
Traffic Light Controller

ECE 276 Fall 2016

List of Authors (Jason Calabro, Hamid Nasrollahzadeh, Yupei Liang, Ryan Cohen)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: jmcalabro@oakland.edu, nasrollahzadeh@oakland.edu, yupeiliang@oakland.edu, rjcohen@oakland.edu

Abstract

The purpose of this project is to create a traffic light

controller using an FPGA board. The requirements of

this project included using VHDL code in the Xilinx

software program to write the functionality, and have

control over the timing of the lights. The team decided

to connect the FPGA board to a breadboard, in order

for a more organized demonstration of the traffic light.

The team created a six-state finite state machine, and

controlled the timing by staying in each state for

different periods of time. The most difficult part of this

project was figuring out how to control the timing, or

the clock inside of the VHDL code. The team found the

simplest way to create this project was by using a finite

state machine, pulse generator, and counter. Our team

recommends coming up with a plan before

implementation, or coding. By spending a week or two

deciding how we wanted to implement the design,

instead of making design decisions as we implemented,

saved us a large amount of time and made the project

flow much smoother. In conclusion, the traffic light

controller is a great final project because it allowed our

group to utilize many of the ECE 278 concepts and our

team took a lot of pride in being able to create something

that is such an important part of society.

I. INTRODUCTION

This report is intended to detail the design and

implementation of our traffic light controller. The decision of
a project idea, the planning of project, and putting the plan
into action will all be covered in this report.

Traffic light controllers play a major role in American
society, and unless traffic circles (roundabouts) replace all of
the intersections in America, traffic lights will continue to
play a critical role in American society for many years to
come. In a nutshell, that statement is why our team decided
on creating a traffic light. Any time a person or group of
people creates something from scratch, there is a sense of
pride in the creation, but creating something that actually has
use to people we believed is just as important. Our team also
thought it was important to fully understand what we would
be creating for our project. Many applications of FPGA

boards are unknown to the average undergraduate
engineering student, but we felt a traffic light was easy
enough for all group members to understand and rally behind
the simplicity of the idea. This is the main reason behind the
selection of the traffic light controller.

The core of this project is centered around the idea of
building a finite state machine, and the amount time spent in
each state depending on the counter that was built.
Everything used in this project was covered in our course,
and the blueprint for almost all of the modules, which
include finite state machine, pulse generator, counter,
multiplexer, and a constraint file were provided by Dr.
Llamocca’s webpage or the courses Moodle page. The
challenge involved the team trying to figure out how to make
the appropriate modifications to these blueprints, and then
combine these modified blueprints into a top-level file in
order to produce a working traffic light. The team also
learned how to create a test bench specified for this project.

The application for this project is simply to control the
flow of traffic via a traffic light signal. The team created a
traffic light for a four -way intersection. The four-way
traffic light does not include a state for a turn lane, or
blinking red for yielded turns, but does include a state for
blinking red and blinking yellow lights in order to symbolize
night time where there is less traffic flow.

II. METHODOLOGY

A. Finite State Machine

A finite state machine is a machine (not a physical
machine, but in terms of coding) that changes its “state”
based on the input it receives, or the amount of time spent in
the state. In the case of our traffic light controller, our finite
state machine will change states based upon how much time
it has spent in its current state. For example, for any single
red light, when the state machine detects it has spent enough
time in a certain state (in this case, the state of being red),
one of the lights will change to green upon entering the next
state. Shown below is a partial code for our finite state
machine. State machines are made up of if- when
statements, and our machine specifically uses if-when
statement while comparing between two values to determine
the current state. The variable “seconds”, “green”, and
“three_sec” are all four bit vectors. In the code below, if the

mailto:yupeiliang@oakland.edu

binary value of “seconds” is greater than its compared value,
the machine will move into the next state, otherwise, the
machine stays in the current state (light stays the same
color). Since the counter is always counting, “seconds” will
always end up greater than it’s compared value and the state
will eventually always change.

 Our team determined how long each state will be by

using a modified pulse generator and a counter. As with any
traffic light, more time is spent in yellow and green states
than yellow states. For our project, our lights spend seven to
fifteen seconds in the green states, three seconds in yellow
state, and two seconds in the red/red state (before one turns
green). Below is a simplified state table to help further
understand our traffic light controller and finite state
machines.

Table 1. Simplified State Table for Traffic Light
Controller

B. Pulse Generator

In this project, we incorporated a pulse generator into our
top- level design. The job of our pulse generator is simply to
divide the clock from 100 MHz, which is standard for this
type of FPGA board, into one second intervals. These one
second intervals are what is used to increment the finite state
machine. Below are the vectors used in the finite state
machine which the pulse generator helps count to.

C. Counter

In order to simulate night time and demonstrate a

flashing yellow and red traffic light state, our team

created a counter. To reach the flashing state, the

counter needs to be incremented a certain number of

times. The counter would increment each time the state

machine would pass through S6. When the state

machine detects the counter has reached the

predetermined value , meaning the state machine has

cycled through S1-S6, the state machine automatically

moves into the flashing state of S7.

D. Multiplexer

The team implemented a 2-1 multiplexer to further control

the timing of the traffic light. Depending on how busy

traffic is, the input of the multiplexer can be changed which

will change how long the lights stay in certain states. For

example, if the input (sel) on the multiplexer is “1”, the

green signal of Road 1 will stay in its state for 15 seconds.

If the select input to the multiplexer is “0”, it will stay green

for 10 seconds.

E. Top- Level Design

A top- level design is put together to combine all of

the components into one file in the Xilinx software.

The top- level design (along with a constraint file) is

where our code gets connected to our hardware,

including our FPGA board, Arduino board, and bread

board with LED lights. In this part of the project, our

team had to give the traffic lights state-dependent binary

values and connect them to various pins on the FPGA

board. Below is an example of how the finite state

machine is directly related to the lights being turned on

our off.

As shown in the partial code above, the ‘lights’ variable is

assigned a six- digit value depending on which state the

traffic lights are in. The six digits represent red, green, and

yellow values for two traffic lights (we only used six digits

even though there are four traffic lights because any two

traffic lights will always be identical to the other two).

Inverse logic was used here, so a ‘0’ assigned meant the

LED was on. It is possible to follow the logic of the states

by tracking the 0’s in the code above. In S1, the leftmost

and rightmost digits are 0’s, meaning those lights are on

(two lights are on according to the code, but four lights are

actually on). Notice in S2, the leftmost digit turns off while

the rightmost digit stays 0. By following the state table, this

can only mean the leftmost digit is a green LED, the second

to leftmost is a yellow LED, and the rightmost digit is a red

LED.

III. EXPERIMENTAL SETUP

A. Hardware

NEXYS 4 DDR Artix- 7 FPGA board: VHDL code

from Xilinx software was uploaded to this board.

Required.

Arduino Uno: microcontroller used only to provide

power (5V) to the traffic lights (LEDs).

Bread board: used as the base for our traffic light.

Housed all 12 RGY LEDs and current limiting resistors.

Wires ran from the FPGA and Arduino pins to the bread

board in order to supply power and link the correct pins

to their appropriate lights, based on the constraint file.

Shown below are the 12 LED lights on the bread board

ready for demonstration. By following the red wires

running horizontal in the circuit, it is revealed that power

was distributed to two signals on the bread board instead

of one, this is how we were able to control 12 LEDs with

only six binary outputs

B. Software

As required for ECE278, our team used the Xilinx

software program. In this program, we coded using a

language called VHDL. This is the language the class

was taught throughout the duration of the course, and is

the only feasible language to use at this point to

complete this project. The blueprint coding for our

components, found on Dr. Llamocca’s website, were

written in VHDL. The final project will be executed

using the Xilinx software.

C. Test Bench

Before we assembled the hardware, we created a test bench

to ensure our code worked properly. A test bench is an

easy way to verify coding without having to waste the time

of uploading the code to your hardware first, in case your

code does not work. The test bench for our traffic light

controller was fairly simple since we only have two

different test scenarios (from the multiplexer) and a reset

button. Shown below is code from our test bench. This

code reflects a test of the reset button and both multiplexer

selections. Both reset states and multiplexer selections are

separated by clock intervals. Before simulating the g0

section of the VHDL code must be commented out and the

“pulse_clock <= clock” line must be uncommented.

IV. RESULTS

All in all, our project was successful and functioned

exactly how it was designed to. Our results on the bread

board are explained perfectly by our code. The team felt

our code was as simple as it could possibly be, and our

traffic light functions as the code intends. Here is a link to a

video of our project working:

https://drive.google.com/file/d/0B6CzOACe_c16RUFWd1R

vQWxMMHc/view?ts=583673c9

You must sign in to Google to view this video.

 In class, we have analyzed many state diagrams in

lecture, quizzes, and homework. The state diagram for this

project is much simpler than the ones analyzed in class.

This is appropriate given it is much harder to create and

implement a diagram versus analyzing a ready-made one.

The majority of this project was reliant on the finite state

machine, which was learned at the tail end of this course.

The benefit of learning this material at the end of this course

was that coincides with the timing of the building of our

project, and the idea of state machines was fresh in our

https://drive.google.com/file/d/0B6CzOACe_c16RUFWd1RvQWxMMHc/view?ts=583673c9
https://drive.google.com/file/d/0B6CzOACe_c16RUFWd1RvQWxMMHc/view?ts=583673c9

mind. By learning this material when we did, we saved a lot

of time and possibly confusion relating to the project.

CONCLUSIONS

 The main take away from this project for our team

is that state machines are great organizers of seemingly

complex issues. The hardest part about this project was the

understanding of the clock in the Xilinx software. This

could possibly be from the fact we did not start

implementing clocks until later in our labs, and there was

less lecture time devoted to understanding and calculating

the clock speed, compared to ideas like finite state machines

or counters. Our team learned how to connect our code to

the output pins on the Artix- 7 FPGA board, and then relay

those pins to the bread board through wires. Connecting to

the FPGA pins instead of switches was a new concept for

our group, but most of our team has previous knowledge

from other classes to know how to interface with various

FPGA or microprocessor development boards.

 In the future, a traffic light controller could be

made with more functionality to accurately represent many

of the traffic lights we see on a daily basis. These functions

would include: representation of a turn lane, blinking red

light for yielded left turns, and representation for a

pedestrian cross walk. However, the current project is

sufficient to represent many simple traffic signals in society

today, and the representation of such signals was the main

goal for this project.

REFERENCES

[1] VHDL Traffic Light Controller. (2015, November). Retrieved from:

http://stackoverflow.com/questions/27783576/vhdl-traffic-light-
controller

