
The “Calculative” Calculator
Interactive Digital Calculator

 Chandler Connolly, Sarah Elhage, Matthew Shina, Daniyah Alaswad
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

E-mails: mlshina@oakland.edu, ctconnolly@oakland.edu, saelhage@oakland.edu, dhalaswa@oakland.edu

ABSTRACT
The final project was to build an interactive digital

calculator capable of performing addition, subtraction,
multiplication, and division. The primary motivation was
that a calculator is an interesting way to incorporate all of
the VHDL techniques previously learned in the lab. Things
that became apparent during the design process were the
difficulty with implementing an external keyboard, and
designing a clever input method. Overall takeaways are that
the project works, although can be pretty buggy in certain
instances. Further troubleshooting would be necessary for a
more extensive and thorough keyboard interface.

I. INTRODUCTION

The scope of this project was to design a fully
functioning calculator consisting of the addition,
subtraction, multiplication, and division operators. This
project proved to be a great challenge considering it
required the implementation of all of the previous labs such
as the full adder, multiplier, divider, and memory register.
Not only did it call for integration of all four operations, but
also an external keyboard for input purposes. The design
made use of many of the components covered in class
including counters, multiplexers, shift registers, full adders,
and state machines. However, some components not
covered in class that had to be researched further were the
latch and clock divider. A very appealing aspect of
designing a calculator is that it has many applications. They
are used every day in society and specifically in almost
every computational device. It is one of the most powerful
and widely used tools.

II. METHODOLOGY

A. Board Input & Keyboard Input

One of the areas that were more thoroughly designed
was the input method. It was decided that aside from the
keyboard, a board input method should also be
implemented. The 5 buttons on the NEXYS board were
used for digit input, function select, and calculate. The

leftmost switch was set as an enable for the keyboard once
it’s been plugged in. Finally, the CPU Reset button was
used to clear all the data and return zeros across the 7-
segment display.

The code for the keyboard was taken from the class
website, but modified a bit due to ongoing communication
problems. The push buttons utilized the de-bounce
mechanism shown in Graph 2 to determine if the button was
pressed or not. We used a 32 bit shift register to collect 1s or
0s depending on how long the switch was pressed. In order
for the value to change to either high or low, all 32 bits must
be either high or low. Furthermore, if the value is initially
high, it cannot go high once again until it is filled with 0s
beforehand.

A system of counters was used to allow for the
increasing and decreasing of individual digits on the
NEXYS board. Referencing Graph 4 below, if the enable is
high and the press of the “Up” button is detected, the count
is programmed to increase by 1. If the enable is high and the
“down” button is detected, the count will decrease by 1. The
value would then increase or decrease until the count is
equal to “Tcount”. That is essentially the thought process
behind the clever entering of numbers and commands on the
board.

B. Function & Display

The main schematics and ideas used for each individual
function came from the previous labs. Each program was
slightly modified to allow for 3 bit inputs and to work the
overall top level design. Some aspects that required extra
research to implement were the 7-segment display using a
certain clock frequency to allow for all the digits to show
simultaneously, and the latch mechanism.

Looking at the overall top level design whose schematic
is shown in Graph 1, there were many different components
used in order to get a thorough design. The “wait” at the top
is constantly checking for button inputs. The “button digit”
increments a counter from 0-3, which will control which
single active 7-segment is being used. Then data is pulled
from another counter incrementing from 0-9 based on the
desired value. Once the function button is pressed, another
counter from 0-3 will increment based on the desired

function. This also causes the “LSigLatch” to return a value
of 1. When “LSigLatch” is high, it allows the rightmost 7-
segment display to be editable so the user can now input
those digits as well. Finally, when the calculate button is
pressed, the RSigLatch will go high and cause the 7-
segment display to change to the answer. Pressing the
calculate button also enables the division function because
at this point, both values have been entered and the
quotient/remainder are calculable.

From a more specific standpoint, a binary to BCD
converter is used to translate the inputs before they are
entered into the respective operations. A 4X1 multiplexer
then decides which function to send based on which
function is selected on the board at the time. After a few
more number conversions, the final answer is sent to display
on the 7-segments panel. This is shown in Graph 3.

III. EXPERIMENTAL SETUP

The overall setup and testing that was done to
validate the components of the project consisted mainly of
using the ISE software as was done in the lab. Each
component was designed separately and simulated
separately. Once the timing and behavioral simulations
acted as expected, that particular piece of code would be
implemented into the overall structure. Due to the extremely
large and complex files that were required to program this
calculator, the testing was done incrementally and
separately as the code progressed. This allowed for a much
more organized and overall effective way to troubleshoot
and work out bugs. The testing of the keyboard and button
switches proved to be very difficult utilizing the timing
simulations in the ISE program. They may not have been as
precise as was initially desired, but both the keyboard and
buttons still functioned relatively well. Other additional
tools than the software itself, was the NEXYS board. In
some cases, certain LEDs on the board were programmed to
illuminate to verify the operation of certain signals. This
was very useful in providing a visual aid when
implementing the overall design on the board itself. No
additional oscilloscope or multimeter and such were used
since there was no primary use for them.

The expected results were that the keyboard and
button switches could both be capable of inputting different
digits into the 7-segment display. Another expectation was
that all four operations functioned as normal. As a whole,
the expected results matched up completely with the end
results of the project.

IV. RESULTS

The end results of the project proved to be very
close to what was initially expected. All of the implemented
functions worked correctly and very well with the multiple
input methods that were introduced. Some areas where the

results did not meet our expectations were with the
keyboard. We had wanted the keyboard to work more
seamlessly with the 7-segment display. An example is that
although the keyboard was used to input the numbers, the
digits would not auto-index over. Meaning, every slot in the
7-segment had to first be selected before the user typed the
digit instead of being able to type the whole number (500
for example). The keyboard was extremely hard to simulate
and troubleshoot. There was a lot of communications issues
with the keyboard initially that were causing it to send
incorrect and excess numbers over. However, this was
slightly overcome by manipulating the code provided by Dr.
Llamocca on the class website.

Along with the keyboard misbehaving, the push
button switches on the NEXYS board weren’t operating
quite as precisely as what was expected. Sometimes when
pressed, the number would increment twice instead of once.
The button de-bounce had a lot fine tuning done to it in
order to correct this, however, we were still unable to get it
exactly where we wanted it.

Another quite large issue that wasn’t fixed until
late was the division function. All of the operations were
taken from the labs done in the class; however, the division
function was not working properly. It was later realized that
the enable became “1” or high before the two numbers “A”
and “B” were loaded. The enable had to be toggled but only
once the two numbers were input.

Overall, we were very proud of the results of the
project. It functioned just as expected, if not a little better in
some areas regardless of certain setbacks. Many of the
topics that our project consisted of correlated with those
taught in class. The full adder, multiplier, divider,
multiplexer, and register are some examples. The only area
that yielded some unexplainable results was the external
keyboard. Although its basic functionality was
implemented, the various communications and simulation
issues remain somewhat unclear to us. Various simulations
of components are listed below in the “Graphs, Tables, and
Simulations” portion of this report.

V. CONCLUSION
In the end, this project was a great learning

experience because it incorporated all of the different
things taught in the class. Not only did it incorporate each
individual component such as state machines, adders, and
registers, but also it required us to combine and
implement every single one of them into one large
encompassing design. There were also some areas that
weren’t covered in the class that we had done additional
research on such as latches and using pulse width
modulation. For example, PWM was included as a last
minute thought to lower the brightness of the LED so it
would be easier to present in class. We used the 8
rightmost switches on the board to act as the 8 bit input
for brightness control.

An aspect that had yet to be solved was the
implementation of signed numbers. It was initially
decided to include negative numbers, however, proved to
be too difficult with the amount of time we had to design
and troubleshoot the rest of the code. Some potential
improvements that we would’ve liked to make are display
and input capabilities. The keyboard and push buttons
that were used to input each number weren’t as fluid as
we had liked. The 7-segment display also doesn’t provide
a lot of flexibility, resulting in many limited character
combinations. If possible, a VGA display would have
been very useful to have so that the numbers, functions,
and answers could be displayed simultaneously.
Regardless of all the issues, bugs, and potential
improvements, the project was a huge success and a real
great way to wrap up everything covered in the course.

VI. REFERENCES

[1] Larson, Scott. "PWM Generator (VHDL) - Logic - Eewiki."
PWM Generator (VHDL) - Logic - Eewiki. N/A, n.d. Web. 27
Nov. 2016.

[2] N/A. "VHDL Code for BCD to Binary Conversion." VHDL
Code for BCD to Binary Conversion. N/A, 7 Apr. 2015. Web.
28 Nov. 2016.

[3] Llamocca, Daniel. “Reconfigurable computing research
laboratory.” Reconfigurable Computing Research Laboratory.
29 Apr. 2014. Web. 25 Nov. 2016.

[4] N/A. “8 bit binary to BCD converter - double dabble
algorithm.” VHDL Guru. 21 May 2010. N/A. 22 Nov. 2016.

Graphs, Tables, and Simulations

 Graph #1 Graph #2

 Graph #3 Graph #4

Graph #5

 Simulation #1 (BCD to Binary)

 Simulation #2 (Binary to BCD)

 Simulation #3 (Add & Subtract)

a[13:0] 0 1 2 15 400 800 14 400 800

b[13:0] 0 1 50 250 3 50 250

cin

addsub

cout

s[13:0] 0 2 3 16 450 1050 550 11 350 550

100 ns 150 ns 200 ns 250 ns

Number Input

LSigLatch

Store SegLoc in mem
DigLocA

0

DigLocA/3

RSigLatch 0 RSigLatch1

Store SegLoc in mem
DigLocB

0

DigLocB/3

SegInA Out SegInB

NumOuta

MUX

SegLoc
Kbd/2

bcd_in_0[3:0] 0 9 0

bcd_in_10[3:0] 1 9 2 0

bcd_in_100[3:0] 2 9 4 0

bcd_in_1000[3:0] 3 9 6 0

bin_out[13:0] 00110010001010 10011100001111 01100100011101 000000…

0 ns 50 ns 100 ns 150 ns 200 ns 250 ns 300 ns

binin[15:0] 0 1 27 4050 10000 9999

d1[3:0] 0 1 7 0 9

d10[3:0] 0 2 5 0 9

d100[3:0] 0 9

d1000[3:0] 0 4 0 9

d10000[3:0] 0 1 0

100 ns 120 ns 140 ns 160 ns 180 ns

 Simulation #4 (Bit Latch)

 Simulation #5 (Button de-bounce)

 Simulation #6 (Counter)

 Simulation #7 (Multiplication)

 Simulation #8 (Division)

100 ns 150 ns 200 ns 250 ns 300 ns 350 ns 400 ns

100 ns 200 ns 300 ns 400 ns 500 ns 600 ns

200 ns 300 ns 400 ns 500 ns 600 ns 700 ns

a[13:0] 0 100 116

b[13:0] 0 3 10 26 10

p[17:0] 0 300 1000 2600 1160

80 ns 100 ns 120 ns 140 ns 160 ns 180 ns

200 ns 300 ns 400 ns 500 ns 600 ns

