecimal system is generally operated to portray locations
in memory to signify every byte as two sequential
hexadecimal digits instead of the eight digits that would be
required by binary numbers. With this development, the
conversion of the BCD to binary and hexadecimal would
make it additionally simpler.

The report will indicate and provide the design of the
project in the methodology segment, the software and
hardware used to program the FPGA board will be in the
experimental setup along with the digital logic design and
results that were expected or were obtained in the project
advancement.

II. METHODOLOGY

A. Design Overview
For this design, the user will input a binary coded decimal

number into a keyboard attached to the USB port of the Nexys
board. The BCD number will be displayed on the seven-
segment display. The display and all necessary variables will
be updated whenever the user inputs a keyboard click. Once
the final 8-bit BCD value is in, two different switches may be
flipped to display either the binary converted number or the
hex converted number. A third switch will allow the user to
reset the process. The project code may be divided into three
major portions; the keyboard receiver, top module, and the

seven-segment display. The overall data-path schematic is
illustrated in Figure 1 below.

Figure 1: Data-Path

B. Keyboard Receiver
The keyboard receiver is mainly responsible for reading

the digits inputted by the user and ensuring all variables are
updated. During a key press, we receive 8-bits in 10 keyboard
clock cycles; different key presses will send different 8-bits.
The set keyboard scan codes are depicted in Figure 1. The two
important codes used in this project are ‘1’ and ‘0’. A key
press of ‘1’ will send a pattern of hex‘16’ which will be
BCD‘00010110’. A key press of ‘0’ will send a pattern of
hex‘45’ which will be BCD ‘01000101’.

Figure 2: Keyboard Scan Codes

The keyboard driver will read the 8-bits received and

check whether an appropriate key was pressed. All other keys
will be disabled since the user is only inputting a BCD value.
Each digit that is entered, is buffered into an 8-bit memory.
Eight keys are buffered at a time because there are eight seven-

segment displays. The buffer is first in, first out nature, so
older values leave first.

C. Top Module
The top module is responsible for checking the switches,

converting between BCD to binary to hex, and displaying the
correct number on the seven-segment display based on the
switches.

Within this module, there is a combinational circuit which
converts the BCD value outputted from the keyboard receiver
into an integer. There is then another combinational circuit
which converts this integer value to binary. With every key
press, all the above variables get updated instantly. It was clear
that with this implementation, there was no need for a
complex state machine.

To convert from BCD to Binary, the input BCD number
needs to be split by place value and converted separately. The
first conversion will be of the one’s place BCD number, or,
the last four bits. Logically, to convert this value to binary, the
number needs to be multiplied by one in BCD (0001). The
second conversion is of the ten’s place BCD number, or, the
first four bits. This binary coded decimal number will be
multiplied by ten (1010). The final step of the BCD to binary
conversion is to add the two results together. The final value
will be the correct binary conversion of the input.

Using the switches, the top module will select the relevant
output, either BCD, Binary, or hex, and send it to the seven-
segment display. The logic of this project, specifically the top
module, may be further simplified in Figure 2. This flow
diagram illustrates the path the BCD input will take.

Figure 3: Logic Diagram of Project

D. Seven-Segment Display
The seven-segment driver is composed of eight seven-

segment displays. In these seven-segment displays there is a
common cathode bus with different anodes for each
individual display. Since there is a common bus, the same
pattern will be displayed on all the seven segment displays
that are turned on. This is an issue considering the user will
input a combination of ones and zeros and not all one value.
To avoid this issue, each seven-segment display is turned on
for about 1/100th of a second, one after another. The anodes
of each display are used to show the pattern relevant to that
particular seven segment display based on a change in the
refresh counter. To sum, only a single seven-segment display
is on at a time, but since it flashes so quickly, the human eye
can not pick up on the flash and will see all seven segments
on at once.

III. EXPERIMENTAL SETUP
Random numbers were picked to simulate into the

testbench to analyze the outputs and the behavior of the
design. A few changes were made to see the expected outputs,
and the changes were some naming conventions needed to be
addressed. The results came out to be as expected after a few
tries. The group used NEXYS 4 DDR board to implement the
design with a keyboard connected via USB. Three switches
were used on the board, SW [0], SW [1], and SW [2]. The first
switch is used to display the result after converting from BCD
to binary. The second switch is used to display HEX, and
finally the third switch is used to reset the values back to zero
and back to the original state. All eight seven segment displays
were used to show the input and output of the result. As the
BCD number is entered from the keyboard, the ‘0’ or ‘1’is
shifted over to the next seven segment display to the left. This
is shown in Figure 4.

When the desired BCD number is entered, one can use
switches zero to two as one can wish what they want to
display. The random decimal numbers were picked, is
converted to BCD, then is used to enter and test on the
implemented NEXYS board. Then the group tried the
different switches to display the desired results. The
conversions were fully functional as expected and using the
experimental setup helped us verify our results. The following
table shows some of the BCD numbers the group tried.

Figure 4: Simulation Trials

Figure 5: Nexys Board Layout

IV. RESULTS
The team was able to successfully achieve the main goal

of the project which is converting BCD to binary but not only
that, we decided to go the extra mile and add conversion in
system that able to convert BCD to hex too. The team was able
to achieve all the goals of the project by developing a code
that is written by VHDL language.

Our model is an input 8 digits between [1,0] that will be
inserted via keyboard, then go through the top level diagram
design that we designed then the results will show in 7 seg-
display, getting into depth of the project the keyboard will
always provide an 8 bit binary output which indicates each
seven segment display value whether it is a 1 or a 0. Followed
by combinational circuit which converts BCD value into an
integer, then there is another combinational circuit which
converts the integer value back to binary.

The architecture of our project is a bit complex, even
though we didn’t use FSM which wasn’t necessary for our
project success but on the other side, we used several
combinational circuits. We had an issue with representing the
input of the 7 seg display while we pressing the numbers on
keyboard from left to right, first it was flashy but then we
found out that the clock needed to be synchronized in a way
that it can be faster than the human eye.

Results of our project is divided into five cases that prove
the success of our project, inserting an input of BCD eight
digits and shows the right answer for the binary conversion,
not only that we inserted all the five cases in test bench so it
can appear on simulation. Looking at the simulation section,
it represents the five cases that we presented in class in front
of everyone that shows BCD to binary to hex results.
Simulation shows several sections, the SSD binary, keypad
input numbers and hex output that will be simulated on seven
segment display by using switch [2].

Figure 6: Simulation Results

CONCLUSIONS
Finally the team successfully achieved all the goals of the

project, first attaching a keyboard to the FPGA board that able
to insert an input between 0,1. Secondly designed an accurate
system that will convert from BCD to binary and then to hex
and the output of eight bits of the conversion will be simulated
on 7 seg-display. Our architecture will allow us to easily
switch between BCD, binary and hex at any second but we are
limited from 0 to 99 ,after that the design won’t be able to give
accurate conversion results. Completing the project gave us
confident in ourselves that we are familiar with VHDL
language, the use of NEXYS-4 board and become proficient
in using Vivado.

REFERENCES
[1] Reference.digilentinc.com.(2019).reference:programmable-

logic:nexys-4-ddr [Reference.Digilentinc]. [online] Available at:
https://reference.digilentinc.com/reference/programmable-
logic/nexys-4-ddr [Accessed 21 Nov. 2019].

[2] D. Llamocca, VHDL Coding for FPGAs. [Online]. Available:
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
[Accessed 21 Nov. 2019].

