
1 

 

FPGA Hero! (Guitar hero) 

Rock of Gates Edition 

Martin Smoger, Jonathan Williams, Devin Poirier, Fatemah M A Y H Almarhoun 

Electrical and Computer Engineering Department 

School of Engineering and Computer Science 

Oakland University, Rochester, MI 

e-mails: mvsmoger@oakland.edu, jtwilliams@oakland.edu, devinpoirier@oakland.edu, Falmarhoun@oakland.edu  

 
Abstract—The purpose of this project is to create a 

functional clone of the Guitar Hero video game utilizing 

several pieces of hardware. We send a sequence of signals 

to power LEDs at which they are lit up in a certain order 

as to follow a beat or a song. The overall challenge of this 

project was getting all hardware to communicate 

flawlessly, requiring different communication protocols 

to function successfully. The end result is a fully 

functional game that can be modified and adapted to 

play other beats or songs as well. 

I. INTRODUCTION 

Our goal with this project is to create a game based 

on the Guitar Hero game series. Using several pieces 

of hardware, we are able to implement and execute a 

video game on our FPGA board. The main motivation 

for this project was to take a more complex video game 

and design and work with it in a VHDL environment. 

We wanted to challenge ourselves to come up with 

something unique to any other project. With this idea, 

this really pulls together a lot of different topics that 

we covered in class. From I2C communication, finite 

state machines, a seven-segment display serializer, 

UART and more. We even had to use external 

resources to figure out how to properly connect to the 

user’s controller (the guitar) as well as reading the 

actual data from it itself. 

II. METHODOLOGY 

A. Broad Idea 

The basic idea behind this project is that the Guitar 

Hero controller will send and receive several signals 

that will communicate with the FPGA. The guitar 

sends out a confirmation signal (which we denoted as 

green) that begins the game, and then there is also a 

strum signal, that designates the note being played. 

The other signals it sends out are simply the signals 

used for the colors, telling the FPGA what the user is 

currently holding and once strummed, comparing it 

to the current note that the user must match.  If the 

user input matches to the corresponding lights, the 

user score will increment by one. 

 

 

 

B. Design Ideas 

We went through several design ideas that could 

possibly work for the project. For the hardware 

component, we wanted to be able to communicate 

freely with the Guitar Hero controller. After 

conducting research, we concluded that the guitar 

will function with the I2C communication protocol 

[1]. We needed to figure out a way to get the FPGA 

to read these I2C signals, as there isn’t a simple 

pinout on the FPGA for I2C. As such, we resorted to 

using an Arduino Uno R3 due to the fact the 

complication of adding a I2C protocol module in 

VHDL. To connect the Uno to the FPGA, we simply 

used the UART communication protocol that is 

available with the FPGA.  

For the lights, we wanted to use a light matrix that 

we had available. It is an array of 7 rows of 5 lights. 

The original plan was to use a series of relays and 

transistors to boost and protect the signal required for 

the light matrix (which was pulling almost 350W!) 

but unfortunately it broke so we shifted over to bread 

boards. We used a series of colored LEDs (Green, 

Red Yellow, Blue, Clear) and resistors and wired 

them on a breadboard to create the sequencing that 

we needed.  

      To display the score and the countdown from 

ready state, we choose to use the serializer. We only 

needed to utilize two seven segment displays for 

which one on the left displays score and one on the 

right to show the countdown before the game starts. 
It should be stated that both the UART_RX and the 

serializer modules used in our system were already 
developed available code. The serializer came from a 
Workshop examples website provided from our 
Professor [3] and the UART_RX module came from 
an online source in which we deemed would fit in to 
our project [2]. The rest of the code was developed by 
ourselves. 

C. Design Flow 

     See page 4 and page 5 for a full block diagram 

and FSM design. We also had attached the test bench 

for the final Top file simulation.  We needed to 

convert our timers to nanoseconds in order to have a 

fast and efficient wave pattern. It would take several 

hours for the simulation to complete. 



2 

 

III. EXPERIMENTAL SETUP 

A. Hardware 
This project is heavily focused on external 

hardware which requires accurate and precise 
integration, as each piece of hardware must 
communicate flawlessly to function properly. For 
hardware, we used the following: 

 
1. Nexys-A7 FPGA 
2. Arduino Uno 
3. 2 Breadboards 
4. Wires/LEDs/Resistors 
5. Nintendo Wii Guitar Hero Controller 

 
 Using the Arduino Uno, we were able to 

communicate via the I2C communication protocol @ 
400kHz with the Guitar Hero controller [1]. This 
required some additional research as to how the Guitar 
Hero controller actually functions with the Nintendo 
Wii. The guitar has 
two pins, SDA and 
SCL, required for 
the communication 
protocol [1]. To 
actually read the 
data being sent and 
received from the 
guitar, we 
communicated via 
UART between the 
Arduino Pro Mini 
and the Nexys-A7. 
To provide power to 
everything, we will 
use the standard 
UART pin on the 
Nexys-A7 while 
connected to the 
computer. As both 
the Guitar Hero 
controller and the 
FPGA runs off of 
3v3, we needed to 
utilize TTL bidirectional converters between the 
controller and Uno and FPGA to Uno.  

 Using three breadboards and several resistors, we 
created an array of colored LEDs to simulate the song 
and the user input. We used the Pmod ports on the 
FPGA to hook the wires from the breadboards to the 
FPGA.  
B. Software 

For the software side of this project, we mainly 
used Vivado, but we also used the Arduino software 
with Wire.h library to design and execute the code on 
the Arduino itself. The code on the Arduino is simply 
reading the I2C outputs on the guitar itself, which 
would be the colors the user is holding as well as that 
strum signal.  

The FPGA houses the main code, which includes 
three finite state machines, counters, gen pulse, a hex-
to-seven-segment decoder, a serializer, a UART Rx, 
and a top file. One was for the actual state of the game, 
as to whether or not it is running, and the other two 
were for controlling state of the song the song. We 
needed to tell the FPGA to send out a specific array of 
signals to the breadboard to properly light the LEDs in 
sequence. For testing purposes, we hard coded a 
simple staircase pattern of colors, only lighting one 
color up at a time. The code can be expanded to use 
two or more colors. To create the sequencing of the 
lights, we wanted to hold a color for about one sec of 
LEDs. We cannot achond and send it to the next 
rowieve this using the internal clock of 100MHz, as it 
would simply be too fast for the human eye to even 
track it, let alone get any points. To achieve this, we 
used a Gen pulse that pulses every second to trigger 
the song FSM to go to the next state to display the next 

row of lights. 
This also gives 
the user en 
fingers to the 
correct notes 
on the guitar 
and strum 
oncough time 
to coordinate 
hise. 

To display 
the score, we 
had to try a 

couple 
different 

methods. The 
simplest way 
we decided to 
do it was to 
create a 
serializer to use 
four seven-

segment 
displays on the 
FPGA. Inside 

of the FSM for the song, we implemented a check to 
see if the user was correct. Upon strumming, it 
compares the note that the user is holding to the second 
to last row of LEDS (where the last row of LEDs is 
showing the user input) and if it is correct, send it to 
the top file. When the user was wrong, we did not 
change the score in any way. In the actual Guitar Hero 
game, the user will never lose points but if they 
continuously get notes correct, they get a score 
multiplier. We did not implement this in our project. 

IV. RESULTS 

This project really pulled a lot of different topics 

together from the class. We expanded on I2C 

communication as well as the UART connection on 

Figure 1: Final Experimental Setup 



3 

 

our Nexys-A7 boards. Our code itself used several 

pieces from topics we learned in class as well, such as 

arrays, FSMs, serializers, counters, and Gen Pulses. A 

video of our system working can be found in the folder 

attached with our VHDL code. 

CONCLUSIONS 

Deciding to choose a project like Guitar Hero has 

really reinforced our knowledge of the topics that we 

covered in class. It also helped us show how simple it 

is to really integrate different pieces of hardware. As 

long as you have access to the actual pinouts of the 

hardware (in our case, the guitar hero controller) it is 

super easy to. This was a great learning experience for 

all of us. One challenge we had with this project was 

managing two state machines at once. Once we figured 

out how to properly component them (which it isn’t 

really different at all) the program worked. Another 

difficulty we ran into was debugging. When we are 

pulling from all of these different hardware 

components, it’s difficult to try to debug and figure out 

where the problem is.  

REFERENCES 

 
[1] WiiBrew. (2009, November 15). Wiimote/Extension 

Controllers [Wiki page info ]. Retreived from 

https://wiibrew.org/wiki/Wiimote/Extension_Controllers 

 

[2] Russell. NAND LAND  UART, Serial Port, RS-232 

Interface - Code in both VHDL and Verilog for FPGA 

Implementation [Website blog]. Retreived from 

https://www.nandland.com/vhdl/modules/module-uart-

serial-port-rs232.html 

 

[3] Llamocca, D. (2013) RECRLab VHDL Coding for 

FPGAs [Workshop examples]. Retrieved from 

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.h

tml

 

https://wiibrew.org/wiki/Wiimote/Extension_Controllers
https://www.nandland.com/vhdl/modules/module-uart-serial-port-rs232.html
https://www.nandland.com/vhdl/modules/module-uart-serial-port-rs232.html
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html


4 

 



5 

 

 


