
Traffic Light Controller

Four Way Intersection Traffic Light System

Fall-2017

James Todd, Thierno Barry, Andrew Tamer, Gurashish Grewal

Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
e-mails: jdtodd@oakland.edu, thbarry@oakland.edu, tamer@oakland.edu, gsgrewal@oakland.edu

 Abstract
The main purpose of building our traffic light control is to
gain more understanding of the implementation of a
modern digital system. We designed a four way traffic
signal for a an intersection. We used VHDL to write the
code that modeled the traffic system, and then used a
finite state machine and accessory components to control
the behavior of the system.

I. INTRODUCTION

 For the final project we created a traffic light system
utilizing with four different LED colors on the two tri-color
LED’s and a Seven Segment display both mounted on the
Artix-7 board. This report covers our plan behind the design
of our traffic light system, as well as how we completed and
implemented the structure of the design. The idea behind
this project was to create a traffic light with three different
modes for a four-way intersection. The three different
modes include a daytime mode, night mode, and emergency
mode. Because the yellow light displayed by the tri-color LED
wasn’t aesthetically distinctive, we included a color changing
switch that would change the yellow LED to a blue LED
because of the contrast.

II. METHODOLOGY

A. Overview

 The traffic light system is divided into four main sections,
the top file, the clock divider, the tri-color LED file, and the
Seven-Segment display file. In our simulation the traffic
flowing east/west and north/south have identical signals
and therefore only two tri-color LED’s are needed to
represent the intersection. The program includes three
modes, the day mode, the night mode and the emergency
mode. Daytime mode is the default mode. Switches will be
used to control the other modes. The seven-segment display
and two tri-color LEDs on FPGA will display the color of the
signal depending on the state of the system, which is
controlled by the FSM.

 B. Top File

 The top file is used only to connect the inputs of the device
to the various components and then connect those
components to the outputs of the board.
C. FSM

 The FSM is the controller of the system. It uses the clock

and switches as inputs and progresses through the state of

the system as follows. The FSM operates in daytime mode

normally. If emergency mode is activated and one of the

lights is green, the systems will skip to yellow and progress

to red as normal. Once both lights are red, the FSM will

continue to display red lights in both directions until

emergency mode is turned off. Emergency mode is

supposed to represent a signal sent from an emergency

vehicle such like an Ambulance or Fire Engine. This can be

used so that an emergency vehicle can progress through the

light with a lower chance of a traffic incident. Since there

are only eight states in the FSM the outputs can be

represented by three bits. These three bits are sent to both

the LED file and SevSeg file. A detailed stated diagram is

listed in the Appendix.

i) In daytime mode, the system will cycle through the states

as shown in the figure below. The times indicated on the

figure were chosen for display purposes. The time in each

state could be easily edited by changing an integer value,

which represents the number of seconds in each state.

mailto:jdtodd@oakland.edu
mailto:tamer@oakland.edu

Figure 1: State diagram of the traffic signal.
ii) Emergency Mode- When the emergency switch is turned

on the system will skip from green to yellow and progress

normally to red/red. Once red/red is displayed by the FSM,

the system will stay in that state until the Emergency mode

switch is turned off. Since there are two states that

represent red/red, the system has a small amount of

memory and will fairly allow the next set of vehicles to

progress through the intersection on their turn.

iii) Night time Mode- When the Night time mode switch is

turned on the system will wait for a red/red signal, a yellow

light will blink in the east/west direction, while a red light

will blink in the north/south direction. These lights will

alternate.

D. Tri-Color LED

 The LED file receives a three-bit input unique to the
present state controlled by the top file. Based upon the
present state, the LEDs will display the appropriate color.
One LED will represent the north/south signal, and the other
LED will represent the east west signal. The LEDs change
instantly depending on the state of the system which is
controlled by the FSM. As the state changes, the color of the
LEDs changes accordingly and will display the East/West
signal on the left LED and the North/South signal on the right
LED. Depending on which mode the program is in, the LEDS
will turn on and off accordingly. For demonstration
purposes, a blue LED acts as the yellow light of the traffic
light. If the color change switch is flipped, the blue LED will
change to yellow, and behave as it did before. E. Seven
Segment Display
 The seven-segment file receives input signal identical as
the LED file, along with a slowed 1000 Hz clock signal
produced by the clock divider. Instead of using the serializer
provided, we decided to make our own display that uses two
processes running at the same time. One controls the states
used to move between the different displays on the seven-
segment in order to display different letters on the Seven

segment, whereas, the other process controls the signal
outputting on the seven segment display. As the each state
changes, the condition (S0-S6 from the Top file) is checked
and as per the condition the process loops and displays the
condition on Seven Segment accordingly. For example, if the
condition is Red-Red, 000 will be selected and states will
change at each clock input with a different anode and output
displaying all the letters on different segments one at a time,
but at such a rate that the human eye sees it as a single
display.
F. Clock Divider
The clock divider uses the 100 MHz clock provided by the
chip, and gives two outputs. Once the 100 MHz clock has
given a high signal 100,000,000 times, the clock divider will
output a “Z” signal for 10 ns, then will synchronously clear
the counter and start the system back at 0. The FSM uses
this as a 1 second signal to count the elapsed time in each
state. The other signal is similar to the first, except it sends
a 10kHz signal to the SevSeg file in to be used as the clock.
The signal needed to be fast enough to cycle through the
SevSeg displays and remain imperceptible to humans, yet if
the signal was too fast, the SevSeg display wouldn’t be able
to display properly.
G. Alternate Approach

 Instead of using the state of the system to control the
outputs, the system could be controlled using the same 1
second counter and a second counter whose output would
control the displays. This method would be harder to edit,
as any change in timing would drastically change the circuit.
A new design would be needed to change the length of time
in any of the states. If the same counts were used a table
and Karnaugh maps could be created. As an example, the
following table and resulting Boolean equations could be
created.

Figure 2: Table created to map each second of a 28 second
counter to the output of 6 LEDs.

 From this table a Karnaugh map (K-map) could be created
for each LED. A K-map and following Boolean equation was
created to demonstrate the process of this approach.

Figure 3: Karnaugh map used to derive sum of products
equation for the Red North/South LED

 The following boolean equation can be derived using sum
of products, and boolean algebra to reduce the equation to
its simplest terms.

 This method was not chosen due to the lack of flexibility.

III. EXPERIMENTAL SETUP

After completing the Top file with port mapping, a test
bench was created with two inputs being passed onto the
Top file. Our test bench was simple with “clock” and “resetn”
being the two inputs. Xilinx Vivado version 2016.2 was used
to simulate and implement the code. Testbench is a simple
way to verify the working of the code but looking at the post
timing simulation. The code used for the Testbench
displayed below.

After completing the constraint file and writing the
bitstream, the code was then uploaded to the NEXYS 4 DDR
board. Our group did not use any outside hardware tools,
except only the switches, seven segment display, LEDs and
the buttons on the board. We expect the LEDs and seven
segment display to behave according to which mode the
traffic signal is operating. If the reset button is pressed the
system should reset both LEDs to red, and the seven
segment displays will say red-red.

IV. RESULTS

After attempting the first approach using Karnaugh maps,
the FSM approach proved to be the most logical and efficient
way to control the outputs. The FSM code along with the
other components of the project cycle through correctly,
leading to the LED and seven segment display behaving as
intended. Depending on which of the three switches are
high, the traffic light system operates in the desired mode.
The normal/day time mode works properly following the
state diagram, the emergency mode works properly turning
the lights red accordingly, and the night mode makes the
lights blink red and yellow on each side respectively.
Through different trials and testing, the traffic light does
match our final intentions for the traffic light controller as
intended during the time of design.

 V. Conclusion

Through the use of a clock divider, a finite state machine,
seven segment display, and LEDs, we were able to create a
four way intersection traffic light system. At first, this project
was very challenging as we tried to use K maps to come up
with the equations that we were suppose to use. However,
when we learned in class how to make state diagrams, the
project became easier. Improvements that could be made to
the design include adding sensors that could detect the
number of cars that are on each line to be able to control the
traffic better. Also, we could have use pulse width
modulation to improve the color of the yellow light. When
displayed, it looked too green.

References

1. Llamocca, Daniel . VHDL Coding for FPGAs,
www.secs.oakland.edu/~llamocca/VHDLforFP
GAs.html

Appendix:

