
Traffic Light Controller

Variable Cycle Time Design

Thomas Quinn, Brandon Londo, Alexander C. Vincent, Yezan Hussein

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

tquinn@oakland.edu, vincent@oakland.edu, bjlondo@oakland.edu, yhussein@oakland.edu

Abstract— This project involves an FPGA based traffic

light controller with user selected green light cycles. The

state of the two lights outputs to two RGB LEDs, while

the cycle times appear on the seven-segment display.

I.) Introduction

The safety of all drivers on the road hinges upon a proper

control of traffic flow. Allowing opposing directions of

traffic, the right of way could result in fatal

consequences. Our design simulates a traffic light

controller that operates in both a safe and convenient

fashion. It emulates the behavior of four traffic lights

dictating automobile flow in opposing directions. The

state of each light displays via the RGB LEDs on a

Nexys4DDR board.

Sometimes, the flow of traffic in one direction is much

heavier than in the opposing direction. It is appropriate to

allow the heavier traffic to receive a green light for a

longer time. To do this, the design features four cycle

times which the user can select via switches. The current

cycle time appears on the seven-segment display,

allowing the user to confirm their selection.

II.) Methodology

All licensed drivers in the United States know the various
states of a traffic light. The main task behind this project is
manipulating the time between these state transitions. First,
the team considered the size of the counters necessary for
the design. The necessary counts are 1sec, 3sec, 15sec,
30sec, 45sec, and 60sec. One 15sec counter suffices to
achieve the 15-60 second counts. This counter controls a
Finite State Machine (FSM_Count) that outputs a signal at
each of the 15 second increments. It does this by
transitioning states each time the 15 second counter goes
high. The FSM_Count outputs filter through two
multiplexers, one for each direction of traffic (North/South
and East/West).

Figure 1: FSM Count

FSM1 is the hub of the program. It dictates the state of the
lights and counters. Each state outputs the proper RGB
code as well as enables and clears the necessary
counters. The process in which this is done can be seen in
the ASM below.

O

mailto:bjlondo@oakland.edu

Figure 2: FSM_1

The signals associated with the 1 second counter

end in “Bl”. It is cleared with sclrBl and enabled with

EBl. Zbl is used to toggle between states one and

two. These states represent the blinking red lights of

“Night” mode, where a four-way stop is

appropriate. “Day” and “Night” modes are controlled by

the user through a switch on the board. States 3-8

represent “Day” mode. It is important to note that the

condition of the day/night switch is only checked in states

one and two. This prevents a user from flipping the

switch in the middle of day cycle operation, as it would be

unfortunate for a green light to go directly to blinking red.

Similarly, the signals associated with the three

second counter all end in “Y”. The output Zy dictates the

transition out of states where one of the lights is yellow,

or both are red. The outputs ZEW and ZNS control the

transitions out of green light states for their respective

directions. Both signals are outputs from one of the two

multiplexers. Sitting at the inputs of both multiplexers are

the Z15, Z30, Z45, and Z60 signals coming from

FSM_Count. Thus, by adjusting the select line of each

multiplexer, the user can select which of these four

signals will dictate the transition out of the respective

green state.

The 7 segment displays output the green light

cycle time for each direction. Since the cathodes of all

the displays are tied together, only one pattern can appear

at a time on any given display. Thus, to make different

outputs seemingly appear on four displays at the same

time, the anodes and outputs must be serialized. This

involves turning each display individually at a rate which

appears constantly on to the human eye. Figure 3

pictures the FSM that achieves this operation.

Figure 3: Serializer FSM

This FSM uses AdrNS and AdrEW as case statements
to select the appropriate input to the BCD-7seg decoder. As
shown below, the appropriate numbers for each display are
hard coded to match the state of the select line switches.

with SW1 select
D <= "0001" when "00",
 "0011" when "01",
 "0100" when "10",
 "0110" when others;

with SW1 select
 C <= "0101" when "00",
 "0000" when "01",
 "0101" when "10",
 "0000" when others;

with SW2 select
 B <= "0001" when "00",
 "0011" when "01",
 "0100" when "10",
 "0110" when others;

 with SW2 select
 A <= "0101" when "00",
 "0000" when "01",
 "0101" when "10",

 "0000" when others;

By multiplexing the outputs and anodes of each display at

a rate of 1ms, all four appear to be on simultaneously,
With these operations the team was able to implement a

functioning traffic light controller.

III.) Experimental Setup
The setup used to verify the functioning of the traffic light
controller is as follows: Once the board (NEXYS 4 DDR)
is programmed, the traffic light controller is tested by visual
inspection. An external timepiece verifies that the
displayed cycle times are accurate. For example if the user
input was SW0=’1’, AdrEW=”10”, and AdrNS=”01” it is
expected that seven segment display AN(0) is 5, AN(1) to
be 4, AN(4) to be 0, and AN(5) to be 3. The cycle begins
with both lights red, after three seconds the leftmost LED
(led17) will transition to a green light. The green light will
be on for 30 seconds. It then transitions yellow for 3
seconds. Then both LEDs are red for 3 seconds. Next the
rightmost LED (led16) is green for 45 seconds. It then
changes to yellow for three seconds. The cycle repeats
while SW0=’1’. A test bench is also created to ensure each
signal propagates when intended. The software used to
implement this design is Xilinx Vivado 2017.2.

Figure 4: Nexus DDR Board

IV.) Results

The timepiece revealed an error in cycle times

above 15 seconds. This error would propagate through the
program the longer it ran. At first, the 30 second
increment would take 37 seconds, the next time around, it
would take 47. Stepping through a behavioral simulation
lead to the solution. The FSM_Count simply needed to be
synchronously cleared. After this addition, the cycle times
worked perfectly.

Upon completion of the top-level code a top-level

diagram was drawn.

Figure 5: Top Level Design of Traffic Light Controller

V.) Conclusions

This program provides all the intended functions

and features. The design process highlighted the

usefulness of finite state machines in digital design. The

switches and hex displays offer a nice level of user

friendliness. Further versions of this project might

include additional states for left-turn signals, and the

ability to respond to crosswalk signals from pedestrians.

VI.) References

[1]. Workshop: Digital Circuit Design with VHDL.

Web. 12 Nov. 2011.

http://www.secs.oakland.edu/~llamocca/index.html

http://www.secs.oakland.edu/~llamocca/index.html

