Simple Calculator

By: Matt Stopyak Matt Wagner Benley Mathew

Roles

Matt S: 8-bit Adder and Subtractor.

Benley M: 8-bit Multiplier and Divider.

Matt W: State Machine and Integration.

INTRODUCTION

What was Made? A simple calculator. Using the Nexys 4 FPGA board from class and a 4x4 PMOD keypad from Digilent.

How was it made?

- 1. The main math operations, addition, subtraction, multiplication and division, were created in VHDL and used to add, subtract, multiply and divide simple binary unsigned numbers.
- 2. Values would then be converted from BCD numbers into Binary numbers and stored in different registers once inputted in the system after the "equal" button is pressed.

What we learned?

- 1. To clear variables in the sensitivity of the process
- 2. How to converter BCD to Binary and Binary to BCD. This method is called Double-Dabble.

Uses for this project.

• Used for any person who needs to use a calculator for simple math, such as elementary school students who are just starting to learn basic mathematics.

Methodology (Inputs and Outputs)

- Eight-Bit Unsigned Numbers [0, 256]
 - Changed to two digit values only, [0, 99]
- Numbers are converted from BCD to Binary.
- After the numbers go through the operations, the numbers are converted back to BCD numbers and outputted to the Seven-Segment display.
- For division, the Seven-Segment display with have a remainder.
- Additionally, for the Seven-Segment display to work with the multiple digits, we had to create a multiplexer that would select each digit one at a time and display the correct value.

Methodology (Operations)

Addition

- Created from Adder, made in the lab.
- Modified to add 8-bit numbers together.
- Subtraction
 - Also created from Adder, made in the lab.
 - Changed the addsub value to '1' to do the subtraction
 - Modified to subtract 8-bit numbers together.
- Multiplication
 - Created from Multiplier, made in the lab.
 - Modified to multiply 8-bit numbers together.
- Division
 - Created from Divider, made in the lab.
 - Modified to divide 8-bit numbers together.

State Machine Diagram

Experimental Setup

- Supplies needed for project.
 - PmodKYPD: keypad from the Diligent
 - NEXYS 4 DDR Board: Vivado Board
- Keypad Keys
 - Buttons 0-9 are numeric values 0-9
 - Button A is the Addition Key
 - Button B is the Subtraction Key
 - Button C is the Multiplication Key
 - Button D is the Division Key
 - Button E is the Equal Key
 - Button F is the Clear Key

- Vivado Board:
 - Reset button just resets the program
 - LED 15: State 1
 - LED 14: State 2
 - LED 13: State 3
 - LED 12: State 4
 - LED 11: Enable Register A
 - LED 10: Enable Register B
 - LED 9: Enable Register E
 - LED 17 (Blue): Key Press
 - LED 0: Carry Out
 - LED 1: Overflow
 - Seven-Segment:
 - Digit 8: "=" sign
 - Digit 5 and 6: Number Display
 - Digit 4: "r" for remainder
 - Digit 3: remainder value

Experimental Setup Continued...

- The keypad consists of 4 columns and 4 rows of interconnected buttons.
- Following the internal clock of the FPGA board, each column would have its pin dropped to a 'zero' and if any rows dropped to 'zero' in that same clock cycle the depressed keypad could be inferred from these coordinates.
- Once the depressed key was decoded it could be latched into the circuit for implementation in the final design.

Results	Operation	Data A	Data B	Solution
		12	36	48
Demo of Project Results Link:	Addition (+)	3	27	30
https://photos.app.goo.gl/EvsWD4Uwr1oxDwWv5		99	99	98 (Carry Out)
	Subtraction (-)	48	12	36
		98	8	90
		54	52	2
	Multiplication (*)	3	6	18
		20	4	80
		9	9	81
	Division (/)	29	10	2 (r9)
		48	12	4
		56	5	11 (r1)

Conclusion

- Issues
 - Integration of keypad.
 - The decoding and button debouncing of the keypad.
 - The shift nature of the BCD output.
- Improvements
 - Using 2's complement binary arithmetic.
 - Drop the leading zeroes on the display.
 - Institute an "all clear" and clear function.
 - Expand the arithmetic capabilities to handle a greater number of bits.
 - Rework the FSM and integration of coding so it is easier to read.
 - Replace the seven segment display with LCD display for greater functionality.
- Overall
 - Harder than anticipated.
 - When you forget that it is hardware descriptive and treat it is a coding language, the problems you will encounter with your code will intensify.
 - A good learning experience for beginners.