

The Calculator

By: Kevin Bobernick, Dino Reed, Stephanie Rider, and Hang Zhang

Introduction

- Design a simple calculator
 - Addition
 - Subtraction
 - Division
 - Multiplication
- Display the Inputs
 - Switches
 - LEDs
- Display the Output
 - 7-Segment Display

Purpose

- Create a calculator that operates off binary inputs
- Able to calculate up to 4 bit outputs
- Utilizes switches as inputs
- Utilizes 7-segment display to represent outputs in hex
- Utilizes LEDs to display the inputs in binary

Inputs

- The switches are used as the inputs for the calculator
- All inputs are unsigned binary
 - DataA is the first input and will always start the equation
 - 4-bit: SW(0-3)
 - DataB is the second input and always operates on DataA
 - 4-bit: SW(4-7)
 - The operation of the calculator will also be selected by the switches
 - Addition: SW(12)
 - Subtraction: SW(13)
 - Multiplication: SW(14)
 - Division: SW(15)

Outputs

- The 7-segment display is used to display the answer of the selected equation.
 - The display on the right side will display the answer in hexadecimal form.
- The LEDs above the switches will light to show the binary of the input.

Inputs and Outputs

Difficulties

- Extending the 7-segment display
- Original Top file idea
- Time

Improvements

- Extend the number of bits in the input and output
- Use a keyboard or number pad as the input
- Use a VGA display to show the output
- Allow it to work with signed binary inputs
- Add more functions to the calculator:
 - Square Root
 - Exponentials

References

- https://www.alteraforum.com/forum/showthread.php?t=47
 <u>925</u>
- http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.ht ml