
Serial Cryptography

Serial communication with a twist

List of Authors: Robert Brosig, Trevor van Loosbroek

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: rmbrosig2@oakland.edu, tvanloosbroek@oakland.edu

Abstract— The purpose of this project is to receive data from a computer onto an FPGA, mix that
incoming data using a caesar cipher. The caesar shift value and direction are determined by the user of the
board. The data is then transmitted to the computer from the FPGA. Originally the incoming data was
going to be over RS232 but that was replaced with USB converted to TTL in order to preserve simplicity.

 I. Introduction
This report will cover the design, the testing and
the results of the project.

The real world application for this project
extends far beyond the project itself.
Communication between two devices has an
unlimited list of applications, and a
cryptographic device is simply one example.
The in class discussion on transferring data over
TXD and RXD proved to be useful in
developing the project [1]. The group learnt how
to communicate over COM Ports and find out
which COM port is active for the FPGA. The
receiving circuit is most similar to a state
machine for a keypad, or a specific sequence of
inputs. The start and stop bit are always given,
and so the state machine may progress to the
receiving state and return to the initial state once

the start and stop bits are received, respectfully.
Once finished our project could be used by
secret agents trying to draft caesar ciphered
messages.

II. Methodology
The project is a compilation of material from Dr.
Llamocca [1]. Utilizing his code for a uart
transmitter, we extrapolated the design for a uart
receiver. This code, as stated in the previous
section, is similar to the code for awaiting a
sequence of characters. That state machine was
therefore used as reference. From there we may
use a simple array of D flip-flops to act as a
register and hold the data until another character
sends, and use an 8-bit adder with the switches
of the board in order to create a simplistic cipher
to input into the transmitter. This input replaces
the switches of the original design we tested.
The block diagram sketch of the entire circuit is
on the following page.

III. Experimental
Setup

This experiment is to be conducted in Windows
10, although it may work for previous versions
as well. The program PuTTY, found here-
https://www.chiark.greenend.org.uk/~sgtatham/p
utty/latest.html -is also a necessity for
experimentation.

First, the FPGA is plugged into the computer
turned on, and programmed. Next, we open the
device manager in order to find the digital serial
communication port the program is connected
to. This may be found under the “Ports (COM
& LPT)” tab. PuTTY is then opened- We set
the type of communication to serial, and the
COM port to the previously discovered port.
The serial communication settings in PuTTY are
then changed to communicate at 9600 baud,
which should be the default of the program.
After enabling the two rightmost switches on the
FPGA, which are the circuit enable and the
register enable, we may open the connection
with PuTTY and type to communicate. The
expected results are ASCii characters
corresponding to the typed characters, modified
by flipped switches on the board, received a very
short delay after they are typed on the keyboard
of the computer. We may also disable the
register enable in order to lock the value last
received, which it will then use to respond to
any character sent until it is enabled again.

IV. Results
The project may be used to relay communication
to and from a computer, while modifying the
data sent through a simple caesar cipher, or by
preventing the register from changing on the
next transmission received. The test bench

sends the characters sent to it in a bitwise
fashion, back in the same fashion. Using the
cipher to add one, adds one to the binary value
before sending it to the output of the circuit.
These results were expected based on the design
of the circuit, and we are pleased that it has
accomplished the intended design.

Conclusions

The main takeaways of the project is that
knowledge of the intricacies of communication
are impunitive in developing a program based on
communication. There are few challenging
concepts but many small bits of required
knowledge before beginning. While the current
design is not perfect, we believe it to be
workable, and future designs could be
implemented rather simply by keeping the
receiver, transmitter, and register portions of the
circuit, and adding other connections
in-between. Examples of such possible
improvements could be developing a more
complex cipher, or adding other ways of
modifying the data packet, such as division or
multiplication.

References

[1] D. Llamocca, ECE 2700, “Digital Logic
Design”

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

