
5-bit Signed 5-Function Calculator

Joshua Arnott, Nicholas Musienko
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: jfarnott@oakland.edu, nmusienko@oakland.edu

I. INTRODUCTION

 This project involves the creation of a basic 5-bit input
calculator that can add, subtract, multiply, divide, and provide
the modulo of those two numbers. The following are the
results of our project and implementation onto a Nexys-DDR
board via VHDL.

People use a calculator like the one achieved by this
project daily. These calculators have become so ubiquitous
that nearly everyone has access to one via the phones in their
pockets. To do this, the usage of full adders, shift registers,
multiplexors, decoders, and state machines as learned in class
was necessary. Also, the use of outside sources, in this case a
keyboard, was used to input data which intern was output via
on board LEDs.

II. METHODOLOGY

Figure 1: Block Diagram of Basic Program Flow

A. Inputs

To verify that the components work as required, the input
method to start was the switches on the Nexys-DDR board.
There were 2 rows of 5 switches dedicated for data input, 3
switches for functions, and a read/write switch. As soon as
the circuit was verified working with the switches, a keyboard
was connected to the Nexys board via USB. The input signal
processing was modified slightly, but the rest of the program

adapted to the different input method with no problem once
the keyboard input was fully working. To use a keyboard
input, a finite state machine was needed to read the incoming
signal from the keyboard and output the data in binary along
with a done signal, signifying the presence of new data from
the keyboard. Code used from the professor’s website
comprised the majority of the interface with the PS/2
keyboard, but some modifications were made to alert the rest
of the circuit to the presence of new data [1]. We were then
able to use this data in the calculator portion of the circuit.
Also, the switches were still used in this implementation for
signing the unsigned input from the keyboard, toggling which
input register the keyboard writes data to, the different math
functions, an enable switch, and a read/write switch. These
switches along with the inputs from the keyboard allowed for
the math functions to occur with the proper input. This
combination of keyboard and switches allows for the most
intuitive input scheme manageable while also keeping overall
complexity within tolerable limits.

Figure 2: Picture of inputs used on the Nexys-DDR board for

the final implementation

B. Functions

For the calculator to function properly, an array of
functions will need to be created or modified from code
created from class (as seen in Figure 1). After being processed

through a keyboard to binary look-up table, the two inputs,
now binary sign and magnitude numbers, will then be written
to the outputs, and then gets processed through a sign and
magnitude to 2’s complement converter, as the calculator is
made to accept 2’s complement numbers for its processes.

When the read/write switch goes high, then the two 2’s
complement numbers get written to registers that allow the
numbers to pass into the calculator circuit. Inside the
calculator circuit, one major finite state machine handles the
inputs and outputs overall, toggling on and off the
multiplication and division portions of the circuit. The
read/write switch going high actually causes the state machine
to move to its next phase, activating the multiplication and
division circuits.

The addition and subtraction units use the 2’s complement
numbers and a pair of 5-bit adders, outputting two 6-bit
numbers including the carry-out. These 6-bit numbers go
through a pair of formatters that convert those numbers to
signed 10-bit numbers for storage in a pair of registers.

The multiplier and divider circuits are slightly more
complex. First, the two inputs get formatted into two unsigned
numbers, the most significant bits of each getting run through
an XOR gate to get the sign of the output. Upon receiving an
enable input, the divider, a modified version of one
constructed for a laboratory activity, activates, performing a
series of iterative subtractions controlled by its own finite state
machine. This circuit outputs the division and modulo results
of the two inputs and a done output. Likewise, the multiplier
circuit activates with an enable input. This iterative adder was
created based of notes from the class and is controlled by its
own independent state machine [2]. This circuit outputs the
product of the two inputs and a done output.

When the main FSM receives these two done outputs, it
transitions into its final state. It enables the multiplexor that
allows for the output of the calculator circuit and enables the
registers that store the results from the independent circuits.
Switches on the Nexys board drive the select lines for that
multiplexor, allowing to change the operation requested
without having to re-run the calculator circuit.

C. Outputs

As described above, the output of the functions is
eventually displayed on the onboard LEDs on the Nexys-DDR
board. When the read/write switch is in the write state, ten
LEDs are illuminated depending on the sign and magnitude
number that is being displayed. The first five LEDs, zero
through four, are for the first number input in sign and
magnitude form. Similarly, LEDs five through nine display
the second input in sign and magnitude form. Then when the
read/write switch is set to read, the output value from the
calculator is shown along with a done LED which is LED
fifteen, signifying the completion of the FSM controlling the
calculator. The output value is also in sign and magnitude for
ease of reading. To achieve this, a multiplexor is used to
choose between the input values and the output value, with a
select line connected to the read/write switch.

 Figure 3: LED output display, showing two inputs of 7 and 8.

III. EXPERIMENTAL SETUP

The initial phase of testing of the project was

developing a test bench simulation source to test if the
calculator was functioning properly. To test our system
on the board we chose to initially start by just isolating
the calculator and input to the calculator directly from the
onboard switches. This was tested rigorously until it was
verified that its operation was correct. Similarly, when
testing the inputs from the keyboard, the code to receive
the data from the keyboard was developed independently
from the calculator and eventually implemented once
tested into the full project. An iterative design process
was used, where changes were made, then tested via test
bench and bitstream programming. The results from this
testing, both in experience and function, was then used in
the creation of further changes.

IV. RESULTS

The biggest results learned through this project were the
development and implementation of finite state machines.
Through this project, finite state machines were used in the
calculator and in the program to read the keyboard, and we
learned how effective and useful these can be for
implementing multiple modules concerning different
outputs at once.

Another big result of this project was the development of
a calculator with a keyboard input that can display outputs
on LEDs. A human-friendly input method was used to push
data into our system, and the data was then readable, what
we set out to do. We were successful in our goal of creating
a calculator that could do math on two five-bit signed
numbers and output an answer in a human-readable way, as
demonstrated by the figures below.

Figure 4: LED output of the two input numbers from the

keyboard, 4 on the right and -3 on the left 5 LEDs.

Figure 5: LED output of the sum of 4 and -3 (4 + -3 = 1)

Figure 6: LED output of the difference of 4 and -3
(4 - -3 = 7)

Figure 7: LED output of the product of 4 and -3
(4 * -3 = -12)

Figure 8: LED output of the quotient of 4 and -3, rounded
down

(4 / -3 = -1)

Figure 9: LED output of the modulo of 4 and -3
(4 mod -3 = 4 % -3 = 1)

V. CONCLUSIONS

The main take away our group had was a true
understanding of the complexities of a digital logic system
and the usefulness of things like finite state machines. We
also grappled with the differences between VHDL and other
programming languages. Practices that would work in
things like C++ or Python would not work in VHDL,
bringing with it a whole collection of considerations and
problems that normally would not be considered. These
considerations could account for much of our development
time over the course of the project.

Some of the problems still needing to get solved involve
the input method. The project was designed with the
keyboard in mind, trying to use as little of the inputs from
the board as possible, especially the switches. It would lead
to greater usability to push as many of the inputs to the
keyboard as possible, but the structure of the program used
to get the results we did does not lend itself to moving
things like negating numbers and selecting registers.
Moving in this direction would indeed be an improvement.

In the future we would like to develop binary to BCD
converters and display the information on the seven segment
displays so it is easier for the user to read and understand.
Also, in the future it might be good to add more bits to be
able to do math on larger numbers. If we had more time, we
would also like to resolve an issue we found that certain
numbers would result in zero even though that was not the
correct answer. We think this is cause by the two’s
compliment to sign and magnitude converter, but more
investigation would need to be done to be sure. But in its
present state, our program functions more than acceptably as
a signed calculator.

REFERENCES

[1] Llamocca, Daniel. “PS/2 Keyboard Controller.” VHDL Coding for

FPGAs.
http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Viva
do/Unit_7/my_ps2keyboard.zip

[2] Llamocca, Daniel. “Notes – Unit 7.” Introductions to Digital Systems
Design, Nov. 2018, pp. 5-9.

https://moodle.oakland.edu/pluginfile.php/4752379/mod_resource/co
ntent/8/Notes%20-%20Unit%207.pdf.

Figure 10: Test Bench output of main calculator circuit used in testing

Figure 11: Calculator Block Diagram

