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ABSTRACT

DEVELOPMENT OF A SPECTRUM ANALYZER USING A SPIN TORQUE
NANO-OSCILLATOR

by

Steven Louis

Adviser: Jia Li, Ph.D.

Spectrum analyzers are critically important tools with applications in engineering,

science, and medicine. Despite substantial technological improvements, current real time

spectrum analyzers for demanding applications, such as pulsed radar signal analysis,

cognitive radio, and analysis of frequency hopping signals, are exceedingly complex

and/or computationally expensive. This dissertation proposes to overcome these

challenges by using a rapidly tuned spin torque nano-oscillator (STNO) to perform fast,

broadband spectrum analysis.

STNOs are suitable for spectrum analysis for several reasons. They are nano-sized

low power auto-oscillators whose microwave frequency can be easily tuned by a bias DC

current. They have a small time constant due to a small intrinsic capacitance and a small

intrinsic inductance, and thus can be tuned very rapidly. STNOs have typical cross

sectional area between 100 and 800 nm2, can have a tunable bandwidth as high as 10 GHz,

an operation frequency from about 100 MHz to above 65 GHz, and a linear scan rate that

can be over 2 GHz/ns [1, 2, 3, 4, 5]. Taken together, the characteristics of small size, high

tuning speed, and high frequency, STNO based spectrum analyzers have the potential to

transform spectrum analyzer technology.

By using an STNO, spectrum analysis can be performed with scanning rates and

scanning bandwidths that are on par with the current state of the art, all while remaining
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sensitive to signals with power levels as low as the Johnson-Nyquist thermal noise floor.

Specifically, this dissertation aims to show that with an STNO, spectrum analysis can be

performed with a bandwidth as high as 10 GHz, a scan rate fast as 5 GHz/ns, and a

maximum frequency that can exceed 65 GHz.

Additionally, this dissertation aims to shows that it is possible to perform spectrum

analysis on signals with frequencies between 100 GHz and 2 THz with a spintronic device

called an antiferromagnetic tunnel junction (ATJ), with a scan rate faster than

105 GHz/ns. As ATJs are also nano-sized, low power, and easily tunable elements, they

have the potential to revolutionize electronics in the THz gap.

This work is primarily theoretical, showing by theory and numerical simulation,

that STNOs and ATJs can perform spectrum analysis quickly on low power signals with

both high fidelity and high frequency resolution. Additionally, the validity of this work

has been confirmed in collaboration with experimental scientists. Results of these

experiments are presented in this dissertation.

We believe that a STNO based wide-band fast spectrum analyzer will find

numerous applications in microwave signal processing, telecommunications, and novel

logic devices. In particular, we suggest that it can be useful for several specific

applications, including cognitive radio, analysis of frequency hopping signals, and

determination of pulsed radar frequencies.
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CHAPTER ONE

INTRODUCTION

1.1 Motivation

Issac Newton published his seminal work, Optiks, in 1704[6]. His work analyzed

the fundamental nature of light. Of the many experiments included in his tome, one

illustrates the concept of spectrum analysis quite well. A diagram of the experiment,

reprinted here, and is shown in Figure 1.1(a). In this experiment, white sunlight is passed

through a prism, which separates sunlight into its component colors. The component

colors, similar to a rainbow, can then be seen on a sheet of paper. The sheet of paper

showed the spectrum of visible light present in sunlight. Together, the prism and sheet of

paper in Newton’s experiment can be viewed as a rudimentary spectrum analyzer.

Modern spectrum analyzers, that are significantly more complex than a sheet of

paper, have allowed light to be analyzed with more precision. In a few words, the purpose

of spectrum analysis is to determine what frequencies are present in a signal, and at what

power. For example, the spectrum of visible sunlight on a clear day at sea level is shown

in Figure 1.1(b) [7]. In this figure, the frequency of light is shown on the x axis, and the

normalized spectral power of the sunlight is shown on y axis. In this figure, three colors

have been labeled: red, green, and violet. Each color is associated with a particular set of

frequencies. Red, for example, is associated with frequencies that range from 430 to

480 THz. Likewise, green is associated with the frequencies from 540 to 580 THz. The

power of each color can be compared; it is evident that for sunlight, violet has a power

that is lower than green or red.

In principle, spectrum analysis can be performed on any signal, whether

transmitted by light, sound, electricity, or something else. Broadly speaking, spectrum
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Figure 1.1: Newton and the spectrum of sunlight. (a) A figure from Newton’s Optiks[6].
In this figure, sunlight enters through a small round hole F , then passes through a prism
ABC onto a wall PT . A white piece of paper V was held to intercept a part of the spectrum.
Newton viewed the spectrum of sunlight on this paper. (b) The spectrum of direct sunlight
at sea level [7]. Red, green, and violet are present in the frequency bands as labeled. The
spectral power of each frequency can be determined from the y axis.
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analysis measures the magnitude of different frequency components present in a signal. A

major challenge is to perform spectrum analysis quickly with high precision over a wide

bandwidth. For example, it is common for pulsed radar to transmit signals with pulses that

are 50 ns in duration or less. Analyzing a signal with a 50 ns duration over a wide

bandwidth with high precision, at present, possible only with bulky, technically complex,

and expensive equipment. There are other applications, including facilitating cognitive

radio and adaptive frequency hopping protocols, that would benefit from a miniaturized,

low cost spectrum analyzer. One aim of this dissertation is to develop theory that will

facilitate the development of new technology that will overcome this shortcoming.

A critical measure of the speed of spectrum analysis depends on the spectrum

analyzer scan rate. This is a measure of how quickly a frequency bandwidth can be

analyzed. A spectrum analyzer with a fast scan rate requires a signal generator that can be

tuned quickly through a specified frequency bandwidth. Current signal generator

technologies cannot be tuned over a wide bandwidth with a scan rate fast enough to enable

nanosecond timescale spectrum analysis.

Thus, there is a need for a new technology that is not only capable of analyzing

signals with a nanosecond timescale, but also one that is compact, simple, and affordable.

It will be shown in this dissertation that by using a Spin Torque Nano Oscillator (STNO)

and an appropriate algorithm, that it is possible to create a technically simple, nanoscale

system with performance characteristics approaching theoretical limits. This dissertation

presents theory of a spectrum analyzer based on an STNO.

The primary findings of the dissertation are as follows. We have found, both

theoretically and experimentally, that STNOs are capable of faithfully performing

spectrum analysis on a complicated, multi-tone signal. Two spectrum analysis regimes

were investigated, an injection locking regime and a mixing regime. The injection locking

regime, which uses a novel spectrum analysis algorithm, can perform spectrum analysis
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with a scan rate that is limited only by the speed at which the STNO can injection lock to

the external signal. The mixing regime can perform spectrum analysis that is substantially

faster than the injection locking regime, with a frequency resolution that is near the

theoretical limit, while remaining sensitive to signal powers below the Johnson-Nyquist

thermal noise floor. Experiments performed by collaborators have confirmed the utility of

using an STNO for spectrum analysis. We also provide a theory for performing spectrum

analysis at frequencies between 0.1 and 2 THz with a spintronic device called an

Antiferromagnetic Tunnel Junction (ATJ).

Much of the work in this dissertation has already been presented in three peer

reviewed journal articles[8, 9, 10] and at several conferences[5, 11, 12, 13, 14, 15, 16, 17].

In addition, there is one manuscript that has recently been submitted for review[18].

1.2 Potential applications for fast spectrum analysis

It is worthwhile to introduce several possible applications for a fast spectrum

analyzer based on a STNO. Here we present brief outlines of three topics (cognitive radio,

frequency hopping, and pulsed radar frequency determination) where fast spectrum

analysis may be beneficial. Of course, there are many applications that can benefit from a

nanoscale, fast wide-band spectrum analyzer, including applications that cannot at present

be envisioned.

1.2.1 Cognitive radio

Radio transmissions are a familiar part of modern life. Several examples include

listening to FM radio, watching broadcast television, or using a mobile phone. To

facilitate communication and prevent interference, governmental organizations strictly

regulate radio signal transmissions. For example, in the United States, the Federal

Communications Commission (FCC) sells licenses for different portions of the radio
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spectrum. At a recent auction, the FCC raised ∼$19.8 billion from licensing parts of the

electromagnetic spectrum[19]. In a few words, radio spectrum is a precious resource that

is expensive. Likewise, because it is useful, possessing the license to use a part of the

spectrum can be quite profitable.

In many applications, a portion of the spectrum allocated by the FCC can go

unused at any given time. For example, a channel in a cellular network may go unused

during off-peak hours. For applications that only use allocated spectrum at certain times,

it is possible to generate revenue by subleasing the spectrum to other users. These

secondary parties can use a relatively new technology called cognitive radio[20].

Cognitive radio uses dynamic spectrum management to allow secondary users to transmit

at times when spectrum is unused by primary users, and remain idle when spectrum is in

use by primary users. One proposed method for dynamic spectrum management is to use

fast spectrum analysis to monitor the spectrum, and respond to detected usage[20].

With this method of dynamic spectrum management, the spectrum in question

must be analyzed rapidly to determine bandwidth availability. Ideally, a spectrum analyzer

for dynamic spectrum management would be fast enough to determine bandwidth

availability and respond to changes in usage, while being integrated with other electronics,

and operate with a low power consumption and a wide scanning bandwidth. One step in

achieving this may be to integrate a miniaturized STNO based spectrum analyzer with

cognitive radio circuitry.

1.2.2 Frequency hopping

Bluetooth is a well-known example of a technology that uses a frequency hopping

transmission protocol. A frequency hopping protocol is a radio transmission protocol

where the carrier frequency of the signal changes with time. Two prominent advantages to

frequency hopping protocols include resistance to narrowband interference and improved
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transmission security. Bluetooth operates between 2.4 GHz and 2.8835 GHz, and hops

between 79 different channels, with a hop every 625 µs[21]. Another recently developed

protocol operates even faster, with a hop every 1 µs[22]. There is a prospect to develop

even faster frequency hopping algorithms.

Fast spectrum analysis, if readily available, would greatly aid in the design of new

frequency hopping protocols. It could also be used to decode signals encrypted with

frequency hopping. Even more, in principle fast spectrum analysis could be integrated

with adaptive frequency hopping protocols, which transmit with only unused channels to

prevent interference.

1.2.3 Pulsed radar analysis

Another application of fast spectrum analysis is the analysis of short pulse length

radar signals. Radar operates by transmitting an electromagnetic pulse that travels to a

target of interest, bounces off a target and returns to the radar. The amount of time between

transmission and reception is then measured, which allows the distance between the radar

and the target to be calculated. Speed and trajectory can also be determined by radar.

When pulsed radar systems use shorter pulses, they can provide more accurate

information about target range and velocity information[23, 24]. They also allow for

improved discrimination between two closely spaced targets[23]. Why shorter pulses

allow for improved discrimination over longer pulses can be understood as follows.

Consider two pulses; one that has a duration of 500 ns and another with a duration of

50 ns. A pulse that is 500 ns in duration will transmit a radio signal that has a physical

length of 150 m. In contrast, at pulse that is 50 ns in duration will have a physical length of

15 m. The shorter pulse duration leads to a physically shorter radio signal, which can

vastly improve radar resolution. This then allows more precise range, velocity, and object

discrimination.

7



Radar systems are complex, and many factors impact their performance. However,

it can be said that shorter pulses improve the quality of information that can be gathered

by radar. The literature cites a 50ns pulse as fairly common for marine pulsed radar

systems[23]. One can assume that classified systems will have pulse lengths that are even

shorter in duration.

For military applications, it could be critical to quickly detect and characterize a

pulsed radar signal. A nano-scale fast spectrum analyzer with low power requirements

would allow a pulse to be detected and analyzed quickly enough to activate jamming

systems and associated anti-radar weapon systems. Considering that shorter pulses

contain less power and hence are used for short range applications, short pulse length

radar signals can indicate the close proximity of hostile forces. This means that the speed

of detection and analysis is absolutely critical. We feel that STNOs, since they are small,

radiation hard, and are relatively impervious to electronic warfare measures, are well

suited for field deployment in military applications.

1.3 Organization of chapters

Chapter 2 provides a general background for topics relevant to this thesis. It begins

with an introduction to spectrum analyzers and defines performance metrics relevant to

spectrum analysis. After this, it provides a brief background about STNOs.

Chapter 3 is the methods chapter. It provides details about how STNO simulations

and signal processing were performed in this dissertation.

Chapter 4 presents the theory of STNO injection locking spectrum analysis. It

begins by presenting a theoretical description of STNO dynamic tuning. Then, it shows

that an STNO spectrum analyzer can function with a novel algorithm that operates by

injection locking to external microwave signals.
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Chapter 5 presents STNO mixing spectrum analysis, theory and experiment. This

method uses a rapidly tuned spin torque nano-oscillator (STNO), and does not require

injection locking. It treats an STNO as an element with an oscillating resistance. It is

found analytically and by numerical simulation that the proposed spectrum analyzer has a

frequency resolution at the theoretical limit for frequency resolution, with a wide scanning

bandwidth and fast scanning rate, all while remaining sensitive to signal power at the

Johnson-Nyquist thermal noise floor. Chapter 5 also presents experimental results.

Chapter 6 presents the theory of THz mixing spectrum analysis with an

Antiferromagnetic Tunnel Junction. It proposes to perform spectrum analysis on low

power signals between 0.1 and 2 THz. This method of THz spectrum analysis, if realized

in experiment, will allow miniaturized electronics to rapidly analyze low power THz

signals with a simple algorithm.

9



CHAPTER TWO

BACKGROUND

This chapter provides the background information for spectrum analysis and

STNOs. This dissertation is an interdisciplinary study, with elements of electrical

engineering and applied condensed matter physics. Thus, it is prudent to introduce the

internal functioning of spectrum analyzer equipment for physicists, and the basic

operation of an STNOs for engineers. This chapter begins with an introduction to

spectrum analyzers.

2.1 Spectrum analysis introduction

The purpose of this section is to introduce the basic idea of spectrum analysis, and

to introduce performance metrics that will allow for evaluation of the proposed spectrum

analyzer. Consider the photographic image of a commercially available spectrum analyzer

screen shown in Figure 2.1. The inset shows a color photo of a spectrum analyzer, while

the main figure shows the spectrum analysis screen. In this figure, the horizontal axis is

scaled with frequency, and the vertical axis is scaled with the spectral power of the

analyzed signal. Running from left to right is a curve which represents an analyzed

external signal. This signal has two prominent peaks with a relative magnitude of

∼−50 dB, and a strong dip at the point labeled (d). At other frequencies, it has a relative

magnitude of around -80 dB.

Also labeled in Figure 2.1 are several important metrics by which the quality of a

STNO spectrum analyzer will be evaluated. They are as follows: scanning bandwidth,

scan rate, frequency accuracy, resolution bandwidth, responsivity, minimum detectable

signal, maximum input power, and dynamic range. These metrics will be covered in detail

in this section, and they are summarized in Table 2.1.
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Figure 2.1: Image of a commercial spectrum analyzer. Inset shows the front panel of
a Keysight Technologies UXA N9041B Signal Analyzer. Main figure shows inverted
grayscale for clarity. (a),(b) scanning bandwidth, (c) sweep time (scan rate), (d) frequency
accuracy, (e) resolution bandwidth, (f) responsivity, and (g) dynamic range. Image courtesy
Keysight Technologies.
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Scanning bandwidth

The total bandwidth over which spectrum analysis is performed is called the

scanning bandwidth, which is represented by ∆ fch. For example, Figure 2.1(a) shows the

scanning range beginning at 70 GHz and Figure 2.1(b) shows the scanning bandwidth

ending at 85 GHz. Thus the total scanning bandwidth is given by ∆ fch = 15 GHz.

Scanning bandwidth is measured with units of Hz.

Scan rate

The scan rate, denoted by ρ , is the rate at which spectrum analysis is performed.

This can be defined as follows. As shown in Figure 2.1(c), this spectrum was acquired

with a sweep time of T = 2.43 s. The scan rate is given by:

ρ =
∆ fch

T
. (2.1)

The scanning bandwidth was found, above, to be ∆ fch = 15 GHz. Thus for the spectrum

analysis performed in Figure 2.1, the scan rate is ρ ≈ 6.2 Hz/ns. Scan rate in this

dissertation is measured in units of Hz/s.

Frequency accuracy

Frequency accuracy is a measure of how faithfully the spectrum analyzer detects

the frequency of an external signal. This is shown by Figure 2.1(d). Frequency accuracy

will be computed with the relative error, given by:

Frequency accuracy = 1− | factual− fdetected|
factual

, (2.2)

where fdetected is the frequency identified by the spectrum analyzer, and factual is the

actual input frequency. A signal with perfect fidelity would have an accuracy of 100%.

Frequency accuracy in this dissertation is measured in as a percentage.
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Table 2.1: Performance metrics for spectrum analysis

Performance Metric Symbol Base Units Brief Description

Frequency accuracy Hz Accuracy with which the input
signal frequency is identified.

Scanning bandwidth ∆ fch Hz Total bandwidth to be
analyzed.

Scan rate ρ Hz/s The rate at which spectrum
analysis is performed.

Resolution bandwidth RBW Hz Total bandwidth to be
is performed.

Responsivity G dB Gain; output/input ratio.

Minimum detectable signal Pmds W Power of smallest signal that
can be detected.

Maxmium input power Pmax W Power of largest signal that
can be detected.

Dynamic range DR dB Range of inputs to which the
spectrum analyzer is sensitive.

13



Resolution bandwidth

In a practical spectrum analyzer, the peaks of an identified signal will occupy a

finite bandwidth. When two neighboring peaks are in close proximity, they will merge

into a single peak. Resolution bandwidth (RBW), which is shown in shown in

Figure 2.1(e), is the measure of the minimum separation required to distinguish two

neighboring frequencies, with a low RBW preferred. RBW can also be called frequency

resolution, and can be defined as equal to the bandwidth of each spike. There is more than

one way to define RBW; the most intuitive definition is the full width at half maximum

(FWHM) which is shown in Figure 2.6. RBW has units of Hz.

Responsivity

Responsivity, which is also known as sensitivity, is the gain of the system. It can

be expressed as a ratio of output amplitude over input amplitude. It is denoted here by the

symbol G, and is shown in Figure 2.1(f). The units of responsivity is the ratio the units

used to express input and output, and in this dissertation will be V/A.

Minimum detectable signal

The smallest power an external signal can have, and still be detectable by the

spectrum analyzer, is called the minimum detectable signal (MDS). Here it will be given

by Pmds. MDS is not shown on the figure. The units of Pmds are Watts.

Maximum input power

The maximum input power, given by Pmax, is the maximum power that can be

accepted while allowing accurate signal frequency identification. Maximum input power

is not shown on the figure. The units of Pmax are given in Watts.
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Dynamic range

Here, we define dynamic range (DR) as

DR =
Pmax
Pmds

. (2.3)

DR is not shown in the figure, but it would represent the maximum possible extent of

Figure 2.1(g), which shows a span from -40 dBm to -90 dBm, a span of 50 dB. DR in this

thesis will be measured in dB.

2.2 Spectrum analyzer operation

In simple terms, the operation of a modern swept-tuned spectrum analyzer is as

follows. A block diagram of a basic swept-tuned spectrum analyzer system is shown in

Figure 2.2. Here, spectrum analysis occurs in two stages. In the figure, stage 1 is signal

mixing and filtering, while stage 2 contains the application of a spectrum analysis

algorithm and spectrum display. In this section, these two stages will be introduced in

detail, along with signal and mathematical notation. This section will introduce the topic

in sufficient detail to allow evaluation of STNO viability for spectrum analysis. For a

more comprehensive and high quality overview of spectrum analyzer signal processing

and operation, please see [25].

This discussion will be limited to swept-tuned spectrum analyzers, which

predominate for wide bandwidth applications. In this section, the process of signal mixing

and filtering is discussed first. After this, three basic spectrum analysis algorithms will be

presented: envelope detection, pulse compression, and fast Fourier transform. Together,

this will provide enough introduction to spectrum analysis to allow evaluation of the

utility of STNOs for spectrum analysis.
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Signal to be analyzed

(a)

Local oscillator – chirp signal
(b)

×

Filtered
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(c)

Spectrum Analysis
Algorithm

(d)

Spectrum

(e)

Stage 1:
Signal mixing

Stage 2:
Spectrum analysis algorithm
and display

Figure 2.2: Spectrum analyzer block diagram. Spectrum analysis occurs in two stages,
stage 1 is signal mixing, and stage 2 is the spectrum analysis algorithm and display of the
spectrum. In detail, (a) iext(t), the external signal, which is to be analyzed, is mixed via
multiplication with (b) r(t) the locally generated swept-tuned signal. (c) vlpf(t)= iext(t)r(t)
is the filtered signal. (d) The mixed signal is then processed with a spectrum analysis
algorithm. (e) The spectrum vout(t) is displayed as a function of frequency.
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2.2.1 Signal mixing

Here we discuss a swept-tuned mixing protocol, which is shown by the block

diagram in Figure 2.2. The method presented here is a simplified mixing arrangement. In

actual commercial implementations, a more sophisticated method is used to increase

scanning bandwidth. For more information, see the last page of [25].

External signal

An external signal to be analyzed, which here is a sinusoid with a single frequency,

is depicted in Figure 2.2(a). The goal of spectrum analysis is to determine the magnitude

of the frequencies present in this signal. For much of this dissertation, the spectrum of

single tone signals will be analyzed. An external signal with a single tone can be

expressed as:

iext(t) = Aext sin(ωextt +ψext) , (2.4)

where iext(t) is the external signal that is carried by an electric current, Aext is the external

signal amplitude, ωext is the angular frequency of the external signal, t is time, and ψext is

the initial phase of the external signal. Additionally, the linear frequency of the external

signal is defined as fext = ωext/2π .

Swept-tuned chirp signals

In most modern wide-band spectrum analyzers, spectrum analysis begins by

mixing an external signal, which is the signal to be analyzed, with a signal generated by a

local oscillator. This local oscillator generates a signal with frequency that is

“swept-tuned”, which means the signal frequency changes with time. A swept tuned

signal is shown in Figure 2.2(b). In the diagram, the local oscillator starts with a low

frequency, then increases to a high frequency at a rate that is linear with time. A
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swept-tuned signal, or a signal that changes frequency with time, is often called a chirp. A

signal whose frequency changes linearly with time defined here as a linear chirp. The

frequency of a linear chirp is given by:

fr(t) = ρt + f0 , (2.5)

where ρ is the scan rate, and f0 is the frequency at t = 0. Note that for ρ > 0, the

frequency of the chirp is increasing, and for ρ < 0, the frequency of the chirp is

decreasing. For simplicity, in this thesis ρ will always be positive. Also note that

ωr(t) = 2π fr(t) and ω0 = 2π f0.

Recalling that instantaneous frequency is the time derivative of phase, the phase of

a linear chirp signal is found by integrating Equation (2.5) as:

θr(t) =
∫

ωr(t)dt = πρt2 +ω0t +ψr , (2.6)

where ψr, the constant of integration, and represents the initial phase of the chirped signal.

This chirp signal can now be defined as:

r(t) =


Ar cos

(
πρt2 +ω0t +ψr

)
−T

2 ≤ t ≤ T
2

0 otherwise
, (2.7)

where T is the period of the chirp. This is written as a piecewise function because the

chirp will only sweep through a finite scanning bandwidth

∆ fch =
∣∣∣ fr(−T

2

)
− fr

(
T
2

)∣∣∣= ρT . (2.8)

Swept-tuned chirp signals in this dissertation will be generated by spin torque

nano-oscillators, which will be introduced in section 2.3. STNO generated signals are

physically manifested as a time-varying resistance.
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Signal multiplication and filtering

The next step in signal mixing is to multiply the swept tuned signal r(t) by the

signal to be analyzed iext(t). When two cosine functions are multiplied together, they

follow the identity

2cosAcosB = cos(A−B)+ cos(A+B) . (2.9)

Therefore, when the external signal and the locally generated chirp signal are mixed, the

resultant signal will be:

iext(t)r(t) =



Acos
(

πρt2 +(ω0−ωext)t +ψr−ψext

)
+Acos

(
πρt2 +(ω0 +ωext)t +ψr +ψext

) −T
2 ≤ t ≤ T

2

0 otherwise

, (2.10)

where A = ArAext/2. It is notable that because Equation (2.4) represents a current, and

Equation (2.7) represents a resistance, that Equation (2.10) represents a voltage.

The first term in Equation (2.10) is the “frequency difference” signal, which has a

low frequency. The second term is the “frequency sum” signal, which has a high

frequency. A filter can be used to attenuate the entire frequency sum signal, while

retaining the frequency difference signal. Filters are electronic elements that retain

frequencies within a pass bandwidth, while attenuating frequencies outside the pass

bandwidth [26]. Here we will use a low pass filter, called hlpf(t), which will retain all

frequencies below a cutoff frequency of fc. The filtered signal can be represented

symbolically as

vlpf(t) = [iext(t)r(t)]∗hlpf(t) , (2.11)
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where ∗ is the symbol for convolution. Substituting Equation (2.10) into Equation (2.11),

and choosing an fc such that the frequency sum signal is attenuated, yields

vlpf(t) =


Acos(φ(ωext, t)+ψ) −T

2 ≤ t ≤ T
2

0 otherwise
(2.12)

with a time dependent phase that is given by

φ(ωext, t) = πρt2− (ωext−ω0)t . (2.13)

In these equations, ψ = ψr−ψext. The mixed and filtered signal is shown in Figure 2.2(c).

The frequency of vlpf has a minimum at a certain time t∆, as shown in

Figure 2.2(c). It is this low frequency interval that indicates the presence of an external

signal. This occurs at a time when the frequency of the external signal and the linear chirp

coincide, specifically, when fr(t∆) = fext. This time is given by

t∆ =
fext− f0

ρ
. (2.14)

Accurately determining t∆ with high precision is the purpose of the spectrum analysis

algorithm, which will be covered in the next section.

Please note that Equation (2.14) can be rewritten as (ωext−ω0) = 2πρt∆. With

Equation (2.5), Equation (2.12) to be rewritten as:

vlpf(t) =


Acos

(
πρ(t− t∆)2 +ψ∆

)
−T

2 ≤ t ≤ T
2

0 otherwise
, (2.15)

where ψ∆ = ψ−πρt2
∆

. Thus, multiplying an external signal by a chirp results in a

time-shifted chirp.
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2.2.2 Spectrum analysis algorithms

The previous section reviewed Figure 2.2, stage 1. In this section, stage 2 will be

covered. Here will will review important spectrum analysis algorithms, namely envelope

detection, matched filtering, and fast Fourier transform.

Envelope detection

A simple, and commonly used, spectrum analysis algorithm is called envelope

detection[25]. This is shown in Figure 2.3, which begins with example curve for vlpf(t),

where hlpf(t) is a Gaussian filter, as depicted in Figure 2.3(a).

This spectrum analysis algorithm functions as follows. First, the absolute value of

the signal,
∣∣vlpf(t)

∣∣, is found. Then, the envelope of
∣∣vlpf(t)

∣∣ is found an envelope detector.

This is depicted in Figure 2.3(b). In this figure,
∣∣vlpf(t)

∣∣ is represented by a thin black line,

while its envelope is shown by a thick black line. The envelope, which we can call vout(t),

is a function of time.

This function has a peak at time t∆. The time at which the envelope peaks

corresponds with the presence of a signal at a particular frequency. To display the

frequency, the time can be mapped to frequency by using Equation (2.5). This is depicted

in Figure 2.3(c). In this case, for a peak that occurs at time t∆, the spectrum analyzer will

indicate the presence of a frequency fr(t∆).

Matched filter and pulse compression

A more sophisticated spectrum analysis algorithm is to use a matched filter to

perform pulse compression. This is the primary algorithm that is used in this thesis. It

functions by application of a matched filter to vlpf(t). This method was first reported in

1959, and it has since then been much considered [27, 28, 29, 30, 31, 32]. The algorithm

21



Envelope
Detection

Time-Frequency
Mapping

Envelope detection
spectrum analysis
algorithm

Figure 2.3: Spectrum analysis with envelope detection. (a) The mixed and filtered signal,
vlpf(t), is filtered with a Gaussian low pass filter. (b) The envelope of

∣∣vlpf(t)
∣∣ is detected,

as shown by a solid black line. (c) The time axis is mapped to frequency, resulting in a
frequency vs. magnitude plot.
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to perform spectrum analysis with a matched filter is shown in Figure 2.4, which begins

with example curve for vlpf(t), where hlpf(t) has a flat passband, as depicted in

Figure 2.4(a).

The signal is then processed with a matched filter, hmatch(t), as:

vout(t) = |vlpf(t)∗hmatch(t)|2 . (2.16)

The matched filter performs a process known as pulse compression, where a very sharp

peak at time t∆ is formed as a result of the matched filter. This is shown in Figure 2.4(b)

In order to determine the frequency of the external signal, the time axis can be

mapped to frequency by using Equation (2.5), as described in the previous subsection.

Because this is the primary algorithm used in this thesis, the mathematics of pulse

compression should be considered in detail. The matched filter will have the form

hmatch(t)→ hmatch(ωm, t), where fm = ωm/2π is an arbitrary frequency in ∆ fch. It is

written as:

hmatch(ωm, t) = e− jφ(ωm,t) , (2.17)

where φ(ωm, t) was defined in Equation (2.13), and j =
√
−1 . Performing the convolution

from Equation (2.16) in appendix A, the square of the spectrum signal is given by:

vout(t) = sinc2
(

π∆ fch(t− t∆)
)
+ ε(ψ)

√
2ρ

2∆ fch
sinc

(
π∆ fch(t− t∆)

)
+

ρ
2∆ f 2

ch
, (2.18)

where sinc(x) is defined as sin(x)/x, and ε(ψ) = cos
(

2πρ(t + t∆)2−2ψ− (π/4)
)

is the

phase dependent processing error .

There are several things to notice about Equation (2.18). Firstly, on the right hand

side of equation the first term produces a peak at time t = t∆. This is the term that is useful

for spectrum analysis. When this term is larger than the other terms, a good signal to noise

ratio is possible.
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Figure 2.4: Spectrum analysis with matched filter. (a) The mixed and filtered signal, vlpf(t),
where hlpf(t) had a flat pass band. (b) A matched filter is applied to the signal, resulting
in the spectrum is shown by vout(t) as a function of time. (c) The time axis is mapped to
frequency, resulting in a frequency vs magnitude plot.
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The other two terms on the right hand side represent processing noise. The last

term represents a dc offset that increases with scan rate ρ or decreases with increasing

scanning bandwidth ∆ fch. This term can be easily removed by post signal processing.

The middle term on the right hand side of Equation (2.18) represents processing

noise that is localized at time t = t∆. Because it is located at the same time as the signal

term, it directly influences the reading of the signal amplitude. This term is difficult to

remove by signal processing. The impact of this term can be decreased by increasing

∆ fch, or by decreasing scan rate ρ .

The middle term on the right hand side of Equation (2.18) is also influenced by the

phase difference ψ between iext(t) and r(t). The error in responsivity can be calculated

analytically by restating Equation (2.18) at time t = t∆ and neglecting the last term,

vout(t = t∆) = 1+ ε(ψ)

√
2ρ

2∆ fch
. (2.19)

Of course, ε(ψ) is a cosine function and thus can vary from a maximum of 1 to a

minimum of −1, or |ε(ψ)| ≤ 1. Thus, to adequately detect the amplitude of a single tone

external signal, this algorithm requires that 2ρ � ∆ f 2
ch. Likewise, the uncertainty in

amplitude is ∝
√

2ρ /2∆ fch in the detectable signal.

Fast Fourier transform

Another spectrum analysis algorithm involves digitization and performing

spectrum analysis in the digital domain. This is shown in Figure 2.5[25]. This algorithm

begins with example curve for vlpf(t), where hlpf(t) has a flat passband, as depicted in

Figure 2.4(a). Then, the signal is digitized with an analog to digital converter (ADC).

Once the signal is in the digital domain, a fast Fourier transform (FFT) is performed on

the signal.

25



ADC

FFT

FFT
spectrum analysis
algorithm

Figure 2.5: Spectrum analysis with fast Fourier transform. (a) The mixed and filtered
signal, vlpf(t), where hlpf(t) has a flat pass band. (b) The signal is digitized with an analog
to digital converter, and a FFT is performed, resulting in a frequency vs magnitude plot.
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This method of spectrum analysis has many benefits. For example, phase

information is retained during spectrum analysis. However, there are drawbacks to this

method. Firstly, to avoid quantization errors, the ADC must operate with high resolution.

Generally, to operated at high resolution, an ADC spectrum analyzer can only operate

over a limited scanning bandwidth[25]. Second, this method does not perform well with

pulsed signals [25]. As mentioned in subsection 1.2.3, one possible application of a STNO

based spectrum analyzer is to perform fast spectrum analysis on pulsed radar signals over

a wide bandwidth. Thus, this FFT spectrum analysis algorithm is not a good fit for fast

spectrum analysis.

These drawbacks can be overcome by using numerous ADCs, each with a limited

bandwidth, to cumulatively cover a wide spectrum with high resolution. This is called

“real time” spectrum analysis. While effective, these systems are bulky, technically

complex, and expensive. In contrast, as will be shown in this dissertation, by using STNOs

and an appropriate algorithm, it is possible to create a technically simple nanoscale system

with performance characteristics suitable for performing real time spectrum analysis.

2.2.3 Theoretical limit for resolution bandwidth

This subsection presents the theoretical limits for resolution bandwidth. It is

perhaps easiest to begin with the fairly well known Heisenberg uncertainty principle,

which was formulated in 1927. If x represents the position of an electron, and p represents

the momentum of an electron, the Heisenberg uncertainty is given by a simple formula:

∆x∆p≥ h , (2.20)

where ∆x is the uncertainty in the position of an electron, and ∆p is the uncertainty in the

momentum of the electron, and h is the Planck constant. This formula states is that if the

position of an electron is measured with great certainty, the momentum cannot be
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Figure 2.6: Resolution bandwidth and FWHM. The spectrum analysis detection peak,
which has a full width at half maximum (FWHM) time-span of ∆t = t2− t1. In this case,
the RBW is approximately fr(t2)− fr(t1) = ρ∆t.

measured with great certainty. Likewise, if the momentum of an electron is measured with

great certainty, the precise position of the electron cannot be known with great certainty.

The theoretical limit for RBW can be computed from a similar formula, which is

called the bandwidth theorem. The significance of the bandwidth theorem was first

reported by Gabor in 1946 [33]. The bandwidth theorem is commonly written as [34]

∆ f ∆t ≥ 1 . (2.21)

As it relates to spectrum analysis, in this equation ∆ f = fc, the pass bandwidth of the

lowpass filter in Equation (2.11) (For cases where fc > ∆ fch, ∆ f = ∆ fch). The time span

of the detection peak, ∆t, can be explained as follows. Consider the detection curve shown

in Figure 2.6, with a peak at t∆. This peak, at time t∆, indicates that the external signal has

a frequency given by fr(t∆). The peak has a finite width, as was depicted in Figure 2.3(c)

and Figure 2.4(c). The peak at half maximum (amplitude = 0.5) has a time span of

∆t = t2− t1.

With Equation (2.5), the resolution bandwidth RBW = fr(t2)− fr(t1) = ρ∆t. Note

that fr(t2)− fr(t1) is also known as the linewidth. Thus, a small time span ∆t corresponds
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with a good RBW. From Equation (2.21), it is evident that ∆t = 1/ fc corresponds with the

theoretical best RBW, which can be given as

RBW0 =
ρ
fc
. (2.22)

Which is the absolute best RBW possible for a given scan rate ρ . Note that when

fc > ∆ fch, this expression will be RBW0 = ρ/∆ fch.

2.3 Spin torque nano oscillators

The primary focus of this dissertation is to evaluate the viability of using STNOs

in a fast spectrum analysis system. We are proposing to use an STNO to generate a chirp

according to Equation (2.7), with a chirp sweep time of T , a scanning bandwidth ∆ fch,

and a scan rate ρ . The advantages of STNOs relate to size, tuning speed, and scanning

bandwidth. This section seeks to familiarize readers with the basics of STNOs.

As these spintronic nanoscale oscillators have been studied extensively in the past

few decades, this section is not comprehensive; it is merely an overview of relevant

characteristics of STNOs. For further information, several review articles are fairly

comprehensive [1, 35, 36, 37].

2.3.1 Magnetic tunnel junctions

As mentioned earlier, STNOs can be based on magnetic tunnel junctions (MTJs)

or spin valves. For the last decade, MTJs have served as hard drive read heads. Prior to

that, spin valves were the critical technology for hard drive read heads. How MTJs and

spin valves function provides a convenient introduction to how STNOs function.

Both MTJs and spin valves operate on a similar principle. They are constructed

with 3 layers, as shown in Figure 2.7(a). Essentially, there are two layers that are

composed of ferromagnetic materials that are separated by a non-magnetic material.
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Figure 2.7: MTJ as a hard drive read head. (a) A basic MTJ consists of 3 layers, two
ferromagnetic layers separated by a non-magnetic spacer. This MTJ is defined as being in
a “parallel state” because the FM layers have magnetizations that are oriented in the same
direction. (b) This MTJ is defined as being in an “anti-parallel state” because the FM layers
have magnetizations that are oriented in the opposite direction. The anti-parallel state has
a higher resistance than the parallel state. (c) An MTJ near a hard disk, acting as a hard
drive read head. The free layer is aligned with the nearest magnetic element, forcing the
MTJ into the parallel state, with a logic “low” resistance. (d) The free layer is aligned
with the magnetic element, forcing the MTJ into the anti-parallel state, with a logic “high”
resistance.
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Ferromagnetic magnetic materials are materials that have an intrinsic magnetization; they

are tiny permanent magnets. The direction of the magnetization for all ferromagnetic

materials in Figure 2.7 are shown with arrows. In hard drive read heads, it is common for

the magnetization of each magnetic layer to be oriented in a direction that is “in-plane”. In

the Figure 2.7(a), the magnetization of the layers are both in-plane and in parallel, while in

Figure 2.7(b), the magnetizations of the layers are anti-parallel. The parallel and

anti-parallel states consitute the lowest energy states of the MTJ. The MTJ has a higher

resistance while in the anti-parallel state than while in the parallel state.

The non-magnetic material, which is called a spacer, in spin valves is composed of

a metal (for example, copper) and in MTJs of a dielectric material (for example,

Magnesium Oxide). The resistance observed in spin valves is called Giant

magnetoresistance (GMR). This effect was first observed in 1988 by Peter Grunberg and

Albert Fert. It is notable that in 2007, they received the Nobel Prize in Physics for their

efforts. The resistance observed in MTJs is called tunneling magnetoresistance (TMR).

Because MTJs have a dielectric spacer layer, they tend to have a higher resistance, and

thus have improved performance over spin valves.

Typically, the ferromagnetic layers of both spin valves and MTJs have one layer

that is called the fixed layer. It is called a fixed layer because the direction of

magnetization is relatively fixed, with a single orientation. There are many ways to fix the

magnetization in a single direction; one of which is to make the fixed layer relatively thick.

Both spin valves and MTJs will have one ferromagnetic layer that is called the free

layer. It is called the free layer because the direction of magnetization is free to move and

rotate to match the orientation of an external magnetic field.

Thus, hard drive read heads work as follows, as shown in Figure 2.7(c) and (d). In

this figure, the read head is near a hard drive disk that stores single bits as a magnetic

domain. Each magnetic domain, which is a tiny permanent magnet, radiates a magnetic
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field. This magnetic field is strong enough to change the orientation of the magnetization

in the free layer, but not the fixed layer. This results in a change of resistance of the read

head. When a current is passed through the read head, a change in the memory state can

be detected by a change in resistance. This is shown in Figure 2.7(c), where the stored bit

to be read is oriented in an upwards direction. The free layer magnetization is oriented in

the same oriented direction, and the two layers of the head are aligned in parallel. This

results in a lower GMR or TMR, and hence when a current passes through the junction, a

lower voltage results. In Figure 2.7(d), the read head moves left to the next bit, which is

oriented in a downward direction. The free layer magnetization is reoriented to match the

magnetization of the stored bit, and the two layers of the head are now anti-parallel. This

results in a higher GMR or TMR, which is detected when the current passes through the

junction and a higher voltage results.

Thus, it is useful that the resistance of these structures changes based on the

orientation of the fixed and free layer magnetization. It is important to understand why the

resistance changes when the free layer magnetism is reoriented. This can be understood as

follows. An electric current passing through a spin valve or MTJ is, of course, composed

of electrons. Every electron has an intrinsic spin, and thus an intrinsic magnetic alignment.

This intrinsic magnetic alignment can be called the “direction of electron spin”. When an

electron is passing through a ferromagnet, it can pass through a ferromagnet with less

resistance if its direction of electron spin aligns with the magnetization of the ferromagnet.

Additionally, when a conducting electron flows through a ferromagnetic material,

the direction of spin of the conducting electron can change to match the magnetization of

the ferromagnet. An electron that is aligned with the local magnetization is called spin

polarized[1]. When a current of electrons aligns with the local magnetization, it is called

spin polarized current, which is an electric current where the direction of electron spins of

the conduction electrons are oriented on the same direction.
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Hence, magnetic tunnel junctions and spin valves acting as read heads function as

follows:

1. Before electrons enter the fixed layer, electron spins are randomly oriented.

2. On passing through the fixed layer, some of the electrons become spin polarized.

3. The electrons retain their spin polarization on passing through the thin spacer layer.

4. Then they enter the free layer.

5. If the magnetization of the free layer is anti-parallel with the fixed layer, the free

layer magnetization will also be anti-parallel with the spin polarized electrons. In

this situation, the MTJ will be in a “high” resistance state.

6. If the magnetization of the free layer is parallel with the fixed layer, the free layer

magnetization will also be parallel with the spin polarized electrons. In this

situation, the MTJ will be in a “low” resistance state.

7. A current is passed through the MTJ. The resulting voltage drop accross the MTJ

will result in a change in voltage that depends on the state of the MTJ. Thus, the two

resistance states can thus be assigned logic high and low values.

Thus, data stored on a hard drive platter can be read with an MTJ.

Interestingly, under certain conditions, the spin polarized electrons disturb the

direction of the free layer magnetization and induce a torque called the spin transfer

torque. This is the topic of the next subsection.

2.3.2 Spin transfer torque and magnetic tunnel junctions

Consider an MTJ placed in a strong external magnetic field, as shown in

Figure 2.8(a). The external magnetic field, Bext, is oriented in the ẑ direction. In the
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presence of a strong magnetic field, the free layer magnetization m is aligned with Bext.

The fixed layer magnetization is denoted by a unit vector p. In the absence of the external

magnetic field, p would be oriented in the ŷ direction. In the presence of Bext, the fixed

layer magnetization is canted by an angle β , and thus has the direction

p = cos(β )ŷ+ sin(β )ẑ.

When a dc current, called the bias current Ibias, flows from the top layer down, the

conducting electrons will flow up from the bottom layer. As they traverse the fixed layer,

some percentage of the conducting electrons will become spin polarized and align their

spins with p. The proportion of electrons that are directed along p is called the spin

polarization efficiency. Spin polarization efficiency is denoted by η0.

In an MTJ with an appropriately thin spacer layer, the conducting electrons leave

the fixed layer and pass through the spacer layer and enter the free layer while retaining

their spin polarization. The spin polarized conducting electrons directed along p have a

magnetization direction that is different from the free layer magnetization direction m.

The different magnetization directions cause the conduction electrons to induce a torque

on the localized free layer electrons. This torque is called the spin transfer torque (STT),

and is denoted by Tstt [1, 35, 38, 39]. Tstt is given by

Tstt(Ibias) = αJIbiasm× [m×p] . (2.23)

In this equation, m is the normalized unit-length magnetization of the free layer, while p is

the normalized unit-length magnetization of the fixed layer. and αJ is the spin-torque

coefficient, which is given by αJ = |γ|h̄η0/(2µ0MseV ). Here γ is the gyromagnetic ratio,

h̄ is the reduced Planck constant, µ0 is the free space permeability, Ms is the free layer

saturation magnetization, e is the fundamental electric charge, and V is the volume of the

free layer[1]. Please note that the notation used here is adapted from [1, 40].
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Figure 2.8: Diagram of an STNO based on a magnetic tunnel junction. (a) The MTJ in a
strong static magnetic field Bext that is directed normal to the cross section of the MTJ. In
this field, m is aligned with Bext, and p is canted by an angle β . (b) The same MTJ with a
strong bias current Ibias. This current can cause the precession of m about Bext.
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It is evident from the presence of η0 in Equation (2.23) that the strength of this

torque dependend on the quantity of spin polarized electrons. This means that a stronger

Ibias will result in more spin polarized electrons and hence a stronger STT. Thus, a

stronger bias current Ibias will induce a stronger STT, which increases the angle between

m and Bext.

2.3.3 STNO mathematical model

In addition to STT, the behavior of m is influenced by a variety of factors.

Interestingly, when Ibias is greater than a certain threshold current Ith, this can lead to

self-sustained magnetization precession in the free layer[1]. The origins of this precession

will be explained in this section. Precession of the free layer magnetization is depicted in

Figure 2.8(b), which shows m precessing about Bext. The magnetization precession has a

frequency that, for the geometry depicted in Figure 2.8(b), increases with the increase in

angle between m and its equilibrium direction. Thus, a stronger bias current Ibias will

induce a stronger STT, which increases the angle between m and Bext, which increases

the precession frequency. This can be thought of as precession frequency being directly

related to Ibias.

As described in subsection 2.3.1, the tunneling magnetoresistance of this MTJ

depends on the relative orientation of p and m. Hence, the precession of m will manifest

macroscopically as an oscillating TMR. The fact that these oscillations are induced by

spin transfer torque leads to the name spin torque nano-oscillator.

The magnetization dynamics in the MTJ free layer under the action of a dc current

can be modeled using the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation:

dm
dt
−|γ|Beff×m = αGm× dm

dt
+αJIbiasm× [m×p] . (2.24)
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In this equation, Beff = Bext−µ0Ms(m · ẑ)ẑ is the effective field on the free layer, and αG

is the Gilbert damping constant. Other variables were defined with Equation (2.23). The

notation used here is adapted from [1, 40].

As stated earlier, the free layer magnetization direction m can change depending

on its local environment. Equation (2.24) describes how m can precess about Bext in

response to a set of conditions that will now be described.

The first term on the right hand side of Equation (2.24) models a damping torque.

When the free layer magnetization departs from equilibrium alignment with Bext, this

term models the torque that returns m to its equilibrium direction. This term can be

referred to as the Gilbert damping torque, and is directed towards Bext.

The second term on the right hand side of Equation (2.24) is the spin transfer

torque, which was described in Equation (2.23). This term is commonly referred to as the

Slonczewski torque or the anti-damping torque. The STT depends on p and Ibias. When p

and m are not aligned, the triple cross product in the anti-damping term is nonzero. For a

properly oriented p, this vector will oppose the Gilbert damping torque, and thus be

directed away from Bext and act as an anti-damping torque. The magnitude of this

anti-damping torque is linearly dependent on the magnitude of Ibias. Note that the current

must flow in the correct direction to properly oppose the Gilbert damping torque.

When there is a non-zero Slonczewski torque, m will be pulled away from

alignment with Bext, and begin to precess as shown in Figure 2.8(b). The system will

enter a stationary state when the Gilbert and Slonczewski terms are equal in magnitude

with opposite directions. This condition reduces the Landau-Lifshitz equation to:

dm
dt

= |γ|Beff×m. (2.25)
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This describes the precession of m in three dimensions. The phase of precession is given

by [1]

θstno(Ibias, t) = cos−1(m ·p) . (2.26)

The angular frequency of precession is given by the derivative of phase,

ωstno(Ibias, t) =
dθstno(Ibias, t)

dt
. (2.27)

Likewise, m has a precession frequency of fstno(Ibias, t) = ωstno(Ibias, t)/2π . In this

thesis, fstno(Ibias, t) is called the STNO frequency.

Note that θstno(Ibias, t) and ωstno(Ibias, t) are explicit functions of Ibias. This is

because the strength of the STT, as modeled by the Slonczewski term in Equation (2.24),

is dependent on Ibias. A change in STT changes the angle that m has with Bext, thus

changing the oscillation frequency through the dynamics in Equation (2.24).

Once again, the relative orientations of m and p in spin valves and MTJs change

the device resistance. The TMR for an MTJ based STNO can be modeled as:

R(Ibias, t) = R0−∆Rstno cos( θstno(Ibias, t) ) . (2.28)

In this equation, R0 is the average resistance of the MTJ, and ∆Rstno is the amplitude of

TMR oscillations. Note that the frequency of precession, ωstno(Ibias, t) is the same for

both m and TMR. The magnetization precession thus manifests macroscopically as a

TMR, and from an applications perspective, can be seen as a simple “oscillating

resistance”. It is convenient to denote the oscillating resistance as

rstno(Ibias, t) =−∆Rstno cos( θstno(Ibias, t) ) . (2.29)

This section has described one example how an STNO can be constructed. There

are many other physical configurations[1, 2, 3, 36, 41, 42]. The core point of this

subsection is that by using nanoscale fabrication and the properties of ferromagnetic
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Figure 2.9: STNO as an oscillating resistor. (a) The bias current that will tune the STNO
resistance oscillation frequency. The current is 3 mA for the first 100 ns, then increases
linearly to 4.2 mA over 500 ns. After this, the current is constant at 4.2 mA. (b) In response
to the bias current, the STNO resistance oscillates at 25 GHz until 100 ns. Then, as the bias
current increases, the STNO resistance oscillation frequency increases linearly to 35 GHz
over a 500 ns interval. After this the STNO is steady at 35 GHz.

materials, an oscillating resistance can arise from an STNO whose frequency of

oscillation depends on the magnitude of bias current.

2.3.4 STNO as an oscillating resistor

When viewed from a macroscopic perspective, STNOs are oscillating resistors.

The resistance oscillations have a frequency that can be easily tuned with a dc current.

The relationship between current and the frequency of STNO resistance oscillations is

shown in Figure 2.9. First, the current used to tune the frequency of resistance oscillations
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is shown in Figure 2.9(a). For the first 100 ns, the current is held constant at 3 mA. Then,

it increases linearly to 4.2 mA over a 500 ns period. After this, the dc current is held

constant at 4.2 mA.

Figure 2.9(b) shows the simulated response of the STNO to this dc current. For the

first 100 ns, the resistance of the STNO oscillates at ∼25 GHz. Then, when the current

increases in a linear manner, the frequency of STNO resistance oscillations increases

linearly to ∼35 GHz. After this, when the dc current is held constant, the frequency of

resistance oscillations remain constant at ∼35 GHz. This demonstrates that SNTOs are

tunable microwave frequency signal sources.

2.3.5 Key features of STNOs

STNOs have a number of characteristics that make them favorable for

implementation as the local oscillator in a spectrum analyzer. These features are covered

briefly in this subsection, which is summarized in Table 2.2

Size

The physical realization of STNOs have taken many forms. For example, spin

valves and MTJs, both of which are nano-sized devices, have served as hard drive read

heads for nearly two decades and thus have been extensively manufactured. Under certain

conditions, these devices can act as STNOs. There are also implementations of STNOs

that are neither spin-valve nor MTJ[41, 42]. Thus, the absolute size and geometry of an

STNOs can vary.

As a general rule, the cross sectional area of an STNO based on an MTJ will be

between 100 and 800 nm2 [1]. Note that a 100 nm2 circular structure would would have a

radius of ∼6 nm. STNOs based on an MTJs are constructed with a stack of various

materials, with thicknesses that generally range from 10 to 100 nm. The STNOs simulated

in this dissertation will be based on MTJs.
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Table 2.2: Key features of STNOs

STNO feature Amount Brief Description

Size 100 - 800 nm2 Typical STNO size.

Generation frequency > 65 GHz Frequencies that can be generated by
an STNO.

Tunable bandwidth > 10 GHz The bandwidth that a single STNO can
be tuned by changing the bias current.

Dynamic tuning > 2 GHz/ns Speed that STNO frequency can be
tuned. Maximum scan rate.

CMOS compatibility < 20 nm Can be included with popular silicon
based integrated circuits.

Radiation hard > 10 Mrad Ability to function in the presence of
radiation.
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Generation frequency

STNOs can generate microwave frequency signals. It is often cited that the STNO

frequency can “have a maximum expected operating frequency beyond 65 GHz”[4].

Recent experimental results have observed an STNO frequency as high as 70 GHz [43]. In

that experiment, the authors estimated that the STNO oscillated with frequencies as high

as 150 GHz, which could not be observed due to test equipment limitations.

For low frequency performance, STNOs can generate signals in the sub-GHz

range. One experimental publication, for example, observed a generation frequency of

200 MHz [44].

Tunable bandwidth

Tunable bandwidth, which describes the bandwidth over which the STNO can be

tuned, varies greatly between different STNOs. In one experiment, the linear tuning of an

STNO frequency by a dc bias current had a bandwidth of 13 GHz [2]. This is shown in

Figure 2.10.

In addition to varying the bias current, it is possible tune the STNO frequency by

changing the magnitude of an external magnetic field while holding the bias current

constant. When holding the bias current constant and changing an external magnetic field,

STNOs were observed to have a tunable bandwidth as wide as 35 GHz[3]. This is shown

in Figure 2.10(d).

Dynamic tuning

Dynamic tuning refers to how quickly the STNO frequency can be tuned. This

characteristic is different from tunable bandwidth; it is instead more concerned with the

speed of tuning. It is important to note that because STNOs are small, they have a small
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intrinsic capacitance and a small intrinsic inductance. This means that STNOs have a

small time constant, and thus can be rapidly tuned.

There are several notable published experimental studies that demonstrate that

STNOs are capable of being rapidly tuned[45, 46, 47]. Two of these papers are primarily

concerned with the modulation of STNO precession frequencies[45, 46]. One specifically

investigates how quickly STNOs can be tuned [47]. That paper found, essentially, that

STNOs can be tuned “between two frequencies differing by 25% in less than ten periods.”

While these studies demonstrated that STNOs are capable of being rapidly tuned,

they do not directly address the ability of STNOs to be tuned in a linear manner. For

spectrum analysis, we are interested in tuning an STNO in a linear fashion. Specifically,

the generated frequency should be tuned as a linear chirp according to Equation (2.5). As

no published studies address the ability of STNOs to generate linear chirps, this will be

addressed by theory in section 4.1. There, it will be shown that STNOs are capable of

linear tuning faster than 2 GHz/ns.

Compatibility with CMOS

Integrated circuits based on complementary metal-oxide-semiconductor (CMOS)

technology are a widely used technology in most modern electronics. STNOs based on

MTJs can be embedded in CMOS [48, 49, 50]. For example, an Arizona company named

Everspin is manufacturing magnetic memory for commercial use. The memory uses MTJs

as memory elements, and is called “embedded magnetoresistive random-access memory

(eMRAM)”. Their products can be fully integrated with CMOS. Quoting from their

website:

Everspin has significant experience in enabling silicon suppliers with eMRAM. In
fact, roughly half of Everspin’s total unit volume is embedded, and the applications
range from consumer to aerospace. Our MRAM technology and proprietary IP
enables us to provide non-volatile, fast-write embedded memory blocks that are
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compatible with CMOS Logic designs, targeted for 180 nm and 130 nm CMOS
processes (for field-switched eMRAM), as well as 40 nm and 28 nm CMOS processes
(for perpendicular-MTJ Spin Torque eMRAM).[49]

Thus, circuits with MTJs are regularly included with standard integrated circuits. It is

notable that the eMRAM deployed in 28 nm integrated circuits use spin transfer torque to

change memory states.

Radiation hard

Electronic elements are termed radiation hard when they can function in the

presence of radiation. Radiation hard electronics are important for military and space

applications. Because STNOs are constructed primarily of metals, they are far more

tolerant of radiation than semiconductor electronics. According to one study, MTJ

performance was unaffected by 10 Mrad radiation doses, and were insensitive to

epithermal neutron fluence of 2.9×1015 cm−2 [51]. The gives spintronics in general, and

a spectrum analyzer based on an STNO in particular, a host of potential space and military

applications.

2.3.6 Brief literature review of STNOs

Experimental results showing the relationship between bias current and STNO

frequency are shown in Figure 2.10. Figure 2.10(a) and (b) show experimental results

obtained for a spin valve that was fabricated with a nano-contact geometry[2]. The

nano-contact geometry, which is different from the MTJ presented in the previous section,

uses a stack of thin films topped by an insulator. The diagram in Figure 2.10(a) shows

cross section of the fabricated spin valve. The constituent layers are as follows, from

bottom to top: the bottom is base electrode film, then a 20 nm fixed layer composed of

Co81Fe19, then a 6 nm Cu spacer, then a 4.5 nm free layer composed of Ni80Fe20, then a

cap layer composed 2 nm Cu and 3.5 nm Pd. Above this, there is an insulator composed of

either poly(methymethacrylate) or SiO2. After this stack was fabricated, a contact was
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50 to 75 mA in an applied magnetic field �10 kOe normal
to the thin film. At this magnetic field, the Ni80Fe20 free
magnetization was saturated out of plane while the Co81Fe19
fixed magnetization pointed �30° out of plane. The spin-
transfer precession manifested itself as a sharp peak in the
frequency spectrum above a critical current at +Idc. The reso-
nance resulted from the GMR as the Ni80Fe20 free magneti-
zation moved while the Co81Fe19 magnetization was fixed
with respect to spin transfer due to its larger thickness and
magnetization compared to the Ni80Fe20. The peak preces-
sion frequency increased monotonically with Idc �Fig. 1�a��.

Figure 1�a� demonstrates spin-transfer precession in the
largest area devices to date.9–14 Clear spin-transfer precession
in larger devices is somewhat surprising, since spin-transfer
��1/d2� competes with the oersted field ��1/d� and is typi-
cally dominant only1 at small d. Nevertheless, we observed
robust spin-transfer resonance in devices almost as large as
300 nm diameter. Although the data in Fig. 1�a� were from a
contact formed using e-beam lithography, we also observed
similar spin-transfer resonance in contacts patterned with op-
tical lithography �inset to Fig. 3�a��. Optical lithography of-
fers simplified fabrication for applications by avoiding
e-beam lithography, which was used for almost all spin-
transfer studies so far �see Ref. 8 for an exception�.

As a function of d, the measured frequency full width at
half maximum �f was as small as �10 MHz and the quality
factor Q= f /�f was as large as �1700, both roughly con-
stant with nominal contact diameter from 50 to 300 nm. The
integrated resonance power ranged from �200 pW at the
smaller sizes to 1–5 pW in the largest devices.

The spin-transfer precession frequency f vs Idc measured
for nominal contact diameters from 50 to 300 nm is shown in
Fig. 2�a�. The labels give the physical diameter dSM of the
contact from the Sharvin–Maxwell fit in Fig. 1�c�. For all
sizes, the measured f �crosses� increased approximately lin-
early with Idc �dotted lines are linear fits�. This linear depen-
dence agrees with Landau–Lifshitz–Gilbert calculations us-
ing a spin-transfer torque term for a single-domain
particle,1,15 and also for the spatially nonuniform case.16 The
physical picture is as follows: normally, the damping torque
aligns the Ni80Fe20 free moment with the effective magnetic
field and produces a nonprecessing, zero torque steady state.
The spin-transfer torque opposes the magnetic damping so
the free moment can have a nonzero angle with the field in

equilibrium and undergo steady state precession. Increased
Idc and spin-transfer torque drive the Ni80Fe20 free layer to
larger equilibrium precession angles with the 10 kOe applied
magnetic field. Then, the demagnetizing field of the Ni80Fe20
is reduced and no longer nearly cancels the applied field, so
that the net internal field, the magnetic torque, and therefore
also f all increase.

The slope df /dIdc �squares� versus the contact diameter
dSM from the fit to the Sharvin–Maxwell calculation is
shown in Fig. 2�b�. The data are averages of 17 contacts total
of varied size. The error bars are the standard error in
df /dIdc. The dashed line is a fit of df /dIdc�1/dSM

2 , which
assumes f is proportional to the current per area, or the
torque per precessing spin, with the contact diameter dSM. As
shown, this fit was quite poor �reduced �2	1�. Compared to
the dashed fit, the observed slope df /dIdc increases much
more slowly with decreasing dSM, which implies the contacts
require more current �or torque� to increase f than expected
from the physical contact diameter. This difference is largest
for the smallest contacts. We accounted for this effect by
hypothesizing that the contacts have a larger area of precess-
ing spins than given by ASM=
�dSM/2�2, since the strong
magnetic exchange coupling must create a finite transition
between the coherently precessing spins under the contact
and the approximately static spins far outside it. In addition,
energy losses due to dipolar radiation and spin-wave genera-
tion will increase the effective contact area. Spin-wave radia-
tion losses were previously included in the theory of the
critical current Ic for spin-transfer precession in point
contacts,3 but as a constant term independent of area.

We assumed the magnetically precessing region extends
into the Ni80Fe20 film by a ring of constant width � around
the physical diameter dSM �see an overhead view of the con-
tact in the inset to Fig. 2�b��. The modified fit of df /dIdc
�1/ �dSM/2+��2 �solid line in Fig. 2�b�� was good �reduced
�2�1.8�. The fit determined ��50 nm, which results from
magnetic excitation in the surrounding Ni80Fe20 film. This �
value for the excitation length is several times greater than
the magnetic exchange length, which is �6 nm for the
Ni80Fe20 film.16 Also, for interactions between two contacts

FIG. 2. �a� Peak frequency f vs current Idc for varied contact size �labels
give diameters dSM from Sharvin–Maxwell fit in Fig. 1�c��. �inset� Top scan-
ning electron microscopy image of nominal 60-nm-diameter contact. �b�
Slope df /dIdc vs dSM. Square points are averages for 17 contacts total. The
solid line fit to df /dIdc�1/ �dSM/2+��2 determines ��50 nm as the width
of an additional ring of free layer film excited by spin transfer. A similar fit
with �=0 �dashed line� does not match the data. The dotted fit is to
df /dIdc�1/ �
�dSM/2+��2+C� with a constant C . �inset� Top-down view of
GMR contact, showing dSM and �.

FIG. 3. �a� Critical current Ic for onset of spin-transfer resonance vs area
from the diameter dSM from Sharvin–Maxwell fit in Fig. 1�c�. A 10 kOe
magnetic field was applied out of plane. Data points are averages for 17
contacts total. �inset� Cross-section transmission electron microscopy image
of point contact to GMR film . �b� Ic vs area, with an in-plane field of
400 Oe and with Ic measured from peaks in quasi-static dV /dI vs. Idc �inset�,
which correspond to the onset of spin-transfer induced low-frequency noise.
The data in the inset is from a nominally 50-nm-diam contact. Data points in
�b� are averages for �80 contacts total. Dashed lines are fits to Eq. �1� for
�a� or Eq. �4� from Ref. 11 for �b�, and solid curves are fits to modified forms
including a ring � in the area calculation.
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We measured high-frequency spin-transfer resonances from �8 GHz to �26 GHz excited by dc
currents through giant magnetoresistance point contacts with diameters d from �50 to almost
300 nm. The slope of resonance frequency versus current decreased with increased d and was fit
best by a spin-transfer model where the effective d extends �50 nm past the contact edge into the
surrounding magnetic film. An increased resonance critical current versus contact area was also fit
well by this model including a surrounding ring of excited area. Spin-transfer resonance in large
devices eliminates the need for electron-beam lithography in applications. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2185620�

The spin-transfer interaction1–3 of electric current flow-
ing through a giant magnetoresistance �GMR� trilayer has
led to observed excitations, including a reversal4–8 or dy-
namic precession9–14 of the magnetization in ferromagnetic
nanostructures with current densities �106–107 A/cm2. In
recent measurements of high-frequency �5–40 GHz� spin-
transfer magnetization precession, the dependence on the lat-
eral device area has not been examined, but offers a further
test to understand the physics of spin-transfer,1–3,15,16 particu-
larly the precession’s spatial extent and lateral coherence.
The area dependence is also of interest for scaling in com-
mercial spin-transfer devices, such as an ultradense magnetic
random access memory �MRAM� or a nanoscale current-
driven, tunable microwave oscillator.

In this letter, we report measurements of the area depen-
dence of spin-transfer precession in current-perpendicular-to-
plane GMR contacts where the diameter d ranged from �50
to almost 300 nm in diameter—a much larger range than in
previous magnetodynamics measurements.9–14 We measured
the excited resonance frequency f into the GHz range versus
contact size and applied dc current Idc. The nearly linear
slope df /dIdc decreased with increasing d, in qualitative
agreement with spin-transfer theory1 where one expects
df /dIdc�1/d2. However, deviations from this form led us to
propose a model where the effective magnetically active area
includes a ring of width ��50 nm around the physical con-
tact area, so that df /dIdc�1/ �d /2+��2, which agrees better
with the observed size dependence of df /dIdc. We also mea-
sured the critical current Ic versus area and found that the
modified theory, where the precessing area includes a ring �,
fits the data comparably well as the standard theory.3 Spin-
transfer precession in devices up to almost 300 nm in diam-
eter and patterned by optical lithography makes their large-
scale fabrication much more feasible.

Figure 1�b� is a device cross section with a circular con-
tact �nominal lithographic diameter of 50–300 nm� on a
GMR spin valve film of lateral dimensions greater than
8 �m. Both electron beam �e beam� and optical lithography
were used to define contacts. The contact was formed either
by developing a hole through poly �methylmethacrylate� re-
sist and cross-linking the resist into a stable insulator,13 or by

reactive ion etching through SiO2, which gives a process
more consistent with MRAM fabrication. The inset to Fig.
2�a� is a top-down scanning electron microscope image of a
nominally 60 nm contact written by e-beam lithography and
etched through SiO2. The inset to Fig. 3�a� is a cross-section
transmission electron microscope image of a nominally
160 nm optical lithography contact.

The GMR films typically consisted of a base electrode, a
thick fixed magnetic layer of 20 nm Co81Fe19, a 6 nm Cu
spacer, a 4.5 nm Ni80Fe20 free magnetic layer, and a cap
layer of 2 nm Cu/3.5 nm Pd. High-frequency GMR spec-
trum measurements were performed by injecting Idc into the
device through a bias tee and a microwave probe. All mea-
surements were at room temperature. Positive Idc was defined
as electron flow from the free to the fixed layer. The mea-
sured device contact resistance versus the nominal as-drawn
contact diameter dnominal �squares� is plotted in Fig. 1�c�. The
data are averages for 35 contacts total of varied size. The
dashed line is a fit of a Sharvin–Maxwell calculation for the
point contact resistance,17 for which we let the contact area
differ from the nominal area by an amount equal to a ring of
constant width. This area difference was determined by the
fit as a decrease from the nominal diameter by a ring of
width �8 nm.

Figure 1�a� shows the frequency spectrum amplitude
measured for a nominally 300-nm-diam contact at Idc from

a�Author to whom correspondence should be addressed; electronic mail:
fred.mancoff@freescale.com

FIG. 1. �a� Voltage amplitude vs frequency for a GMR contact of nominal
diameter 300 nm. �b� Cross section of a via through an insulator to a GMR
film. Positive dc current +Idc was defined as electron flow from the free to
the fixed magnetic layer. �c� Contact resistance vs nominal diameter dnominal

�squares�. The dashed line is a Sharvin–Maxwell fit. Error bars in �c� are
smaller than the data points.
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Typically the onset of the dynamics occurs only in the
vicinity of a feature (step, peak, or kink) in dV=dI, and
the relative position of this onset varies with H.

To better understand the possible trajectories of these
excitations, we compare our results with simulations that
assume an isolated single-domain particle (40 nm�
40 nm) whose behavior is described by a modified
Landau-Lifshitz-Gilbert (LLG) equation proposed by
Slonczewski [1]. This only approximates the point contact
geometry, where the region undergoing dynamic excita-
tions is coupled to a continuous film by intralayer
exchange. For example, effects associated with the for-
mation of domain walls between the region under the
contact area and the rest of the free layer are not included,
nor are effects of spin-wave radiation damping [1]. Finite-
temperature effects are included through a randomly
fluctuating field [10].

The simulations show two basic regimes of motion for
in-plane fields. At low current, when oscillations begin,
the magnetization M precesses in a nearly elliptical mode
about H and the time-averaged magnetization hMi lies
parallel to H. As I increases, the trajectories become
nonelliptical and have greater excursion angles with
respect to H. However, M continues to precess about
the applied field, while hMi changes from parallel to
antiparallel alignment with H. Within this regime, the
simulated excitation frequency decreases approximately
linearly with I, in agreement with the data shown in
Fig. 1(b). Furthermore, jdf=dIj increases with increasing
H, also in agreement with our measurements. As I is

further increased, the second regime is reached and the
simulations show M precessing out-of-plane with the
precession frequency increasing with current. Con-
sequently, we infer that the observed excitations corre-
spond only to in-plane precession, perhaps due to a lack of
stability of the trajectories in our devices, or because the
devices are unable to support sufficient current densities.
It may also indicate a need to incorporate micromagnetic
effects in the modeling.

The measured linewidths are quite narrow, indicating
that the excitations can be considered coherent single-
mode oscillations. The peaks in Fig. 1(b) have full-width-
at-half-maximum (FWHM) of �20 MHz and voltage
(power) quality factors Q � f=�FWHM� of �350 �600�,
with particular values depending on I. The FWHMs of
the excitations only weakly depend on H, leading to
values of Q > 500 for f > 30 GHz. Analogous line-
widths in ferromagnetic resonance (FMR) measurements
would give damping parameters of � � 1–5� 10
4, with
the particular value depending on H [11]. Our modeling
requires � � 0:5–1� 10
3 to produce similar linewidths
at 300 K. Either analysis gives values of � much smaller
than values obtained through field-induced excitations of
Ni80Fe20 thin films (� � 0:01 to 0.005) [12,13]. Line-
widths we have measured in nanopillar devices (not
shown here) are about a factor of 5 larger than those
measured in point contacts, showing that the narrowness
of these peaks is not a general result for current-induced
excitations. The lack of physical magnetic edges in point
contact devices may account for their narrow linewidths
in comparison to nanopillars. Increased linewidths and
effective damping are often found in magnetic nano-
structures, resulting from M at the edges of patterned
devices lagging M at the center of the device during
large-angle oscillations [13].

Figure 2(a) shows the measured frequencies as a func-
tion of in-plane field. The data correspond to the highest-
frequency (lowest-current) excitation observed at a given
H. Below �0H � 50 mT no excitations are seen. Around
�0H � 0:6 T the excitation amplitude begins to drop and
by �0H > 1 T is below our noise floor. The data are fit
using the Kittel equation for in-plane magnon generation,
excluding dipole effects, appropriate for the thin-film
limit [14]:

f�H� � �g�B�0=h���H �Hsw �Hk �Meff�

� �H �Hsw �Hk�

1=2; (1)

where Hsw � Dk2=�g�B�0�, D is the exchange stiffness,
g is the Landé factor, k is the magnon wave number, Meff

is the effective magnetization, Hk is the anisotropy field,
�0 is the permeability of free space, h is Planck’s con-
stant, and �B is the Bohr magneton. In fitting the data, k
and g are treated as free parameters while fixed values
of �0Meff � 0:8 T and �0Hk � 0:4 mT are used, as de-
termined from magnetometry measurements. The fit

FIG. 1. (a) dV=dI vs I with �0H � 0:1 T. (b) High frequency
spectra taken at several different values of current through the
device, corresponding to the symbols in (a). Variation of f with
I (inset).
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with an out-of-plane field of 0.9 T. Along the x axis I
varies from 4 to 12 mA and back to 4 mA. Avertical slice
through the plot yields a frequency spectrum at a fixed I.
This field aligns the Ni80Fe20 layer with H while canting
the Co90Fe10 layer about 30� out of the film plane. For
�0H > 0:6 T, a blueshift in f with increasing I is seen.
More complicated behavior is also found, e.g., jumps in f
occur at I � 6 mA and 7.5 mA. These jumps are not
hysteretic and occur in all devices for out-of-plane fields.
According to our modeling of this geometry, theNi80Fe20
magnetization precesses in a nearly circular orbit about
H, with frequency increasing with I, the trend seen in our
measurements. However, abrupt changes of f with in-
creasing I are not found in our modeling.

As shown in Fig. 4(b), dynamics persist to �0H �
1:3 T and f � 38 GHz, and spectrally can be well fit
with a Lorentzian function (inset). Even at these frequen-
cies, the voltage (power) linewidths are �60 MHz
(40 MHz), and have Q > 650 �950�. Because of band-
width limitations we were not able to follow the oscil-
lations to higher frequencies. At least for point contacts,

the two-state switching behavior found with in-plane
fields is largely suppressed in this geometry. As seen in
Fig. 4(b), the highest frequencies at a given field vary
linearly in H with a slope of 32 GHz=T and give g �
2:1� 0:01, differing from the value determined from the
in-plane measurements. It may be that H is not yet large
enough for f to be a truly linear function of H, leading to
an inflated value of g. Finally, in contrast with FMR
measurements, we note the excited frequencies here in-
crease continuously in fields ranging from H <MNiFe to
H > MNiFe, and persist even for H � MNiFe when the
FMR resonance frequency is nominally zero.
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FIG. 4 (color). (a) Plot of f vs I with amplitude shown in a
linear color scale from 0 (blue) to 0:9 nV=Hz1=2 (red), discre-
tization results from measuring spectra in 500 �A intervals.
(b) Out-of-plane f vs H dispersion curve. Data correspond to
the highest f at a given H. Error bars (FWHM) are smaller
than the data points. (inset) Spectral peak at 1.3 T and I �
11 mA along with a fit.
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Figure 2.10: Experimental demonstration of STNO frequency vs. bias current. (a)
Schematic of fabricated nano-contact spin valve [2]. Electron flow is from the fixed layer
through the free layer, then through a contact whose size was varied from 35 nm to 280 nm.
(b) Inset: Scanning electron microscopy image of a 60 nm diameter contact. (b) Frequency
vs. bias current for STNOs with contact sizes that vary from 35 nm to 280 nm, as labeled.
Crosses indicate measured points, and line of best fit shown with dashed lines. (c) Spectra
of oscillations generated by an STNO in a 0.1 T in-plane bias field for currents ranging from
4.0 to 8.5 mA. (c) Inset: Relationship between bias current and peak generated frequency
for the same conditions. (d) Variation of STNO generated frequency for a changing bias
field amplitude. Top images were reprinted from [2] with permission of AIP Publishing.
Bottom images were reprinted from [3] with permission of American Physical Society.
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etched in the insulator, and then a top electrode was added to the stack. Current traverses

the structure through this contact. An image of the structure is shown in the inset of

Figure 2.10(b). It was obtained by scanning electron microscopy for a contact with a

60 nm diameter.

The relationship between the STNO generated frequency and the bias current Ibias

for six different contact sizes in is shown in Figure 2.10(b). The measurements were taken

at room temperature with an applied magnetic field Bext = 10 Oe, which was applied in

the direction normal to the film. The sizes ranged from a diameter of 35 nm to 280 nm, and

Ibias ranged from about 5 mA to 80 mA. Frequency measurements are shown by crosses,

and dotted lines show linear fits. It is evident that these STNOs have a tunable bandwidth

that can exceed 10 GHz. For example, in this figure the contact with an 85 nm diameter

was able to oscillate with frequencies ranging from 11 GHz to 24 GHz. This corresponds

to a tunable bandwidth of ∼ 13 GHz. This figure is shown here to emphasize that an

STNO can be tuned linearly by Ibias with a tunable bandwidth greater than 10 GHz.

Figure 2.10(c) and (d) shows experimental results that were obtained with a spin

valve that was fabricated with a nano-contact geometry, with a contact diameter of

40 nm[3]. Figure 2.10(c) shows the spectra taken for several values of current, from

4.0 mA to 8.5 mA with a 0.1 T bias field that is oriented in-plane. In these, the

FWHM ∼20 MHz. The inset of Figure 2.10(c) shows the frequency of oscillation for this

STNO, which varies linearly as a function of bias current.

In addition, when the magnetic field is varied, the frequency of oscillation is also

tuned linearly. As shown in Figure 2.10(d), the frequency increased linearly from below

17 GHz to near 40 GHz as the field increased from 0.5 T to 1.5 T. This corresponds to a

tunable bandwidth of ∼ 23 GHz. This figure is shown here to emphasize that an STNOs

can be tuned over a scanning bandwidth that is greater than 20 GHz when it is tuned by an

external magnetic field.
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efficient in order to excite large angle free layer precession (large
output power) in absence of a bias magnetic field. The main objective
of our experiment is to solve the key technological issues related to
the integration of STNOs with CMOS technology: elimination of the
need for an external magnetic bias field and reduction of drive cur-
rent densities. The former goal will allow for eliminating the current
lines necessary to create the magnetic field for the STNO biasing,
while the latter is necessary to reduce the size of the current driving
transistors (small currents allow for smaller transistors, hence mak-
ing the overall oscillator smaller. For high-current oscillators, the
actual size of the oscillator would be determined by the transistor
size, rather than by the MTJ) and to control power dissipation.

Results
Spin-transfer torque oscillator. The samples studied have a core
magnetic stack consisting of a synthetic antiferromagnet (SAF)
Co70Fe30/Ru/Co40Fe40B20 layer and a Co20Fe60B20 free layer (FL)
separated by a MgO insulator as shown in Fig. 1a. We introduce a
Cartesian coordinate system where the x-axis is the direction of the

polarizer (1x), the y-axis and the z-axis are the hard in-plane and the
out-of-plane axes respectively. The SAF layer is designed to have
an in-plane easy axis9,10 serving as a polarizer, while the Fe-rich
Co20Fe60B20 FL with a thickness of t 5 1.60 , 1.62 nm was
chosen to achieve the proper IPA, which favors the out-of-plane
(perpendicular) magnetic configuration in the free layer (see
Methods). Electron-beam lithography and ion milling were used to
define and etch the MTJs resulting in pillar-shaped devices with
nominal dimensions of 150 nm 3 70 nm. The samples are
different from the 50–70 nm diameter point contact spin valves
with out-of-plane magnetized CoNi free layers studied in refs. 11,
12. A d.c. bias current is injected into the sample through a bias Tee as
shown in the measurement setup in our previous work10, where we
define the positive current I as electrons flowing from the polarizer to
the free layer. A time-varying voltage produced by the oscillations of
the magnetization via the tunneling magnetoresistance (TMR) effect
is recorded using a 9 kHz–26.5 GHz spectrum analyzer. The mea-
surements were carried out at room temperature. We show detailed
data from a single device with free layer thickness t 5 1.60 nm,

Figure 1 | Sample structure and properties. (a) Schematic of the sample layer structure consisting of an in-plane magnetized fixed (polarizer) layer and

an out-of-plane magnetized free layer. (b) Resistance as a function of in-plane magnetic field (HI) and perpendicular magnetic field (HH) for sample 1

(t 5 1.60 nm), inset in (b) is the resistance as a function of HH, the black (red) arrow denotes the magnetization direction of the reference (free) layer.

(c) Resistance-Current curve at zero applied magnetic field, AP (P) denotes the antiparallel (parallel) configurations between the free and fixed layers.

(d) Microwave spectra as a function of d.c. current bias I at zero applied magnetic field, the curves are offset by approximately 20 nW GHz21 along the

vertical axis for clarity. Inset: full width at half maximum (FWHM, or linewidth) (triangles) and f0 (circles) of the STNO sample 1 as a function of I.

www.nature.com/scientificreports
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mode with an out-of-plane oscillation axis, and a trajectory which is
initially circular and expands (i.e. the output power increases) as the
current increases (compare trajectories at 282 and 2164 mA in Fig. 3
(left)). At large currents the oscillation axis moves towards the x-y
plane (trajectory at 2288 mA) and for values of I , 20.34 mA the
AP-state is obtained as in the experimental data. The magnetization
dynamics are characterized by the excitation of a spatially quasi-
uniform mode (see also Supplementary Video online). Fig. 3 (right)
shows two examples of snapshots at I 5 20.3 mA, the arrows
indicate the in-plane component of the magnetization while the
colors are related to the mx (blue negative, red positive). At high
currents (I , 20.3 mA), the simulations show that for some range
of time the dynamics is switched off (see Supplementary Fig. S4
online). We believe that the presence of this behavior could be the
origin of the non-uniform dynamics (experimental low frequency
tail) measured in the high current regime (see Supplementary Fig.
S3 online). We observed that this behavior is more evident in the
range of thickness where the IPA is comparable with the out-of-plane
demagnetizing field. The simulations also predict a decrease in the
oscillation frequency as a function of I at a rate of ,1.8 GHz mA21,

this value is consistent with the experimentally observed rate of
,1.75 GHz mA21 (Fig. 4).

Discussion
Microwave emission with large output power (in the presence of
external magnetic fields and large drive current densities) has been
already measured in STNOs with IPA10,15. However, to the best of our
knowledge this work is the first experimental demonstration of large
oscillation power without bias field and with ultralow current density
Jc below 6 3 105 A/cm2. For microwave generation in the absence of
external magnetic fields, various other solutions have been recently
proposed. For example, the idea based on a wave-like angular
dependence of the spin torque16, the incorporation of a perpendicular
polarizer into spin-valve structures17, magnetic vortex oscillations6,18

or a tilted free layer19, but the resulting microwave power in those
STNOs is smaller (,1 nW) and the excitation current is higher
(.106 A/cm2)11,16–18. When compared with the best results obtained
from previous field-free STNOs, the data in this work show micro-
wave emission with output power at least one order of magnitude
larger and critical current densities one order of magnitude smaller.
Table 1 compares the dynamical properties of STNO solution
achieved without magnetic field. Importantly, the oscillation fre-
quency is of the same order as that obtained from other types of
STNOs. Finally, the STNOs in this work exhibit a tunability of
,1.75 GHz mA21 that is substantially larger than the ones measured
in spin-transfer driven vortex oscillations (0.03 GHz mA21 in Ref. 6
and 0.08 GHz mA21 in Ref. 18). This, however, comes at the cost of
the larger linewidth compared to those obtained in magnetic vortex
self-oscillations6,18. The origin of the linewidth is related primarily to
thermal fluctuations, and to the coupling between the oscillator
phase and power as in other STNOs13. One possible remedy is the
use of these STNOs as a basis of an array of phase locked STNOs, in
that scenario it is expected that a significant decrease in the linewidth
and an increase in the output power to over the tens of mW20,21 could
be achieved. A different solution would be the application of a low
frequency current modulation as demonstrated in Ref. 22.

The possibilities opened by these results will eliminate some of the
key issues related to on-chip integration of STNOs with CMOS tech-
nology. This direct integration and the reduced power consumption
may potentially open applications in portable electronic devices and
wireless modules such as embedded communications and power
efficient local clock signal generation in digital systems. Our findings
also provide a key ingredient in the development of ultralow–critical-
current and zero-field spin-wave sources in magnonic logic devices23.

Figure 3 | Micromagnetic simulations for sample 1. Left. Trajectories of the average magnetization vector on the unit sphere as computed from

micromagnetic simulations (I 5 282, 2164 and 2288 mA). Right: example of two snapshots of the spatial distribution of the magnetization indicating

the uniform dynamics (the color means the x-component of the magnetization blue negative, red positive).

Figure 4 | Dependence of microwave frequencies on current for sample 1.
The blue circles show experimental data as a function of current bias at zero

applied magnetic field. The black squares show the results from

micromagnetic simulations.

www.nature.com/scientificreports
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(a) (b)

Figure 2.11: Zero bias field STNO. (a) Schematic of the MTJ as fabricated. Note the free
layer has a canted magnetization, allowing this MTJ to act as a zero field STNO. (b) STNO
operation without a bias magnetic field, frequency as a function of bias current. Reprinted
from [52] under the Creative Commons CC-BY-NC-ND license.

A figure from a third published experimental result is shown in Figure 2.11 [52].

This experiment showed that an STNO can operate without an external bias field;

specifically, for this STNO, Bext = 0. This was achieved by using an 150 nm × 70 nm

elliptically shaped pillar with perpendicular magnetic anisotropy [53]. Figure 2.11(b)

shows how frequency tuning relates to bias current for this device. In this case, when Ibias

increases from −0.35 mA to −0.05 mA, the frequency increased from 0.7 to 1.25 GHz.

Thus, three different published STNO experiments have been reviewed. Since

2003, there have been hundreds of different experimental results. The purpose of this

section was to emphasize that STNOs are indeed nanometer sized elements whose

frequency of microwave signal generation can be easily, and quickly, tuned with a DC bias

current. This thesis will show that these properties will allow STNOs to be useful for

spectrum analysis.
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Figure 2.12: Phase locking of two pendulum clocks. This was drawn in 1665 by dutch
scientist Christian Huygens. It shows two pendulum clocks hanging from a beam that is
supported by two chairs. Reproduced from [54] with permission of Cambridge University
Press.

2.3.7 Injection locking

Synchronization is a familiar phenomenon. For example, a small group of people

are able to clap their hands in unison. Soldiers can march lock-step, and cardiac cells can

coordinate to make a healthy heart beat correctly.

When two oscillators, with similar frequencies and phases, are by some means

connected, their frequencies can synchronize by a physical process called phase locking.

This was first written about in a 1665 letter by Christian Huygens, a Dutch astronomer,

inventor, physicist, and mathematician. In his work developing accurate clocks, he

discovered phase locking. His sketch of the experiment is reproduced in Figure 2.12. In

this experiment, two pendulum clocks are hung from a beam that is suspended between

two chairs. He described phase locking in a letter to his father:

... when we suspended two clocks so constructed from two hooks embedded in the
same wooden beam, the motions of each pendulum in opposite swings were so much
in agreement that they never receded the least bit from each other and the sound of
each was always heard simultaneously. Further, if this agreement was disturbed by
some interference, it reestablished itself in a short time [54]
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Thus, Huygens observed that two pendulum clocks hanging from the same beam will,

after a transition period, tick in unison. Huygens established that the clocks transmitted

energy through the beam, allowing the two pendulums to become phase locked.

The frequency of an STNO can phase lock to a weak external microwave signal.

The idea is that when a weak external signal, with frequency similar to the STNO

oscillation frequency, is injected along with Ibias into the STNO, the STNO oscillation

frequency will change to be exactly the same as the frequency of the weak external signal.

When an STNO is phase locked to a weak external signal, it is said to be injected locked

or entrained.

This is experimentally demonstrated in Figure 2.13(a) in [55]. In this figure, the

frequency of the “free running” STNO is shown by black squares. This curve is called free

running because the STNO is not influenced by an external signal. In essence, it describes

how the SNTO behaves in the absence of an external microwave signal. Without the

injection of an external signal, the free running frequency of oscillation increases linearly

from 10.35 to 10.65 GHz.

When an external microwave signal, with amplitude of 29 mV, was injected into

the STNO along with the bias current, the frequency of oscillation phase locks to the

external signal and as a result the STNO has a plateau near 10.48 GHz. This is shown by

blue triangles in Figure 2.13(a). Thus this shows experimentally that STNOs can be

injection locked to an external signal.

An important characteristic of phase locking is the phase locking bandwidth.

Phase locking bandwidth, denoted by ∆ flock, can be defined as the frequency bandwidth

over which auto-oscillators can phase lock to another oscillator. This is demonstrated with

a theoretical curve in Figure 2.13(b). In this figure, the thick black line shows the STNO

oscillation frequency plotted as a function of free running frequency when an external

microwave signal with a magnitude of 29 mV injected along with the bias current. This is
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phase-coherent with the 10 MHz trigger will average to

�0 V during this process.

In the time traces shown below, we do not simply

directly average the device output within the oscilloscope.

Because the device is being locked to a second harmonic sig-

nal, it can identically lock to the impressed signal such that

the device output is 6p out-of-phase with any previous time

trace recorded during the averaging process. Hence, when

the device is undergoing numerous phase-slips, such as in

the quasi-locked regime, directly averaging traces will result

in no net signal even though phase-locking occurs. The same

problem is encountered in the pulsed measurements dis-

cussed below, because the device loses coherence between

pulses. Even within the locking-range, the device goes

through occasional 6p phase-slips so that direct signal aver-

aging results in a waveform with an amplitude that varies

with time (on the order of tens of seconds).

To circumvent this problem, instead of directly averag-

ing the device output, the oscilloscope first takes the absolute

value of the signal. This doubles the apparent frequency of

the STO prior to performing the averaging, which makes it

insensitive to 6p phase slips. We have experimentally veri-

fied that trigger jitter within the circuit smoothens the sharp

cusps expected for the absolute value of a sine-wave, so that

the averaging process results in an apparent sine wave as

shown in the inset of Fig. 2(a) and below. All time-domain

data shown here have been digitally high-pass filtered with a

5 GHz corner frequency that results in a signal centered

about 0 V as opposed to an all-positive one. For the pulsed

data discussed below, the filter serves to remove the low-

frequency response of the capacitively coupled amplifier and

does not significantly affect the data analysis.

We now turn our attention to the analysis of the time-

domain data. For the data shown in the inset in Fig. 2(a), the

frequency and amplitude of the microwave drive are kept

fixed at 20.96 GHz and VRF¼ 21 mV while the DC current

bias through the device is varied. These data are then fit to a

sine-wave having variable amplitude and phase, and a fixed

frequency of 20.96 GHz. The resulting phase evolution of

the device as function of DC current is shown in Fig. 2(a).

The phase varies roughly linearly with current over much of

the bias range, similar to Ref. 3, but saturates at the high

biases. The larger value of the phase variation seen here as

compared to Ref. 3 results from the absolute-value function

doubling the apparent frequency of the device, and hence

doubling the fitted phase angle.

FIG. 1. (Inset) Two-dimensional plot showing the spectral output from the device on a logarithmic color scale (dark) 0.1 lW to (light) 6 lW. The 55 dB ampli-

fier gain is not divided out of the signal. (a) The oscillation frequency of the device as a function of DC bias for several values of VRF. The error bars from

Lorentzian fits to the spectra are smaller than the data points. (b) The locking range as a function of VRF for 20.96 GHz. The result of a linear fit to the data is

shown on the graph. The error bars are determined from the step size associated with IDC and the linear dependence of the STO oscillation on DC bias.

FIG. 2. (a) The relative phase variation of the device output for

VRF¼ 21 mV as a function of DC bias. The phase is determined by fitting a

sine-wave having the amplitude and phase as fitting parameters while the

frequency is fixed at 20.96 GHz over a fixed 10 ns interval of time. (Inset)

shows small sections of the time-traces from which the phases and ampli-

tudes of the device output were determined. (b) Plot of the fitted amplitude

of the device output under the same conditions as in (a). The vertical lines

are guides showing the locking range as determined by the spectral measure-

ments of Fig. (1). For both (a) and (b), the error bars from the fits are smaller

than the data points.
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Figure 2.13: Experimental demonstration of STNO injection locking. (a) Inset: free
running current frequency relation for a STNO. Colors show spectral output with
logarithmic scale, where dark is 1 µW and light is 6 µW (a) Current frequency relation
for an STNO whose bias current is modulated by a microwave signal. Black squares
show a linear frequency relation for a free running oscillator. Blue blue triangles show the
frequency relation when the bias current is modulated by a 29 mV microwave signal, where
the STNO injection locks to the external signal at a frequency of≈ 10.48 GHz. Modulation
by other signal amplitudes are shown as labeled. (b) Theoretical curve showing the phase
locking bandwidth ∆ flock. Figure on left is reprinted from [55] with the permission of AIP
Publishing.
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in contrast with the thin black line, which shows the free running frequency of the STNO.

As is labeled on the figure, in this circumstance the STNO has a phase locking bandwidth

∆ flock = 0.15 GHz. Due to their nonlinear properties, STNOs have an unusually wide

phase locking bandwidth[1]. It is important to note that, as shown for different values of

Iext in Figure 2.13(a), the magnitude of the phase locking bandwidth depends on the

magnitude of Iext. This property will allow the use of injection locking to perform

spectrum analysis, as will be shown in Chapter 4.

2.4 Antiferromagnetic tunnel junction

STNOs, as previously mentioned, can operate at frequencies above 65 GHz, with

an estimated maximum frequency of 150 GHz[43]. There is much interest, from an

applications perspective, in developing miniaturized electronics capable of performing

spectrum analysis at even higher frequencies, in the bandwidth between 0.1 THz and

2 THz. There are currently no existing compact technologies that are capable of rapidly

performing spectrum analysis on a signal with a frequency in the bandwidth between 0.1

and 10 THz. This bandwidth has been dubbed the “THz gap” because at these

frequencies, traditional silicon electronics and traditional photonics hardware do not

function effectively and thus are not capable of generating, detecting, or otherwise

processing these signals [56, 57, 58, 59]. In contrast, antiferromagnetic (AFM) materials

show an intrinsic resonant characteristics within the THz gap, and have been identified as

building blocks for a new class of devices that will function at THz frequencies, as shown

in many recent experimental and theoretical works

[60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77]. Thus far, there have

been proposals for miniaturized THz frequency (TF) detectors [71, 72], sources

[73, 74, 75], and spiking neurons for neuromorphic applications [76, 77].

51



Chapter 6 will describe how an antiferromagnetic tunnel junction (ATJ) composed

of AFM materials can be used to produce a compact, simple spectrum analyzer that is

functional in the THz gap. Recently, it has been proposed that an ATJ can serve as a

tunable terahertz frequency signal source with a frequency of signal generation as high as

10 THz[75]. This structure is similar to an STNO, with a major difference: it features an

antiferromagnetic material instead of a ferromagnetic material. Ferromagnetic materials,

as mentioned above, have a single magnetization which allows them have a macroscopic

magnetic dipole and thus become a permanent magnet. In contrast, antiferromagnetic

materials have two or more sublattices, each with their own magnetization. Often, the

magnetization in these two sublattices will be of equal magnitude yet anti-aligned, with a

resultant magnetization of zero. Thus from a macroscopic perspective, AFM materials

exhibit no magnetic properties. Many recent studies have suggested applications for AFM

materials [71, 72, 73, 74, 75, 76, 77]. In chapter 6, it will be shown that, in principle, an

ATJ can also be used to perform spectrum analysis.

A schematic of the physical structure of the theoretical ATJ is shown in

Figure 2.14 [75]. It consists of a four-layer structure with a lower platinum (Pt) layer, a

conducting AFM layer, a Magnesium Oxide (MgO) layer that serves as a tunneling

barrier, and an upper platinum layer.

Oscillations arise in the following manner. First, the driving dc current Idrive flows

through the bottom Pt layer, generating a transverse spin current due to the spin Hall effect

[68]. This spin current penetrates the AFM/Pt interface and excites terahertz frequency

(TF) rotation of the AFM sublattices and the AFM Neel vector[74]. The frequency of the

TF oscillations is directly dependent on the magnitude of Idrive. This means that the

operating frequency of the ATJ can be dynamically tuned by simply changing the DC bias

Idrive.
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Figure 2.14: Schematic of antiferromagnetic tunnel junction. Driving current Idrive flowing
in the bottom Pt layer of an ATJ generates the transverse spin current. The transverse
spin current flows into the AFM layer and excites the THz frequency rotation of the
magnetization of the AFM sublattices. The rotating AFM layer changes the junction
resistance R(t).
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The oscillations can be extracted from the AFM layer by tunneling anisotropic

magnetoresistance (TAMR) [69]. TAMR will be present when the inverse spin current in

the AFM layer tunnels through the dielectric MgO layer barrier to the upper Pt layer [75].

Experimentally, TAMR electrical switching in an ATJ was observed to be dependent on

the orientation of the AFM Neel vector [69, 70, 78]. Thus, when the AFM Neel vector

rotates with a TF, the TAMR also oscillates with the same frequency. In this thesis, we

will treat the TAMR as a macroscopic oscillating resistance, which we call R(t), which

has the same form as Equation (2.28). This resistance is

R(t) = Ratj−∆Ratj cos
(

ρt2 +ω0t +ψr

)
, (2.30)

where Ratj is the equilibrium resistance of the ATJ, and ∆Ratj is the magnitude of the

variation of the junction ac resistance.

It must be noted that while an ATJ as described in [75] has not yet been fabricated,

when developed it may have a transformative impact on modern electronics. Thus, it is

worthwhile to consider the potential to perform spectrum analysis at THz frequencies with

such a device.
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CHAPTER THREE

METHODS

This chapter introduces the key numerical methods used to perform the research

presented in this dissertation. All of the methods presented here involve numerical

simulation. The numerical simulations were used in conjunction with analytical

calculations, an example of which can be seen in appendix A. This chapter begins with

physics simulations; specifically, simulation of magnetization precession in STNOs and

ATJs. It then covers signal processing methods, including instantaneous frequency

determination and the application of low pass and matched filters.

3.1 Simulation of STNO free layer magnetization

As discussed in section 2.3, when an STNO is driven by a bias current exceeding

Ith, the magnetization m begins a stable precession about Beff. This precession can lead to

the sustained oscillations of the STNO resistance rstno(Ibias, t). The frequency of

precession fstno(Ibias, t) depends on a number of factors, including the magnitude of the

bias current. The nature of the relationship between Ibias and fstno can be determined by

simulating the magnetization dynamics of the MTJ free layer.

As stated in Equation (2.24), the magnetization dynamics in the MTJ free layer

under the action of a DC current can be modeled using the LLGS equation. This is

restated here for convenience:

dm
dt
−|γ|m×Beff = αGm× dm

dt
+αJIbiasm× [m×p]. (3.1)

In this equation, m is the normalized unit-length magnetization of the free layer in the

macrospin approximation. The macrospin approximation assumes that the free layer has a

spatially uniform distribution of magnetization, and thus can be reduced to a single vector.

This approximation is reasonable for STNO free layers that are small enough to consist of
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Table 3.1: STNO simulation parameters

Parameter Amount Brief Description

|Bext| 1.5 T External field magnitude

µ0Ms 0.8 T Free layer saturation magnetization

γ −2π28 GHz/T Gyromagnetic ratio

αG 0.01 Gilbert damping constant

h̄ 1.054571×10−34 Js Reduced Planck constant

η0 0.35 Spin polarization efficiency

µ0 4π×10−7 H/m Free space permeability

e 1.602176×10−19 C Fundamental electric charge

V 3×104 nm3 Volume of the free layer

∆Rstno 1 kΩ Average STNO resistance

R0 1.5 kΩ Average resistance of the MTJ
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a single magnetic domain. All simulations of STNOs in this dissertation use the

macrospin approximation.

Below we will describe the parameters used to perform the simulation.

Equation (3.1) uses the coordinate axis shown in Figure 2.8, with the cross section of the

free layer in the (x̂, ŷ) plane, and ẑ is orthogonal to the plane. The effective field is given

by

Beff = Bextẑ−µ0Ms(m · ẑ)ẑ , (3.2)

where |Bext|= 1.5 T is the magnitude of the external field that is applied perpendicular to

the free layer plane, in the ẑ direction, and the free layer saturation magnetization is

µ0Ms = 0.8 T. The direction of the spin current polarization with β = 30◦ was chosen as

p = cos(β )x̂+ sin(β )ẑ.

Also in Equation (3.1), the Gilbert damping constant is αG = 0.01. The

spin-torque coefficient αJ is defined as:

αJ =
|γ|h̄η0

2µ0MseV
. (3.3)

Here γ =−2π28 GHz/T is the gyromagnetic ratio, h̄ = 1.054571×10−34 Js is the

reduced Planck constant, η0 = 0.35 is the spin polarization efficiency,

µ0 = 4π×10−7 H/m is the free space permeability, e = 1.602176×10−19 C is the

1 Be� [t_] := bext − {0, 0, muoMs∗(m[t].zhat)}; (∗ E�ective �eld ∗)
2 tGilb [t_]:= alphaG∗Cross[m[t], m'[t ]]; (∗ Gilbert damping torque ∗)
3 tSlon [t_]:= gamma∗alphaJ∗biasCurrent[t]∗Cross[m[t], Cross[m[t], p ]]; (∗Slonczewski torque∗)
4 LLGS={m'[t]== −gamma∗Cross[m[t], Be�[t]]+tGilb[t]+tSlon[t], m[0] == mag};(∗LLGS∗)
5 sol1 = NDSolve[LLGS, {m}, {t, 0, runTime}, MaxSteps −> In�nity];

Figure 3.1: Mathematica code used to simulate a STNO with LLGS using Equation (3.1).
Approximations to decrease computation time can be found in [1].
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fundamental electric charge, and V = 3×104 nm3 is the volume of the free layer. All

parameters used for simulation are summarized in Table 3.1.

In this configuration, the threshold current of microwave signal generation in the

STNO is Ith = 2.32 mA. The STNO magnetization can be found by solving Equation (3.1)

numerically, allowing the computation of TMR resistance rstno(Ibias, t) =−∆Rstno(m ·p),

where ∆Rstno = 1 kΩ is the amplitude of TMR oscillation. Thus, by simulating

Equation (3.1) to find m, the TMR resistance oscillation frequency can be determined.

All simulations were performed using Mathematica software[79]. Mathematica

was chosen for two reasons. First of all, Mathematica runs effectively on a standard PC

and produces results that are easy to manipulate. Secondly, Mathematica allows symbolic

operations, thus easing code generation and troubleshooting. A sample of code used to

simulate an STNO in the macrospin approximation can be found in Figure 3.1.

Simulation of an STNO occurs in two steps. First, Mathematica can solve

Equation (3.1) numerically for m resulting in an interpolating function. This interpolating

function can be sampled to create a list of discrete data for m, which has data in 3

dimensions, x̂, ŷ, and ẑ. A scalar product m ·p is then performed, and the results is

multiplied by ∆Rstno to generate a one dimensional list for the TMR resistance

rstno(Ibias, t). This list contains, in time, all the physical changes of the TMR in the MTJ,

including oscillation frequency. Extracting this frequency as a function of time from a

discrete list is not trivial, and is the subject of section 3.3.

3.2 Simulation of antiferromagnetic dynamics

The basics of an ATJ were introduced in section 2.4. There, it was stated that Idrive

can excite a THz frequency rotation of the AFM sublattices, and that this rotation can be

extracted from the ATJ with tunneling anisotropic magnetoresistance. The TAMR can thus
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be treated as a macroscopic oscillating resistance, which is denoted R(t) with a frequency

fr(Ibias, t). Thus an ATJ will be used as a tunable THz frequency signal generator.

Unfortunately, the ATJ described in literature has not yet been realized

experimentally[75]. Therefore, to test the suitability of ATJ for spectrum analyzer

applications, simulations can be performed that will relate Idrive and R(t). This can be

done by simulating the dynamics of the AFM layer. Specifically, it will assumed that the

AFM material has two magnetic sublattices, with magnetizations m1 and m2. The

dynamics of the m1 and m2 in an AFM material with two magnetic sublattices can be

modeled with a pair of coupled Landau-Lifshitz-Gilbert-Slonczewski equations[74]

dm1
dt

= γB1×m1 +αeff

[
m1×

dm1
dt

]
+ Jσ [m1× [m1×p]] , (3.4)a

dm2
dt

= γB2×m2 +αeff

[
m2×

dm2
dt

]
+ Jσ [m2× [m2×p]] . (3.4)b

Here m1 and m2 are the normalized unit-length magnetizations for the two sublattices in

the AFM material in the macrospin approximation. The macrospin approximation was

chosen for the same reason as described in section 3.1. In these equations, B1 and B2 are

the effective magnetic fields acting on the sublattices m1 and m2.

B1 =−1
2Bexm2−Bhnh(nh ·m1)+Bene(ne ·m1) , (3.5)a

B2 =−1
2Bexm1−Bhnh(nh ·m2)+Bene(ne ·m2) . (3.5)b

As this study is focused on the qualitative behavior of AFM materials, we have

adapted the simulation parameters used in [74] for an easy plane conducting AFM

material. When performing simulations according to Equations (3.4) and (3.5), we chose

physical parameters as follows. The gyromagnetic ratio is γ =−2π28 GHz/T, αeff =0.01

is the effective Gilbert damping parameter, and J is the electric current density in units of

A/cm2. The unit vector along the spin current polarization p is directed along x̂ according
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Table 3.2: ATJ simulation parameters

Parameter Amount Brief Description

γ −2π ·28 GHz/T Gyromagnetic ratio

αeff 0.01 Effective Gilbert damping parameter

e 1.602×10−19 C Fundamental electric charge

θsh 0.1 Spin hall angle of Pt

λ 7.3 nm Spin diffusion length in Pt

ρ0 4.8×10−7 Ωm Electrical resistivity of Pt

dPt 20 nm Thickness of the Pt layer

gr 7.0×1018m−2 Spin-mixing conductance at the
Pt-AFM interface

Ms 350 kA/m Magnetic saturation of one AFM
sublattice

dAFM 1 nm Thickness of the AFM layer

γBex 2π60 THz Exchange frequency

Bh 1 T Hard-axis anisotropy field

Be 3.6 mT Easy axis anisotropy field
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to the axes shown in Figure 2.14. The spin torque coefficient is given by

σ = γe
θshλρ0gr
MsdAFM

tanh
dPt
2λ

, (3.6)

where e = 1.602×10−19 C is the fundamental electric charge. For the lower Pt layer,

θsh = 0.1 is the spin Hall angle, λ = 7.3 nm is the spin diffusion length in Pt, and

ρ0 = 4.8×10−7 Ω ·m is the electrical resistivity[80]. The thickness of the Pt layer is

assumed to be dPt = 20 nm. The parameter gr = 7.0×1018m−2 is used for the

spin-mixing conductance at the Pt-AFM interface[81], Ms = 350 kA/m is the magnetic

saturation of one AFM sublattice, dAFM = 1 nm is the thickness of the AFM layer. The

exchange frequency is chosen to be ωex = γHex = 2π ·60 THz, Hh is the hard-axis

anisotropy field such that ωh = γHh = 2π ·30 GHz, and He is the easy axis anisotropy

field such that ωe = γHe = 2π ·0.1 GHz.

All ATJ simulations were performed in mathematica for the same reasons

described in section 3.1. Mathematica can solve Equations (3.4) and (3.5) numerically for

m1 and m2 resulting in an interpolating function. This interpolating function can be

sampled to create a list of discrete data for m1 and m2, both of which have data in 3

dimensions, x̂, ŷ, and ẑ. The frequency can be extracted from any component of m1 or

m2. For example, R(t) ∝ m1 · ẑ was used in chapter 6 of this dissertation. This produces a

discrete list of data that contains the frequency of TAMR oscillations of the ATJ. Thus, a

method to determine the dynamics of TAMR oscillations as a function of time and Idrive

has been described.

3.3 Instantaneous frequency

To understand the frequency behavior of STNOs and ATJs with a simulation, it is

important to know the frequency of magnetization oscillations at any given time. As

explained in the two previous sections, the simulation of an MTJ or ATJ results in a
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Figure 3.2: Thresholds for instantaneous frequency. This plot shows step 3 from
section 3.3. The gray lines shows X(ω), the FFT of the input function. The dashed box
shows the areas where the data of the FFT is retained; all areas outside this box are set to
zero. The black curve shows Y (ω), the function that will be processed by an inverse FFT.

discrete lists of data containing the behavior of the magnetization precession. This

magnetization behavior was then converted to lists of discrete data containing the TMR

and TAMR information.

Thus, a method to evaluate the instantaneous frequency in simulation from a

discrete list of data must be implemented. This was critical for this project, and was used

1 hankLow = samplingTime∗hankleFilterLow;
2 hankHigh = samplingTime∗hankleFilterHigh;
3 temp = Fourier[mmm];
4 temp[[1 ;; hankLow]] = 0;
5 temp[[hankHigh ;; Length[mmm] ]] = 0;
6 temp = temp∗Unitize[Chop[Abs[temp], hankelThreshold]];
7 temp = InverseFourier[temp];
8

9 phaseWrpd = −Arg[temp]; (∗ \ Extract "wrapped" phase. This phase looks like a sawtooth ∗)
10 phase = phaseWrpd + Accumulate[ 2∗Pi∗Unitize[Threshold[Prepend[Di�erences[phaseWrpd], 0.], 1]]];
11 angFreq = Di�erences [phase]/ sampRate; (∗ Derivative of the phase ∗)
12 freq2 = angFreq/(2∗Pi);

Figure 3.3: Mathematica code to determine the instantaneous frequency from discrete data.
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to generate nearly every figure in chapters 4, 5, and 6. For example, Figure 2.9(b) required

knowledge of the instantaneous frequency. The method presented here was chosen for its

simplicity and speed of computation.

Analytically, the instantaneous phase of a continuous times series, x(t), is given by

θ = cos−1( x(t) ), and the instantaneous frequency is the derivative of instantaneous

phase, as f = dθ
dt . Unfortunately, for a discrete time series, x(n), where n is the index of

the data in a discrete list, instantaneous frequency cannot be extracted by this simple

analytical method. For more information about the distinction between continuous and

discrete data, please see [82]. As an alternative, the instantaneous frequency of a discrete

list of data can be extracted by using the following algorithm:

1. First, gather the list of discrete data which is under study. Here this discrete list of

data is called x(n). For an STNO based on an MTJ, this is simply x(n) = m ·p. For

an ATJ, x(n) = m1 · ẑ can be used.

2. Take the fast Fourier transform of x(n). Specifically, X(ω) = FFT[x(n)].

3. Convert X(ω) to analytic Y (ω), as shown in Figure 3.2. The is achieved by setting

X(ω) = 0 for all ω greater than an upper threshold, and for all ω lesser than a lower

threshold. Also, set to zero all list values with an absolute value below a certain

threshold. Thresholds are chosen such that only the frequencies of interest are

retained. It is important to retain only a single side of the spectrum.

4. Inverse FFT of Y (ω), Notationally, this can be said as y(n) = FFT−1[Y (ω)].

5. Take the argument of y(n) to get wrapped phase. The wrapped phase has a the

appearance of a sawtooth.
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6. The wrapped phase should then be unwrapped to get θ(n). To do this, simply

remove the discontinuities with an accumulate function, as seen in line 10 of

Figure 3.3.

7. The frequency is then found by taking the derivative of phase, which in a discrete

list is simply the difference between each list value. Thus, f (n) = dθ(n)
dn .

The code used to perform this algorithm can be seen in Figure 3.3.

3.4 Low pass filter

There are numerous methods to design low pass filters that can be applied to a

discrete list of data. Fortunately, Mathematica includes a low pass filter function,

“LowpassFilter[]”. This filter performed as well as was required for this dissertation. It is

a FIR (finite impulse response) filter that uses, by default, a least squares filter kernal.

3.5 Matched filter

Implementing a matched filter in Mathematica is fairly simple. Firstly, both the

signal and the matched filter are discretized data sets in the time domain. It is well known

that convolution in the time domain is multiplication in the frequency domain[82]. Thus,

to apply a matched filter with discrete data sets, they can be transformed via FFT into the

frequency domain, multiplied together, then returned to the time domain via inverse fast

Fourier transform. This method is not computationally intensive, and can be performed on

a standard PC. Here we will describe the operation to implement Equation (2.16).

What follows below is an algorithm, as used in chapters 5 and 6, that applies a

matched filter while limiting processing errors by padding lists with zeros.

1. To remove edge effects, zero padding is applied to vlpf(t). Lists of zeros of length `

should be added before and after the discrete data in vlpf(t), resulting in a zero

padded list of length 3`.
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2. Create a discrete data list hmatch(t) = e− jφ(ωm,t). The frequency ωm should be

chosen near the middle of ∆ fch. The length of this discrete data list should be 3`.

The time t of the list should be chosen such that it is symmetric about zero.

3. Perform FFT on hmatch(t) and the zero padded vlpf(t). Notationally,

Hmatch(ω) = FFT[hmatch(t)] and Slpf(ω) = FFT[vlpf(t)].

4. Multiply these two functions in the frequency domain

Smatch(ω) = Hmatch(ω)Slpf(ω).

5. Perform the inverse FFT on Smatch(ω). Notationally, smatch(t) = FFT−1[Smatch(ω)]

6. Take the absolute value this function, as |smatch(t)|.

7. Rotate the discrete list |smatch(t)| so that the corresponding peak aligns with t∆, and

remove zero padding to obtain vout(t).
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CHAPTER FOUR

STNO INJECTION LOCKING SPECTRUM ANALYSIS

There are two spectrum analysis regimes considered in this dissertation, an

injection locking regime and a mixing regime. The injection locking regime, which is

presented in this chapter, is a novel spectrum analysis algorithm. With this algorithm,

spectrum analysis can be performed with a scan rate that is limited by the speed at which

the STNO can injection lock to an external signal. The injection locking regime leverages

the strong nonlinear injection locking behavior of an STNO. It functions by producing a

dc voltage spike when the STNO frequency is injection locked to the external signal. The

minimum detectable signal in this regime depends on how quickly the STNO can phase

lock to the external signal, which depends inversely on scan rate and external signal

amplitude. We found by simulation of a system based on realistic parameters that the

minimum detectable signal is 1 pW at a scan rate of 1 MHz/ns. STNO spectrum analysis

in the injection locking regime was published in [9], and presented at conferences

[5, 11, 12].

A schematic of the proposed STNO spectrum analyzer is shown in Figure 4.1.

This diagram follows a scheme that is analogous to Figure 2.2. Shown on the left of this

figure are two inputs: a ramped bias current, and an external microwave signal to be

analyzed. The bias current, Ibias(t), is an electric dc current that begins at one level, then

increases linearly as a “ramp” to another level. This bias current initiates the STNO free

layer precession, as described in section 2.3, which can be viewed macroscopically an the

oscillating resistance rstno(t, Ibias) according to Equation (2.29). The frequency of this

oscillating resistance depends on the amplitude of Ibias(t). When Ibias(t) increases

linearly, the STNO frequency is linearly tuned through the scanning bandwidth.
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STNO frequency
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Figure 4.1: Schematic of STNO injection locking spectrum analyzer. The ramped bias
current and microwave signal to be analyzed (on the left) are applied to the STNO (in the
center). The STNO output (DC component of the STNO voltage) is digitally processed to
produce the time-encoded microwave spectrum of the input signal (on the right).

As seen in Figure 4.1, the bias current Ibias(t) is added to iext(t), an external

microwave signal to be analyzed, as I(t) = Ibias(t)+ iext(t), before being injected into the

STNO. When the STNO frequency matches the frequency of the external signal iext(t), the

STNO may injection lock to the external signal, and thus have a frequency that is identical

to that of the external signal. This external signal combines via Ohm’s law with the

oscillating resistance to produce a voltage vstno(t) = iext(t)rstno(t). At times when the two

signals have the same frequency, vstno(t) will have a dc voltage by the spin torque diode

effect [83]. The STNO output voltage then undergoes signal processing, and the temporal

position of the dc spike indicates the frequency of the external signal. Thus, the frequency

spectrum of the input signal is encoded in the temporal profile of the output dc voltage.

It is important to emphasize that STNOs are well suited to this algorithm for three

reasons, namely:
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1. Fast linear scanning rate.
2. Wide phase locking bandwidth.
3. Wide tuning bandwidth.

Nevertheless, it must be noted that this algorithm is absolutely general and can be used for

any tunable auto-oscillator.

This chapter begins by examining chirp generation with an STNO. Then, it will

demonstrate by numerical simulation that the STNO frequency can phase lock to an

external signal during chirp generation. After this, it is demonstrated numerically that a dc

voltage is produced when the STNO is injection locked to the external signal, and this can

be used to determine the spectrum of an external signal. Finally, the theoretical limits of

this spectrum analysis method are presented with relation to the metrics defined in

section 2.1.

4.1 STNO dynamic tuning

The frequency of STNO oscillations, fstno(Ibias(t), t), can be tuned by Ibias(t).

Ideally, fstno(Ibias(t), t) could be tuned as fast as Ibias(t) can be ramped, approaching an

infinitely fast tuning rate. Because STNOs are small, they have a small intrinsic

capacitance and a small intrinsic inductance. This means that STNOs have a small time

constant, and thus can be rapidly tuned. However, while STNOs can be tuned very

quickly, there is a limit to how quickly they can be tuned. This will be investigated here.

The spectrum analysis methods presented here require the generation of a linear

chirp according to Equation (2.5). Currently, no published studies address the maximum

speed at which an STNO can generate a linear chirp. This section will present theory to

describe the circumstances whereby an SNTO is capable of generating a linear chirp.

To demonstrate that the STNO frequency can be tuned in a linear manner, the

STNO free layer magnetization m was simulated in the macrospin approximation with the
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LLGS as described in the methods section 3.1. In this simulation, the free layer

magnetization precession will be driven by a bias current, without an external microwave

current; thus I(t) = Ibias(t). When the amplitude of Ibias(t) is large enough, the

current-induced magnetization precession results in an oscillating dependence of the MTJ

electrical resistance. The frequency of resistance oscillations can be determined from

Equation (2.27).

Results of a simulation are shown in Figure 2.9. The bias current used for this

simulation is shown in Figure 2.9(a). For the first 100 ns of simulation, the bias current is

Ibias(t) = 3.0 mA. During this time, the STNO magnetization m begins to precess, until it

reaches a stable precession frequency of fstno(t)≈ 25 GHz. Then, the bias current

increases linearly from 3.0 to 4.2 mA over a scanning period of T = 500 ns. This current

increases at a rate of dIbias(t)/d f = 0.0024 mA/ns. After the scanning period has ended,

the bias current is held constant at Ibias = 4.2 mA. The oscillation frequency of the

simulated STNO free layer magnetization is shown by a solid line in Figure 2.9(b). The

instantaneous frequency was extracted from the simulation as described in section 3.3. For

this bias current ramp, m oscillates with a frequency that is a chirp that sweeps from 25 to

35 GHz, a scan rate of ρ ≈ 20 MHz/ns. It is evident that the STNO free layer

magnetization precession oscillation can tune the entire 10 GHz bandwidth in a linear

manner.

The response of an STNO to a faster current ramp is shown in Figure 4.2. In this

figure, the bias current increases linearly from 3.0 to 4.2 mA over a much shorter period,

with T = 4.0 ns, as shown in Figure 4.2(a). This current ramps at a rate of

dIbias(t)/dt = 0.3 mA/ns. The STNO frequency is shown by a solid black line in

Figure 4.2(b). For this bias current ramp, m oscillates with a frequency that increases in a

non-linear manner between time 100 ns and tp ∼ 101.75 ns, then generates a linear chirp

from tp to 104.5 ns, when it again generates a nonlinear chirp until the generated frequency
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Figure 4.2: STNO frequency response to a 4.0 ns current ramp. (a) The bias current current,
Ibias(t). The current is 3 mA for the first 100 ns, then it increases linearly to 4.2 mA over
4 ns. (b) Black line shows the frequency of STNO free layer magnetization oscillations,
fstno(t), in response to Ibias(t). The frequency is stable at ≈ 25 GHz until 100 ns, then it
increases to ≈ 35 GHz. The gray solid line is fitted to the portion of the chirp that is linear,
with a frequency that increases at a rate ρ = 2.4 GHz/ns. The linear chirp begins at about
tp ≈ 1.75 ns after the current ramp begins, and ends at t = 104.5 ns. The linear chirp has a
scanning bandwidth of ∆ fch ∼ 7 GHz.
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approaches 35 GHz. Here we define tp as the end of the initial transitory interval, or the

time when the free layer magnetization precession frequency begins to increase linearly

according to Equation (2.5). It is evident that for this simulation, the linear chirp begins at

about 27 GHz, and ends at about 34 GHz, a scan rate of ∼ 2.4 GHz/ns. The thin gray line

shows a linear fit of the linear chirp portion of the STNO frequency curve.

Comparison of Figure 2.9 and Figure 4.2 demonstrates that slower chirps are

linear, while faster chirps have both a nonlinear and a linear tuning region. It is important

to establish for what scan rates a linear chirp can be generated, and for what scan rates it

cannot. This is examined in Figure 4.3, which shows the response of STNO frequency to

current ramps that vary from 0.2 to 1.0 mA/ns. In this figure, the STNO frequency

response to a 1.0 mA/ns current ramp tunes linearly at a scanning rate of ≈ 10 GHz/ns.

Therefore, it can be surmised that the maximum linear scan rate for an STNO as simulated

is greater than 10 GHz/ns. It is evident that tp is approximately unchanged with different

ramp rates. This means the initial transitory interval is mostly independent of scan rate ρ .

For the STNO parameters simulated here, tp ≈ 1.75 ns, so the scanning period must be

T > 1.75 ns. This means that tp indirectly limits the scan rate for an STNO with finite

scanning bandwidths.

It has been analytically shown that tp depends on a physical characteristic of the

SNTO, specifically tp ≈ 1/Γp where Γp is the damping rate for small power deviations in

an STNO [5]. Thus, to improve the scan rate for an STNO for implementations in

spectrum analysis, Γp should be increased during fabrication.

4.2 Dynamic tuning and injection locking

In the previous section, it was shown that the STNO frequency can be tuned by the

bias current Ibias(t) such that it generates a linear chirp with a scan rate above 10 GHz/ns.

If we use only the region where fstno(t) is linear, the STNO free running frequency will be
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Figure 4.3: Boundary between linear and nonlinear regions for STNO generated chirps.
The curves show the simulated response of the STNO to a variety of bias current ramps,
with dIbias(t)/dt varied from 0.2 mA/ns to 1.0 mA/ns, as labeled on each line. The
different curves begin to increase in a linear manner at about the same time, which is
labeled with a dashed line at time tp.
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fstno(t) = fr(t), which was introduced in Equation (2.5). The STNO frequency curves in

Figure 2.9(b) and Figure 4.2(b) both represent the “free running” STNO frequency. Thus,

when the STNO does not injection lock to an external microwave signal, fstno(t) and fr(t)

coincide.

Injection locking was introduced in subsection 2.3.7. To demonstrate the injection

locking phenomena in a dynamically tuned SNTO, simulations were run with iext(t)

injected into the STNO along with with Ibias(t). Thus, the current injected into the STNO

for this simulation is I(t) = Ibias(t)+ iext(t). For this simulation, the parameters for

external signal in Equation (2.4) were Iext = 0.2 mA and fext = 30 GHz. Results of the

simulation are shown in Figure 4.4. As before, Ibias(t) = 3.0 mA for the first 100 ns, then

increases to 4.2 mA over a period of T = 500 ns. The bias current is shown by a solid

black line in Figure 4.4(a). The simulated STNO frequency in response to the bias current,

and the external microwave current iext(t), is shown by a solid black line in Figure 4.4(b).

For the first 100 ns the STNO generates at fstno(t)≈ 25 GHz until the bias ramp begins at

100 ns. Then, fstno(t) rises linearly with the scanning rate ρ ≈ 20 MHz/ns until it nears

fext, when the STNO injection locks to the external signal (see plateau in Figure 4.4(b)).

As the bias current increases, the STNO exits the injection locking regime and its

frequency resumes linear increase. For comparison, the free running STNO frequency is

plotted in Figure 4.4(b) by a dashed gray line.

The STNO frequency in the presence of iext(t) is different than the free running

STNO in Figure 2.9. Specifically, when the STNO frequency is injection locked to iext(t),

the STNO generates at exactly the external frequency fext. The STNO frequency in the

presence of an external signal during a current ramp is approximately:

fstno(t) =


fext when injection locked,

fr(t) otherwise.

(4.1)
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Figure 4.4: STNO injection locking demonstration with the bias current modulated by
a microwave signal with Iext = 0.2 mA, fext = 30 GHz. (a) In this simulations, the bias
current Ibias(t) is 3 mA until 100 ns, then it increases linearly to 4.2 mA over 500 ns. (b) The
thick black line shows frequency of STNO free layer magnetization oscillations, fstno(t),
in response to a ramped current and external microwave current. The frequency is stable at
≈ 25 GHz until 100 ns, then it increases to ≈ 35 GHz over a T = 500 ns period. Between
300 and 400 ns, the STNO frequency is injection locked to the external signal at fext. The
gray dashed line shows the free running frequency of the STNO.
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Figure 4.5: Simulated STNO phase locking bandwidth. The black line shows the frequency
of forced STNO magnetization oscillations, fstno(t), in response to the ramped bias current
that is modulated by external microwave current with a Iext = 0.2 mA and fext = 30 GHz.
This plot differs from Figure 4.4 in that fstno(t) is plotted as a function of STNO free
running frequency fr(t). Note that the fstno(t) increases linearly until the free running
frequency is f1, when it has a plateau where fstno(t) = fext until f2. After this, fstno(t)
resumes a linear increase. The phase locking bandwidth ∆ flock is given by f2− f1

It is instructive to re-plot the STNO frequency fstno(t) from Figure 4.4 as a function of

free running frequency fr(t). This is shown in Figure 4.5. In this plot,the STNO frequency

increases linearly until it reaches about f1 ≈ 29.5 GHz. Then the STNO frequency jumps

to 30 GHz, and remains at this frequency until f2 ≈ 31 GHz. After this, the STNO

frequency once again increases in a linear manner. In Figure 4.5, the phase locking

bandwidth is ∆ flock = f2− f1 ≈ 1.5 GHz.

To study the dependence of phase locking bandwidth on Iext, a series of

simulations were performed. In these simulations, the amplitude of Iext was varied while

the scan rate was maintained at ρ ≈ 20 MHz/ns. Results of these simulations are shown

in Figure 4.6. In this figure, black dots show the simulated relationship between Iext and

∆ flock, and the gray line shows a best fit line. It is evident that the phase locking
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bandwidth is ∆ flock = ζ (Iext− Ilock), where Ilock is an injection locking threshold current,

and for this simulation ζ ≈ 6 MHz/µA. The physical origin of the injection locking

threshold Ilock is clear: establishing phase-locking between an STNO and an external

signal requires a certain time τlock = α/Iext, where α is a constant that depends on the

initial phase conditions of the system [40, 84]. If the STNO frequency is scanned over the

locking interval faster than τlock, phase-locking becomes impossible.

It is important to note the in order for the STNO to injection lock to the external

signal, it is necessary that τlock < τpass, where τpass = ∆ flock/ρ is the time required for

the STNO to scan through ∆ flock. This implies that for injection locking there is a

requirement that I2
ext > (αρ)/ζ . This injection locking threshold current, which depends

on ρ , is given by

Ilock =

√
αρ
ζ

. (4.2)

Values for Ilock will be determined in the next sections.

4.3 Spectrum analysis with injection locking

When the external microwave current passes through the STNO, by Ohm’s law it

generates a voltage, vstno(t) = iext(t)rstno(t). The result of this product will have a sum

term ( fr(t)+ fext) and a difference term ( fr(t)− fext). By filtering as in Equation (2.12),

this voltage can be written as:

vstno(t) =


−1

2 Iext∆Rstno cos(ψlock) when injection locked (4.3)a

−1
2 Iext∆Rstno cos

(
πρt2 +ω∆t +ψlock

)
otherwise (4.3)b

Note that the injection locking phase shift ψlock is determined by two parameters, the

internal properties of STNO and the frequency mismatch between the free-running STNO

frequency and the signal frequency[85, 86, 1].

76



●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0 0.1 0.2 0.3 0.4
0

1

2

3

Figure 4.6: Phase locking bandwidth and microwave current amplitude. Black points show
results obtained by simulation with ρ ≈ 20 MHz/ns, and gray line shows a line of best fit.

The voltage in Equation (4.3)a is a dc voltage. The presence of a dc voltage thus

indicates phase locking and the presence of an external signal at a particular frequency. If

oscillating voltages are removed by a low pass filter and only the dc voltage is retained,

Equation (4.3) will be

vout(t) =

−
1
2 Iext∆Rstno cos(ψlock) when phase locked, (4.4)a

0 otherwise. (4.4)b

The output dc voltage Equation (4.4) is generated only when the STNO is

phase-locked to the external signal. If the free-running STNO frequency is sufficiently far

from the microwave signal frequency, the STNO and external signal oscillations are

uncorrelated, and the output voltage vanishes. The output dc voltage appears only at a

moment of time when fstno(t) = fext.
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Note, that, in contrast with the usual “passive” spin-torque diode effect [83], the

amplitude of the resistance oscillations ∆Rstno in the self-oscillating regime is determined

mostly by the bias STNO current Ibias(t) and is practically independent of a weak

microwave signal Iext. Therefore, the output dc voltage Equation (4.4) is proportional to

the amplitude Iext (rather than the power ∝ I2
ext) of the input signal. This property

distinguishes the active STNO detector from conventional quadratic diode detectors and

suggests that the STNO detector may have an increased responsivity to weak signals and

lower MDS levels.

The validity of Equation (4.4), and the basic operation of the STNO spectrum

analyzer will now be demonstrated by simulation. Figure 4.7(a) shows the Ibias(t), and

Figure 4.7(b) shows the STNO frequency fstno(t) in response to I(t).

Figure 4.7(a) shows the output voltage vout(t), which was acquired as follows. In

the first step, the raw output voltage of the STNO generating in the free-running regime

(no input microwave current) is subtracted from the output voltage generated by a STNO

in the presence of an external signal. Second, a low pass filter with cutoff frequency

≈15 GHz is applied. This filter removes the signals produced by the STNO in the 25 to

35 GHz frequency range without distorting low frequency signals. Finally, a low pass filter

with a MHz range cutoff frequency of ∆ fvbw is applied. As the characteristics of the

output peak produced by the STNO detector changes with the scanning rate ρ , the video

bandwidth (VBW) required for output also has to be adjusted. The empirically found

optimal VBW follows the rule ∆ fvbw = τcρ , where τc ≈ 2.6 ns for the chosen STNO

parameters. In an experimental setup, the output voltage vout(t) after filtering will have a

low frequency and, thus, can be processed further in the digital domain.

As shown in shown in Figure 4.7(c), the output voltage is non-zero only inside the

injection locking interval and has a characteristic sawtooth shape. The specific form of the

output dc peak is connected with the variation of the phase shift ψ between the STNO
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Figure 4.7: Basic operation of STNO injection locking spectrum analyzer. (a) The time
profile of the ramped bias current Ibias(t), with a 500 ns rise time. (b) The thick black line
shows the instantaneous STNO frequency in response to the bias current and an external
microwave signal iext(t) with fext = 30 GHz and Iext = 0.2 mA. Note the injection locking
to the external signal, and the otherwise linear increase of the STNO frequency. The
free-running STNO frequency in the injection locking interval is shown with a gray dashed
line. The thin gray horizontal line shows the external signal frequency. The thin gray
vertical line indicates the moment of exact resonance fstno = fext. (c) The output dc voltage
of the STNO. In the interval where the STNO is injection locked to the external signal, the
STNO produces a sawtooth shaped pulse. Note that the pulse crosses the 0 V line at the
point of exact resonance.
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oscillations and the external signal (see Equation (4.4)). The phase shift ψ linearly

increases with the STNO free-running frequency [1] and at exact resonance is equal to

ψ = ψ0 ≈ π/2, the intrinsic phase shift of the STNO [85]. This is due to the strong

nonlinearity of the STNO. The output voltage reaches maximum value Vpeak at the right

end of the synchronization interval, where ψ ≈ π . Note, that, due to the large intrinsic

phase shift of the STNO, when ψ0 ≈ π/2, the frequency of the external signal can be

precisely determined.When additional simulations were run and the phase of the external

signal was varied, we found for the system as simulated with ρ ≈ 20 MHz/ns, had the

frequency error of ∆ ferror = 5.5 kHz. With this error, the frequency accuracy is found to

be 99.99998%.

If the STNO is modulated by multiple microwave signals, for example a signal

with a spectrum as shown in Figure 4.8(a), the STNO will produce spikes of rectified

voltage at corresponding frequencies as shown in Figure 4.8(b). In Figure 4.8(a), the

external signal has frequencies at integral values between 25 and 35 GHz. Figure 4.8(b)

shows output STNO voltage vout(t) mapped to the frequency domain fr(t). One can see

that the STNO faithfully reproduces the complex input spectrum – the peak voltages Vpeak

are proportional to the amplitudes of the corresponding frequency components of the input

signal, while the zero crossing of each sawtooth (indicated by red circles in Figure 4.8(b))

precisely matches each input frequency. There is a slight change in the relative amplitudes

of Vpeak related to the change of the amplitude of TMR oscillations ∆Rstno with bias

current. This change, however, is rather weak and can be easily compensated during post

signal processing.

It is demonstrated further in Figure 4.9 that the peak voltages given by Vpeak are

proportional to the amplitude of the input signal Iext. In this plot, simulation results are

shown with black dots, and the line of best fit is shown by a solid line. The slope of this
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Figure 4.8: Example of injection locking spectrum analysis of an input signal with multiple
frequencies. (a) Spectrum of input signal consisting of several monochromatic peaks
with frequencies between 25 and 35 GHz. (b) Output dc voltage of the STNO spectrum
analyzer. Note that the height of each sawtooth pulse is proportional to the amplitude of
the corresponding input peak, while the zero crossings, labeled with red circles, coincide
with high precision to the input frequencies.
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Figure 4.9: Dependence of peak voltage Vpeak on external signal amplitude Iext. Circles
show simulation results, and solid gray line is a best fit. Ilock for this scan rate is ≈ 1 µA.
ρ = 20 MHz/ns.

line is the responsivity G at this scan rate, and the x-intercept at Ilock represents the

minimum external signal amplitude Iext required to induce phase locking.

Our simulations have shown that at small values of Iext, noticeable distortions of

the output sawtooth-like STNO peak appear. In this regime the generated dc pulse

becomes dependent on the initial phase of STNO oscillations and the peak voltage Vpeak

reduces. As stated earlier, reliable detection of microwave signals is impossible if

Iext < Ilock, where Ilock = Ilock(ρ) is an injection locking threshold, which depends on the

scanning rate ρ . In the region Iext > Ilock the peak voltage Vpeak is accurately described by

the simple relation

Vpeak = G(Iext− Ilock) , (4.5)

where G = dVpeak/dIext is the responsivity of the STNO detector. The physical origin of

the injection locking threshold Ilock is clear: establishing phase-locking between an STNO

and an external signal requires a certain time τlock, which is inversely proportional to the

signal amplitude Iext [40, 84] and, if the STNO frequency is scanned over the locking
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Figure 4.10: Dependence of main characteristics of injection locking STNO spectrum
analyzer on scan rate ρ . (a) Responsivity G (b) The threshold phase-locking current Ilock.
(c) Minimum detectable signal.
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interval faster than τlock, phase-locking becomes impossible. It is interesting to note that

the influence of frequency ramp on injection locking of an oscillator, described by

Equation (4.5), is analogous to the influence of thermal noise, where the apparent locking

threshold has been observed experimentally [87].

Figure 4.10(a) shows the dependence of the responsivity G and the threshold

current Ilock on the scanning rate ρ for a signal frequency of fext = 30 GHz. The

sensitivity remains practically constant, G≈ 750 mV/mA, for a wide range of scanning

rates. In contrast, the threshold current Ilock increases approximately linearly with ρ , as

shown in Figure 4.10(b), and has a value Ilock ≈ 10 µA at ρ = 100 MHz/ns. The increase

of Ilock is the main factor limiting the practical scanning rate of a STNO spectrum

analyzer using the injection locking algorithm.

The MDS, Pmds, of the STNO spectrum analyzer can be estimated as the input

signal power, for which the output voltage Equation (4.5) becomes equal to the thermal

Johnson-Nyquist voltage in the bandwidth of low-pass filter ∆ fvbw. The dependence of

Pmds on the scanning rate ρ for fext = 30 GHz is shown in Figure 4.10(c) by solid circles.

In the range of simulated scanning rates, the MDS is dominated by the threshold current

Ilock and can be estimated simply as Pmds ≈ R0I2
lock/2. The influence of Johnson-Nyquist

(JN) noise (see dashed line in Figure 4.10(c)), however, becomes more important with the

reduction of the scanning rate and at ρ ≈ 1 MHz/ns the two contributions become

approximately equal. At these rates the MDS is about 1 pW and, thus, the STNO spectrum

analyzer can function to detect low power signals and be used as an ultra-sensitive

microwave signal detector. In this theoretical work, we have assumed perfect impedance

matching. However, in an implemented experiment, good impedance matching over a

10 GHz bandwidth is difficult, and may cause an increased MDS at unmatched

frequencies.
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4.4 Performance evaluation

This section will summarize the findings of this chapter by directly discussing the

performance metrics introduced in section 2.1. As most of the metrics are interdependent,

these metrics will be explained together. In the absence of an analytical model, metrics for

one set of numerical results will be stated.

Firstly, the scanning bandwidth ∆ fch of this spectrum analyzer is essentially the

same as the tunable bandwidth of the STNO. For the STNO as simulated here, this can be

as wide as 25 GHz for systems that are tuned by a changing bias current. In practice,

fabrication defects and inhomogeneities will lead to smaller scanning bandwidths, with

the maximum experimentally observed tunable bandwidth approximately 10 GHz[2]. In

our simulations, we assumed a scanning bandwidth of ∆ fch = 10 GHz, although much

wider bandwidths are likely possible.

For the chirp to be linear, the period of the chirp T must be greater than the

nonlinear transitory interval, as T > tp. For scan rates where T � tp, the nonlinear

transitory time span can be neglected and the practical scan rate will by ρ = ∆ fch/T . In

our simulations, tp ≈ 1.5 ns, so one can assume that the chirp will be linear for the entire

scanning bandwidth when T > 20 ns, or ρ < 0.5 GHz/ns. In comparison with many

technologies, this scan rate is quite fast. However, we showed that STNOs can generate

linear chirps even faster. When T is on the order of tp, the scanning bandwidth will

decrease, and the timespan during scanning will also vary. For the STNO as simulated

here, the maximum scan rate is effectively ρ ≈ 2 GHz/ns.

With this spectrum analysis system, the output voltage increases linearly with

external current amplitude. Thus, the responsivity of system was constant, and for the

system simulated here, the responsivity was G≈ 750 mV/mA. The responsivity was

independent of scan rate.
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The resolution bandwidth RBW and the minimum detectable signal depend on the

scan rate. For this spectrum analysis system to detect an external signal, it must injection

lock to the external signal. As the STNO is being dynamically tuned, it requires a finite

time τlock to injection lock to the external signal, which is inversely proportional to the

signal amplitude, as τlock ∝ 1/Iext. This requires the current to be above the phase locking

threshold Ilock, and thus to have a certain minimum power Pmds ≈ R0I2
lock/2. This defines

the MDS. For the system simulated here, the minimum current required to phase lock was

Ilock = 1 µA, and thus a MDS of Pmds = 2 nW. For the system as simulated, scan rates

below ρ = 1 MHz/ns, the minimum signal required is determined by the Johnson Nyquist

noise. The MDS for ρ = 1 MHz/ns, was found by simulation to be Pmds ≈ 1 pW.

The resolution bandwidth of this system is approximately equal to the phase

locking bandwidth, RBW= ∆ flock. The STNO must injection lock to the external signal

for a non-zero RBW, which introduced a dependence on scan rate, thus RBW→ RBW(ρ).

For the system simulated with ρ ≈ 20 MHz/ns, RBW depended linearly on the external

current amplitude at approximately 6 MHz/µA, as shown in Figure 4.6. The results in a

RBW on the order of 100 MHz near the detection threshold. Note that for a signal where

Iext > 1.66 mA, the RBW may encompass the entire scanning bandwidth.

The maximum input power can depend on two characteristics. Firstly, both MTJs

and spin valves will breakdown when traversed by a powerful current. Spin valves

practically will breakdown at a much higher power due to their all metal composition.

However, for external signals with larger powers, the RBW may increase to encompass

the entire scanning bandwidth. While still functional for detecting a single external signal,

this may limit the utility of the system. For the system as simulated, the entire scanning

bandwidth was consumed when the external current was Iext > 1.66 mA, which is a power

of Pmax = 3.4 mW. Thus with Pmds = 2 nW and Pmax = 3.4 mW, the dynamic range is

about 75 dB.
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Lastly, the frequency accuracy is determined by how close the zero crossing in the

saw-tooth shaped dc voltages. For the system as simulated, the frequency error was

∆ ferror = 5.5 kHz and thus the frequency accuracy was 99.99998%.

4.5 Conclusion

A novel type of ultrafast spectrum analyzer is proposed and investigated

theoretically through numerical simulation. The analyzer is based on injection locking of

an STNO driven by a ramped bias current. The spectrum analyzer faithfully reproduced

the spectra of complex incident signals and can have an operational bandwidth of 10 GHz

and frequency scanning rate exceeding 100 MHz/ns. The minimum detectable power of

the analyzer decreases with the decrease of the scanning rate, and is about 1 pW at a

scanning rate of 1 MHz/ns.
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CHAPTER FIVE

SPECTRUM ANALYSIS WITH A STNO MIXER

This chapter proposes to use a STNO as a simple mixer and chirped signal

generator. It will be shown, both theoretically and experimentally, that fast broadband

spectrum analysis can be performed with a rapidly tuned STNO based on a magnetic

tunnel junction (MTJ). This system will have a frequency resolution at the theoretical

limit defined by the bandwidth theorem, while remaining sensitive to signals with power

levels below the Johnson-Nyquist thermal noise floor.

The configuration of a STNO mixer spectrum analyzer is introduced by a block

diagram in Figure 5.1, which is similar to that which was introduced in subsection 2.2.1

and subsection 2.2.2. In this diagram, a ramped bias dc current Ibias(t) drives the STNO

(outlined by a dashed line) which generates a signal rstno(Ibias, t) with frequency fr(t) that

increases linearly with time. The spectrum of the external signal iext(t) is then analyzed

with a matched filter, as described in subsection 2.2.2. Overall, the method of operation of

the proposed spectrum analyzer is similar to a traditional swept-tuned spectrum analyzer,

with the exception that frequency tuning and mixing is performed entirely by a single

STNO.

The method presented in this chapter differs from the previous chapter, which

performed spectrum analysis using the injection locking properties of an STNO[9]. The

previous chapter showed that a minimum time and energy was required for an STNO to

injection lock to an external signal, thus precluding the use at faster scan rates for low

power signals. In contrast, for an STNO treated as a tunable oscillating resistor, as in the

present chapter, no minimum threshold energy is required for the signal detection, and,
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Ibias(t)

Spin Torque Nano Oscillator

rstno(t)

iext(t)

×
vstno(t)

Low Pass
Filter

vlpf(t)

Matched
Filter

vout(t)

Figure 5.1: Block diagram of a STNO mixing spectrum analyzer. The MTJ based
STNO tunneling magneto-resistance rstno(t), which is driven by ramped current Ibias(t), is
multiplied by external microwave current iext(T ) to produce STNO voltage vstno(t). After
passing through a low pass filter and a matched filter, a spectrum vout(t) is produced.
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thus, only the noise floor determines the minimum detectable signal regardless of the scan

rate.

This relatively simple scheme has several advantages, including: i) wide scanning

bandwidth, ii) high scanning speed, iii) high sensitivity to low power signals, iv)

invariance to phase shifts, and v) resolution bandwidth at the theoretical limit. Each of

these properties will be demonstrated by numerical simulation.

This chapter will begin by presenting theory and numerical simulation of a STNO

mixer spectrum analysis. After this, experimental results will be presented. The results in

this chapter are a combination of two publications. The theoretical results were from [8],

and the experimental results are from [18]. The experiments were performed by Artem

Litvinenko, and the research group of Ursula Ebels from the French Alternative Energies

and Atomic Energy Commission (CEA) and SPINTEC in Grenoble, France. They used a

STNO that was fabricated by Alex Jenkins and Ricardo Ferreira from International Iberian

Nanotechnology Laboratory (INL). Additionally, these results were presented at [13].

5.1 Numerical simulation and theoretical analysis

In this section, we will report on the simulation of an STNO generating a chirp and

acting as a signal mixer. The simulation, as in chapters 3 and 4, will model the STNO free

layer with the LLGS in the macrospin approximation. All parameters for the simulation

were chosen to have typical values, as were used in previous publications[9, 40]. They are

detailed in Table 3.1. All simulations in this section were performed without noise, and

with an external signal of power ≈ 0.05 pW (Iext = 10 nA).

The first simulation results are shown in Figure 5.2. In this simulation, the bias

current was held constant with Ibias(t) = 3.0 mA for the first 40 ns of simulation, allowing

rstno(Ibias, t) to oscillate steadily at a frequency of fstno(Ibias, t) = 25.4 GHz. The

frequency of rstno(Ibias, t), as acquired by simulation, are shown by a gray dashed line in
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Figure 5.2(a). After 40 ns, Ibias(t) was increased with a slope of ≈ 1.2 mA/ns. This

current increase caused the STNO oscillation frequency to increase at the constant scan

rate of ρ = 1 GHz/ns. This is equivalent to Equation (2.5). The thick black line in

Figure 5.2(a) shows the T = 10 ns interval where spectrum analysis was performed, and

fstno(t) scans between 26 and 36 GHz.

The goal of the spectrum analysis is, of course, to determine the frequency of all

the signals present in this 10 GHz frequency span. Note that the frequency scan in the

interval of 10 GHz was performed in 10 ns, thus demonstrating a high scanning speed and

a wide frequency bandwidth.

The results of these two simulations are shown in Figure 5.2(b) and Figure 5.2(c),

with a thin gray line representing vlpf(t) with fc = 15 GHz. It is important to note, that

experimentally the phase difference ψ cannot be controlled, so this numerical simulation

was performed with two representative phases, ψ = 0 and ψ = 0.15π . The line in both

Figure 5.2(b) and Figure 5.2(c) shows that the frequency is at a minimum near t0 = 46 ns.

This low frequency voltage coincides in time with the moment when the frequencies of

rstno(Ibias, t) and iext(t) are the same. This is emphasized by the thick red and blue lines,

which show vlpf(t) with low pass filter cutoff frequency fc = 2 GHz. Both of these lines

show increased amplitude when the frequencies of the two signals are the same, and,

indeed, the red line in Figure 5.2(b) can be used to precisely determine the time when the

two frequencies are equal. However, this is not possible when ψ = 0.15π , as the dual

peaks seen in the blue line of Figure 5.2(c) could be produced instead by two external

signals.

There are several spectrum analysis algorithms that could be used to eliminate the

impact of ψ , as was discussed in section 2.2. Here, we will use a matched filter to limit

the influence of ψ and vastly improve the SNR. Figure 5.2(d) shows vout(t) for signals

with phases ψ = 0 and ψ = 0.15π . It is evident that both curves show a sharp peak at
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Figure 5.2: Numerical demonstration of STNO mixer spectrum analysis. (a) The frequency
of STNO, fstno(t), in response to Ibias(t). The gray dashed line shows the STNO frequency,
which is constant at 25.4 GHz until 40 ns, then increases in response to a ramped DC
current. The solid black line shows the STNO scanning from 26 to 36 GHz. (b) STNO
output with ψ = 0. Grey line shows vlpf with fc = 15 GHz, and thick red line shows vlpf
with fc = 2 GHz. (c) STNO output with ψ = 0.15π . (d) Matched output filter, vout, for
two phases, with red for ψ = 0 and blue for ψ = 0.15π . Simulated with fc = 4.5 GHz and
fm = 32 GHz.
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Figure 5.3: Phase invariance, external signal amplitude, and RBW for STNO mixer
spectrum analyzer. Five STNO scans with fext = 30 GHz, ρ = 1 GHz/ns and varied ψ . The
peak, independent of ψ , occurs at 30 GHz, with RBW = 225 MHz. The peak amplitude
has an uncertainty of about 8%. (inset) Comparison of RBW and ρ .

fstno(t0 ≈ 46 ns) = 30 GHz, and that both peaks are relatively independent of the phase

difference ψ . Both curves also show a relatively flat background of about 10% the signal

maximum, and a minor phase dependance in the neighborhood of the peak. The origin of

these distortions is explained by Equation (2.18). The curves in Figure 5.2(d) represent the

primary result of this chapter; they show an STNO is theoretically capable of detecting a

0.05 pW signal while scanning a 10 GHz interval at a rate of 1 GHz/ns, and that the

detection is independent of any variation of the phase difference ψ .

To further demonstrate that vout(t) is independent of ψ , the simulation above was

repeated with 50 different phases, ranging from ψ = 0 to π with a 0.02π step. Five typical

peaks are shown in Figure 5.3. The mean peak frequency for all 50 simulations was found

to be 30.001 GHz. This represents a frequency accuracy of 99.9967%. This shows that
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regardless of the phase difference between the external signal and the STNO, the

frequency can be determined with a high precision.

The RBW of this system, as simulated, is approximately equal to the 3 dB width of

a peak, and is shown in Figure 5.3 is RBW≈ 225 MHz. The resolution bandwidth

theoretical limit was introduced in subsection 2.2.3 as RBW0 = ρ/ fc. The bandwidth of

the low pass filter used to simulate Figure 5.2(d) and Figure 5.3 was fc = 4.5 GHz, and the

scan rate was ρ = 1 GHz/ns. Thus for this system, at this scan rate, RBW0 = 222 MHz,

and RBW0 ≈ RBW. A comparison of the simulated and theoretical RBW for a variety of

scan rates is presented in the inset of Figure 5.3, with blue squares denoting simulated

RBW and the dashed black line indicating RBW0. It is evident, that the RBW for different

scan rates remains near the theoretical limit for scan rates as high as 5 GHz/ns.

The responsivity of this system depends strongly on the low pass filter and on the

matched filter. Firstly, Equation (2.11) shows that the amplitude of the detection peaks

depends directly on Iext, the amplitude of the external signal. Additionally, there is a

minor variation in peak amplitude that is dependent on ψ . For ρ = 1 GHz/ns, the

uncertainty is about 8%. This uncertainty increases with scan rate, and decreases vastly

for slow scan rates. Thus, by using an STNO as a mixer, there is a trade off between scan

rate and responsivity. To detect external signals quickly, there is slight degradation in

responsivity. This uncertainty can be reduced by further signal processing.

For the MDS, it should be noted that matched filters are able to extract signals

from below the Johnson-Nyquist thermal noise flow. For this system as simulated, the

Johnson-Nyquist thermal noise was VJN ≈ 200µV. The gain of the system configured

simulated for Figure 5.2(d) was found via simulation to be ∼56 dB. In contrast, using the

same filters and a white noise input, the processing gain was ∼34 dB. It can be assumed

that the processing gain was, conservatively, about 20 dB, meaning that signals can be
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extracted from 20 dB below the JN thermal noise floor. Thus, the MDS for this system is

about 20µV, or about Pmds = 40 pW.

The next figure demonstrates the analysis of a signal having a more complicated

spectrum. Figure 5.4 shows three simulations where an STNO-based spectrum analyzer

operated on an external signal that had frequencies at every integer frequency from

28 GHz to 35 GHz, each with a distinct random phase ψ between 0 and 2π . The external

currents used for all three simulations were identical. Figure 5.4(a) shows the response

with ρ = 1 GHz/ns and fc = 4.5 GHz. With these characteristics, all peaks are correctly

determined despite a rising level of a background noise. Figure 5.4(b) was simulated with

the same scan rate ρ = 1 GHz/ns and a higher cutoff frequency of fc = 6.4 GHz. It is

evident that the higher fc value decreases RBW and the background noise level. This

suggests, that as the digitization rates improve, the higher scan rates with lower RBW will

be possible. The spectral quality is further improved in Figure 5.4(c), which uses a slower

scan rate of ρ = 100 MHz/ns, and fc = 4.5 GHz. It is evident, that at slower scan rates, as

expected, the RBW improves, and the background noise is substantially reduced. The

variation in amplitude with respect to frequency in these detected signals is expected, and

is caused by the change in the angle of precession in m, and could be easily normalized

using standard methods of digital signal processing.

The above simulations were performed assuming that the STNO phase is constant

in time. In a real device, STNO phase would fluctuate due to inherent STNO phase noise,

which is one of the primary obstacles for STNO use in conventional applications. The

proposed spectrum analyzer, however, should be resistant to STNO phase fluctuations due

to the short data acquisition time τ ∼ 10 ns. The STNO phase noise should have only a

minor effect on the performance of the spectrum analyzer if the STNO linewidth is

smaller than 1/τ ∼ 100 MHz, which has been experimentally achieved by several research

groups[88, 89].
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Figure 5.4: Example of STNO mixer spectrum analysis of an input signal with multiple
frequencies. Spectra produced by identical 10 nA signal at every integer from 27 to 35 GHz
and a random phase. Responses from the following scan parameters: (a) ρ = 1 GHz/ns and
fc = 4.5 GHz (b) ρ = 1 GHz/ns and fc = 6.4 GHz (c) ρ = 0.1 GHz/ns and fc = 4.5 GHz.
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5.2 Experimental STNO spectrum analysis

It is demonstrated experimentally that an STNO sweep-tuned by a bias current can

be used for ultra-fast spectrum analysis of frequency-manipulated microwave signals with

complicated multi-tone spectra. The critical reduction in the time of spectrum analysis

comes from the small intrinsic time constants of a nano-sized STNO.The demonstration is

performed on a vortex-state STNO generating in a frequency range around 300 MHz, and

using low-pass and matched filters for signal-processing. It is shown that a STNO-based

spectrum analyzer can perform analysis of multi-tone signals, and signals with rapidly

changing frequency components on a µs time scale. The proposed concept of spectrum

analysis can be extended to STNOs generating in the 1-70 GHz frequency range important

for radar and wireless communication applications.

5.2.1 Experimental system

The scheme of the experimental STNO-based device used to perform spectrum

analysis in our experiments is shown in Figure 5.5. It consists of two blocks: the block (a)

containing an STNO and used for generation of a sweep-tuned signal vref(t), and the block

(b) used for signal processing and eventual spectrum analysis on an external signal vext(t).

The sweep-tuned reference signal vstno(t) is produced as follows. First, a constant

dc voltage is applied to the STNO to generate an auto-oscillating signal at a constant

frequency 300 MHz. Then, an additional voltage vsweep having a “saw-tooth” shape with a

period T is injected into the STNO via a coupler. The amplitude of the saw-tooth voltage

is adjusted such that the frequency sweeps between 290 and 315 MHz, a span of

∆ fch = 25 MHz. After the application of a band pass filter and amplification, the signal,

which is denoted vref(t), has the form of a linear frequency chirp with a frequency fstno(t).

The scan rate ρ = ∆ fch/T is the parameter that is varied to characterize this system.
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Figure 5.5: Schematic of the experimental STNO-based spectrum analyzer. Block (a)
shows the generation of the swept tuned signal vref(t). Block (b) shows the signal
processing scheme, which results in the spectrum analysis of vext(t). The insets show
the voltage signals vs. time at different points of the device: (i) the sweep signal vsweep,
(ii) the raw output of the STNO vstno(t), (iii) the reference signal vref(t) produced by the
sweep-tuned STNO, (iv) the external signal vext(t), (v) the mixer output signal vmix(t), (vi)
the discretized signal obtained after the matched filter, (vii) the output pulsed signal vout(t)
containing the information about the spectrum of the external signal vext(t). The pulse in
(vii) has a duration ∆t.
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The linear frequency chirp vref(t) is then passed on to block (II) where it is mixed

with an external signal vext(t), which has a frequency fext that will be identified. The two

signals are mixed using a commercially available mixer (AD831). The output of the mixer

is denoted vmix(t) = vstno(t)vext(t). This mixer has an output cutoff frequency of

fc = 200 MHz, and hence functions as a low-pass filter. It should be noted that in this

experiment the sweeping frequency interval ∆ fch = 25 MHz is much smaller than the

mixer bandwidth of fc = 200 MHz, so that the best possible resolution bandwidth of this

system is RBW0 = ρ/∆ fch.

The mixer output signal vmix(t) is then digitized with an 8-bit AD9280 ADC and

passed through a matched filter to compress vmix(t) into a narrow peak whose temporal

position corresponds to the frequency of the input signal fext. The matched filter output is

then converted back to the analog domain with an 8-bit resolution AD9708 DAC and is

visualized on a single shot oscilloscope. The matched filter was implemented with a Field

Programmable Gate Array (FPGA) (Xilinx XC6SLX9)[18].

To demonstrate experimentally STNO-based spectrum analysis, a relatively low

frequency (∼300 MHz) vortex-state STNO was chosen as this type has a rather large

output power. Results are presented for two different devices, although other devices

demonstrated similar results. Figure 5.6 shows the frequency-voltage characteristics of a

device under an out-of-plane field of ∼ 3 kOe with a small in-plane tilt angle between 1◦

and 5◦. This device that had a diameter of 370 nm, a parallel resistance of 40 Ω, and

tunneling magnetoresistance ratio of 150%, and resistance area product of 4.5 Ω/µm2. As

is shown in this figure, when the applied voltages is varied between 0.2 V and 0.5 V, the

STNO generation frequency varies in a non-linear fashion between 280 and 315 MHz. It

has a linewidth that was measured to be ∼0.25 MHz. This STNO was taken from a batch

of STNOs that were sputter deposited then nanofabricated into nanopillars using a

Singulus Rotaris machine and ion beam and optical etching techniques with the following
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Figure 5.6: Frequency characteristic of the vortex STNO based on a magnetic tunnel
junction. Free running frequency-voltage characteristic, where darker colors indicate
higher power.

composition: substrate / IrMn(6) / CoFe30(2.6) / Ru(0.85) / CoFe40B20(1.8) / MgO /

CoFe40B20(2.0) / Ta(0.2) / NiFe(7) / Ta (10) (thicknesses in nm).

In Figure 5.6, it is clear that the frequency generated by the STNO is a non-linear

function of voltage. While this nonlinearity does not create serious difficulties in the

determination of frequency of monochromatic external signals, it substantially

complicates the frequency analysis of the signals with complicated multi-tone spectra.

This difficulty can be eliminated by using a nonlinear (concave) profile of a

“quasi-saw-tooth” voltage applied to the STNO. This makes it possible to obtain a purely

linear dependence of the chirped frequency on time in the signal vref(t).

5.2.2 Experimental results

First, results are presented for the analysis of a monochromatic sinusoidal signal

vext(t). This demonstrates that, by using an STNO-based spectrum analyzer, one can

achieve frequency sweep rates of the order of MHz/ns with an RBW close to the
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Figure 5.7: Experimental demonstration of single tone spectrum analysis. Top panel shows
the vsweep with a period of T = 2.5 µs. This generated a frequency sweep from 285 to
305 MHz, a sweep rate of ∼8 kHz/ns. External signal frequency, shown on the right, was
300 MHz. Middle panel shows vmix(t) after filtering and amplification. Bottom panel
shows the output spectrum as a function of time.

theoretical limit for fast spectrum analysis. Then, it is demonstrated that an STNO-based

spectrum analyzer is capable of performing the analysis of signals having complex

frequency spectrum, such as two-tone signals, and signals with time-varying frequency

components.

The experimental results demonstrating the analysis of a monochromatic

(single-tone) sinusoidal signal used a commercial signal generator with a power of

1.0 mW and a frequency fext = 300 MHz. Results are shown in Figure 5.7. The top panel
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of Figure 5.7 shows a sweeping “saw-tooth” voltage vsweep with a period of 2.5 µs. The

top panel also shows the instantaneous frequency of vstno, varying from 285 to 305 MHz.

Thus the scan rate is ∼8 kHz/ns. The middle panel in Figure 5.7 shows vmix(t) after

filtering and amplification. Note that it is a low frequency chirp waveform centered about

time t∆ ∼ 1.5µs. The bottom panel in Figure 5.7 shows the output vout(t) produces a peak

at t∆ ∼ 1.5µs. This maps to a frequency of 300 MHz, and thus the STNO spectrum

analyzer has correctly identified the frequency of the input signal.

The RBW for scan rates of 2 kHz/ns, 16 kHz/ns, and 30 kHz/ns, aa obtained

experimentally, as shown on the top Figure 5.8. The RBW for more scan rates, that vary

from about 0.5 kHz/ns to 30 kHz/ns, are shown in the bottom of Figure 5.8. As the scan

rate increase, the experimentally observed values also increase. The gray curve shows the

theoretical best resolution bandwidth, RBW0, as obtained in Equation (2.22). It is evident

that the experimentally observed RBW is close to the theory RBW0.

The results presented thus far have demonstrated that the basic properties of

STNO-based spectrum analyzers when working with simple monochromatic external

signals. Below, it will be demonstrated that STNO-based spectrum analyzers can work

successfully with rather complex external signals having many different frequency

components that can be varied in time. The first example is given in Figure 5.9(a) where

spectrum analysis of an external signal that is a superposition of two single-tone signals.

The signals are supplied from two commercial signal generators with frequencies

fin1 = 300 MHz, and fin2 = 305 MHz. The top panel in Figure 5.9(a) shows the linear

voltage sweep vsweep with a black line, and dashed lines that indicate the positions where

the sweeping STNO frequency equals the frequency components contained in the external

signal. The bottom panel of Figure 5.9(a) shows the resultant voltage vout(t) with two

distinct peaks, which occur at times corresponding to the frequency components fin1 , and

fin2 from the input signal.
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experimental points in black with error bars, and gray curve shows theoretical best RBW0.
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Figure 5.9: Experimental real time spectrum analysis of complex external input signals. (a)
Analysis of a signal with two continuous input tones, fin1 = 300 MHz and fin1 = 306 MHz.
Top panel shows the input frequencies and vsweep, while bottom panel shows spectrum
analysis results. (b) Analysis of a signal with two input tones that resemble a frequency
hopping algorithm, fin1 = 300 MHz and fin1 = 306 MHz. Top panel shows the input
frequencies changing with time and vsweep, while bottom panel shows spectrum analysis
results. (c) Top panel shows an input signal has a frequency that varies continuously with
time while the STNO scans repeatedly with a rate of ρ = 10kHz/ns. Middle panel shows
detection peaks, and bottom panel shows detected frequency changing with time. (d) Shows
the detection of different modulation patterns. Top panel shows STNO output response to a
signal modulating between two frequencies, middle and lower panel shows output response
of chirp modulated signals.
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Figure 5.9(b) shows the result of the frequency analysis of an external signal

whose frequency hops between the values of fin1 = 300 MHz and fin1 = 306 MHz. This

experiment demonstrates that the STNO-based spectrum analyzer can easily detect the

changes of external frequency in time if these changes are happening on the time scale

that is larger than the period T of the STNO frequency sweeping. This property will be

important to efficiently analyze signals that employ frequency hopping protocols.

The ultimate demonstration of the potential of the STNO-based spectrum analyzer

is given in Figure 5.9(c) and (d). This shows the analysis of complex external signals

where the frequency that is continuously or discontinuously changing in time. Shown in

the top panel by a blue line in Figure 5.9(c), the frequency of the external signal varies in

time with in a sinusoidal fashion between 290 MHz and 310 MHz. The black line in the

top panel Figure 5.9(c) shows vsweep repeatedly driving the STNO to generate a chirped

signal, with a period of 2 µs. The middle panel of Figure 5.9(c) shows the detected peak

during each 2 µs period. This is replotted at a function of time in the lower panel of

Figure 5.9(c). It is evident that, experimentally, this spectrum analyzer is capable of

tracking continuous frequency changes with time.

Finally, the three panels of Figure 5.9(d) show a similar result of the analysis of an

input signal where the frequency changes in time with discontinuities. The top panel

shows the output response to a modulated signal, while the lower two panels shows the

output response to inputs that were discontinuous linear chirps saw-tooth-like temporal

variation that had either an increasing (top panel) or decreasing (bottom panel) frequency.

It is clear, that for a spectrum analysis system based on an STNO, it is possible to easily

distinguish between signals with increasing and decreasing frequencies. By contrast, the

traditional power spectra of the same signals (shown in small frames to the right of the

main panels) are very similar, and demonstrate only the same interval of frequency

variation in both analyzed signals.
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Thus, in this section it has been demonstrated experimentally that STNOs are

capable of performing spectrum analysis. Indeed, it has shown that the high scanning rates

of STNOs allow for high-speed spectrum analysis with a nano-scale device size.

5.3 Performance evaluation

This section will summarize the findings of this chapter by directly discussing the

metrics that were introduced in section 2.1. As most of the metrics are interdependent,

these metrics will be explained together. Metrics for numerical or experimental results

will also be stated.

As was described at the end of chapter 4, the scanning bandwidth ∆ fch of this

spectrum analyzer is essentially the same as the tunable bandwidth of the STNO. For the

STNO as simulated here, this can be as wide as 25 GHz for systems that are tuned by a

changing bias current. In practice, fabrication defects and inhomogeneities will lead to

smaller scanning bandwidths, with the maximum experimentally observed tunable

bandwidth approximately 10 GHz[2]. In our simulations, we assumed a scanning

bandwidth of ∆ fch = 10 GHz, although much wider bandwidths are likely possible. In the

experimental demonstration that used a low frequency vortex oscillator (near 300 MHz),

scanning bandwidth was ∆ fch ∼ 20 MHz.

As was described at the end of chapter 4, for the chirp to be linear, the period of

the chirp T must be greater than the nonlinear transitory interval, as T > tp. There it was

shown that the maximum scan rate is effectively ρ > 2 GHz/ns.

With this spectrum analysis system, the output voltage varied linearly with

external current amplitude. Thus, the responsivity was independent of scan rate. The value

of responsivity depends on the composition of the matched filter, which can be chosen

arbitrarily during signal processing.
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The RBW for this system was found to be near the theoretical limit prescribed by

Equation (2.22). Specifically, we found both the theoretical and experimental system to be

RBW≈ ρ/∆ fch. This was shown in theoretically in Figure 5.3 and experimentally in

Figure 5.8.

The maximum input power relies on the STNO to not injection lock to the external

signal. Thus, the power of the external signal should remain below Ilock as was presented

in Chapter 4. This means that practically, this system will have a larger maximum input

for faster scan rates ρ . For a system scanning at a rate of ρ = 1.0 GHz/ns, this value was

found on Figure 4.10(c) to be Pmax ∼ 0.01 mW.

The minimum detectable signal was found earlier in this chapter to be ∼ 20 dB

below the Johnson-Nyquist noise floor. This corresponds with an MDS of Pmds ∼ 40 pW.

With this MDS and maximum power, the theoretical dynamic range of an STNO spectrum

analysis system based on an MTJ is ∼ 100 dB.

Lastly, the frequency accuracy is determined by how close the detected frequency

was to that of the actual frequency. For the system as simulated with ρ ≈ 1 GHz/ns, the

frequency accuracy was 99.9967%.

5.4 Conclusion

In summary, it has been demonstrated both theoretically and experimentally that

an STNO can be used to perform fast spectrum analysis. It was demonstrated that the

STNO can identify the frequency of multiple signals in superposition in the same signal,

as well as analyze a frequency hopping protocol in real time. It was also shown that the

resolution of this device, for fast scanning rates, operates near the theoretical limit.
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CHAPTER SIX

THZ SPECTRUM ANALYSIS WITH AN ANTIFERROMATGNETIC TUNNEL
JUNCTION

In this chapter, a method to perform spectrum analysis on low power signals

between 0.1 and 10 THz is proposed. It proposes to use a nanoscale antiferromagnetic

tunnel junction (ATJ), which was introduced in section 2.4, that produces an oscillating

tunneling anisotropic magnetoresistance (TAMR) whose frequency of oscillations is

dependent on the magnitude of bias spin current. Spectrum analysis can be performed by

using an appropriately designed ATJ whose frequency is driven to increase linearly with

time, a low pass filter, and a matched filter. This method of THz spectrum analysis, if

realized in experiment, will allow miniaturized electronics to rapidly analyze low power

signals with a simple algorithm. It was found by simulation and analytical theory that for

an ATJ with a 0.09 µm2 footprint, spectrum analysis can be performed over a 0.25 THz

bandwidth in just 25 ns on signals that are at the Johnson-Nyquist thermal noise floor.

This work was previously published in [10] and presented at [14].

To demonstrate the viability of performing spectrum analysis with an ATJ, two

critical areas must be investigated. First, of the dynamic tuning of an ATJ will be

investigated to ensure that it can be tuned linearly to allow application of the spectrum

analysis algorithm. Second, a circuit model will be developed to describe the electrical

behavior of an ATJ when interfacing with an external signal at THz frequencies. Once

these two tasks have been performed, THz frequency spectrum analysis will be

demonstrated.
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6.1 ATJ dynamics

As covered in section 2.4, an ATJ has a TAMR that can be considered as a

macroscopic oscillating resistance, which is denoted R(t). An ATJ can be used for

spectrum analysis because the oscillation frequency fr(t) can be dynamically tuned in a

simple manner; all that is required is a change in the magnitude of the bias current Idrive.

In this section it will be demonstrated that the frequency of an ATJ can be dynamically

tuned so that the frequency increases linearly with time. This section is analogous to

section 4.1, in which the ability of an STNO to generate linear chirps was considered. A

simple way to demonstrate that the ATJ is capable of being tuned with a constant scan rate

ρ is to perform numerical simulations of the magnetization dynamics of the ATJ.

Simulations were performed according to in the methods presented in section 3.2.

Results of the simulation for several linearly increasing bias currents are shown in

Fig. 6.1. In this figure, the black dotted line shows the static relationship between Idrive

and fr(t). The red line shows the frequency output when the ATJ is tuned with a scan rate

of ρ1 = 0.02 THz/ps. It is evident that at this scan rate the ATJ tunes in a quasi-static

manner, and that theoretically, an ATJ can be tuned linearly with time. This is also true for

slower scan rates. At a faster scan rate of ρ2 = 0.5 THz/ps, shown by a green line, there is

a slight offset from quasi-static, and a slight ripple. This ripple arises due to the inertial

dynamics of the AFM sublattices, and is related to the transient forced oscillations of the

system. The presence of these ripples points to a physical limit for a maximum ρ where

the ATJ ramps linearly with time. At even faster scan rates, ρ3 = 1.5 THz/ps (blue) and

ρ4 = 3.0 THz/ps (magenta), the offset from linear dependence increases, as does the

amplitude of the ripple. In this study, spectrum analysis will be performed at a

substantially slower scan rate of ρ = 10 GHz/ns, in the quasi-static regime, where fr(t)

increases according to Equation (2.5).
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Figure 6.1: ATJ dynamic response to ramped current. For each ρ , ATJ was allows to run for
50 ps at 0.5 THz to reach normal operation. Then, the current was ramped to cause linear
frequency increase at the following rates: ρ1 = 0.02 THz/ps, ρ2 = 0.5 THz/ps, ρ3 = 1.5
THz/ps, and ρ4 = 3.0 THz/ps.
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It has thus been shown via numerical simulation that an ATJ is capable of being

tuned in a dynamic manner at a rate that allows the frequency to increase linearly with

time. This means that an ATJ can be used with any of the algorithms presented in

section 2.2, thus allowing spectrum analysis to be performed in the THz gap.

6.2 Spectrum analysis algorithm

Spectrum analysis will be performed in a manner that is similar that used in

chapter 5. A schematic of how THz spectrum analysis will be performed is shown in

Figure 6.2. This section will briefly present the required notation for this chapter.

The ramped dc current Idrive(t) drives the ATJ TMAR R(t) to oscillate according

to Equation (2.30), with a THz frequency fr(t) increases linearly with time, according to

Equation (2.5). Spectrum analysis will be performed on an THz frequency current, given

by

iR(t) = IR cos(ωextt +ψext) . (6.1)

Here IR is the amplitude of iR(t).When iR(t) passes through the ATJ, it is multiplied by

R(t) to produce a voltage vatj(t) = iR(t)R(t). When a low pass filter with a cutoff

frequency fc is applied to vatj(t), the output voltage of the filter is given by,

vlpf(t) =
1
2 IR∆Ratj cos(θ(t, fext)+ψ) . (6.2)

The next step in spectrum analysis is to apply a matched filter to vlpf(t), Details of the

matched filter can be found in section 2.2.

Please note that although the signals being detected are in the THz frequency

region, vlpf(t) will have a frequency low enough allow the use of standard analog to digital

converters, which allows hmatch(t) to be applied in the digital domain, and will greatly

simplify required signal processing.
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Figure 6.2: Block diagram of an ATJ spectrum analyzer. The ATJ tunneling anisotropic
magnetoresistance R(t), which is driven by ramped current Idrive(t), is multiplied by
external microwave current iext(t) to produce voltage vatj(t). After passing through a low
pass filter and a matched filter, a spectrum vout(t) is produced.
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Figure 6.3: ATJ equivalent electric circuit. The region on the left enclosed by a large
gray dashed rectangle is the equivalent circuit for the ATJ, with resistance R(t), spurious
inductance L, and spurious capacitance C. On the right is the source for the external signal
to be analyzer iext(t), on the top enclose by a dot-dashed rectangle is an ideal bias-T. At the
center of the circuit is Vdc.

6.3 Electrical model of the ATJ

The previous sections described the spectrum analysis algorithm and the dynamics

of the ATJ. This section will describe the impact that parasitic capacitance C and parasitic

inductance L will have on vlpf(t). L and C must be considered in this system because at

THz frequencies, matching losses cannot be eliminated by reducing fabricated circuit size.

This section will present the equivalent circuit to the ATJ, characterize matching losses.

113



In this section, it is prudent to treat the ATJ as a detector of single frequencies;

specifically, by setting ρ = 0, f0 = fext, and φ = 0. When operating with these

parameters, the ATJ will oscillate with exactly the same frequency and phase as iR(t).

With this condition, vlpf(t) from Equation (6.2) reduces to a dc voltage, which is stated

here for clarity:

Vdc =
1
2 IR∆Ratj . (6.3)

The ATJ shown in Figure 2.14 can be modeled by the simplified equivalent electric

circuit shown in Figure 6.3. This scheme consists of the three parts: (i) the equivalent

circuit of an ATJ, which is bounded by a dashed gray line and characterized by the

frequency-dependent impedance Z ≡ Z( fext); (ii) a current source with current

iext(t) = Iext cos(ωextt) that represents the signal to be analyzed. This current has an

amplitude Iext, a frequency fext, a phase ψext, and an impedance Zext = Rext+ jXext, and a

power Pext; and (iii) a bias tee, which is bounded by a dot-dashed gray line and provides

coupling between the ATJ and an external circuit. Through circuit analysis, the matching

loss for the external signal iext(t) when interfacing with the ATJ can be analyzed[75]. For

simplicity in this subsection the bias tee is considered to be an ideal coupling element,

which perfectly separates low frequency and THz signals in the circuit and does not

influence the device performance.

This electric scheme of the ATJ includes one circuit branch with the oscillating

resistance R(t) characterized by the equilibrium impedance Ratj and the inductance L of

an ATJ having the impedance ZL = jωextL. This is connected in parallel to the other

branch with the junction capacitance C described by the impedance ZC = 1/ jωextC. The

frequency dependent complex impedance of the ATJ, which is
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Z = (Ratj +ZL)ZC/(Ratj +ZL +ZC), can be written in the form:

Z = R+ jX , (6.4)a

R = Re{Z}=
Ratj

q
, (6.4)b

X = Im{Z}=
ωextL(1−ξ )−Ratjβ

q
. (6.4)c

Here two dimensionless parameters have been introduced: ξ = ω2
extLC, which describes

resonance properties of the ATJ, and β = ωextRatjC, which characterizes inertial

properties of the ATJ, and the ansatz q = (1−ξ )2 +β 2.

Then the complex amplitudes îR, îC of ac currents iR(t), iC(t), respectively, in the

circuit shown in Figure 6.3 are governed by Kirchhoff’s laws:

ÎR + ÎC = Iext , (6.5)a

ÎR(Ratj + jωextL) = ÎC
1

jωextC
. (6.5)b

The solution of this system of equations can be written in the form:

ÎR = Iext
1

1−ξ + jβ
, (6.6)a

ÎC = Iext
−ξ + jβ

1−ξ + jβ
. (6.6)b

When the real part of Equation (6.6)a is substituted into Equation (6.3), Vdc can be

rewritten as

Vdc =
1
2

[
1−ξ

q
Iext

]
∆Ratj . (6.7)

The magnitude of input ac current iext(t) can be determined from the equation

Pext(1−|Γ|2) = 0.5I2
extR, which describes the transfer of average input signal power Pext

from an external TF electrodynamic system to the ATJ, where Γ = (Z−Zext)/(Z +Zext)

is the complex reflection coefficient. The real part of the impedance Zext of an external

circuit, Rext = Re{Zext}, usually can be considered as a constant value within a rather
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narrow frequency range, while the imaginary part of the impedance, Xext = Im{Zext},

changes with the frequency fext, but can be controlled using impedance matching

techniques [90]. For simplicity, it is assumed that Rext = constant, Xext = 0. In this case

an expression for the output dc voltage Vdc can be written in the form:

Vdc =
1−ξ

q

√
2Pext

R

√
RRext

(R+Rext)2 +X2 ∆Ratj . (6.8)

Vdc strongly depends on the matching coefficient (RRext)/[(R+Rext)
2 +4X2]

under the square root in Equation (6.8). Hence, the ATJ can have good performance only

if the active junction impedance R and the active impedance Rext of an external circuit are

nearly equal (R≈ Rext). Usually, the active impedance Rext is considered to be a fixed

parameter, defined by the properties of the external TF electrodynamic system. When

there is ideal matching, R = Rext, and the matching coefficient (RRext)/[(R+Rext)
2 +X2]

is equal to R2
ext/[4R2

ext +X2], which gives an output dc voltage with Equation (6.4) for a

perfectly matched detector:

Vdc =
1−ξ√

q

√
2Pext
Ratj

√
R2

ext
4R2

ext +X2
∆Ratj . (6.9)

To reach the optimal condition R≈ Rext, one can vary the cross-sectional area S of the

junction and the thickness d of the MgO tunneling barrier, as will be presented in

section 6.5.

6.4 Electrical parameters of the ATJ

The electrical model of the ATJ can be characterized by three intrinsic parameters:

the junction equilibrium resistance Ratj, the inductance L and the capacitance C of the ATJ.

Using the approach introduced in [75], it was assumed that the equilibrium

resistance Ratj depends on the thickness of the MgO barrier d, the junction cross-sectional

area S, the ATJ effective resistance-area product RA(0) (introduced for a “zero-thickness”
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MgO barrier), and the intrinsic MgO tunneling barrier parameter κ [91, 92]. This can be

written in the form:

Ratj ≡ Ratj(S,d) =
RA(0)exp(κd)

S
. (6.10)

Note that the chosen dependence of the resistance-area product of an ATJ on the thickness

d of the tunneling barrier, RA(d) = RA(0)exp(κd), have the same form as that for a

conventional ferromagnetic tunnel junction [91, 92].

The ac resistance variations ∆Ratj of an ATJ can be evaluated using the TAMR

ratio η as

∆Ratj =
η

2+η
Ratj . (6.11)

The TAMR ratio η can be calculated for given ∆Ratj as η = 2∆Ratj/(Ratj−∆Ratj).

The capacitance of an ATJ can be estimated as the capacitance of a square

parallel-plate capacitor with a plate size a =
√

S and the distance d between the plates:

C = εε0S/d (ε = 9.8 is the MgO relative permittivity [93], and ε0 is the vacuum

permittivity). The inductance of an ATJ can be evaluated as L = µ0d, where µ0 is the

vacuum permeability.

Values for these parameters can be estimated using experimental parameters as

presented in Ref [69]: equilibrium resistance Ratj = 55.0 kΩ, TAMR ratio η = 1.3. The

value of the intrinsic MgO barrier parameter can be estimated as κ ≈ 5.8 nm−1 if it is

assumed that the dependence of the junction resistance Ratj on the tunneling barrier

thickness d for an ATJ is similar to that for a ferromagnetic junction [91, 92]. Using these

values, the effective resistance-area product is RA(0)≈ 0.14 Ω ·µm2 and the magnitude

of the ac resistance is ∆Ratj ≈ 21.7 kΩ. Finally, ε = 9.8 is a reasonable estimate for the

relative permittivity of the MgO barrier [93].

For the ATJ presented in Ref [69], the junction cross-sectional area was

S = 5 µm2, and the thickness of the MgO barrier was d = 2.5 nm. Using these values, one
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can estimate a junction capacitance of C = εε0S/d = 170 fF and an internal inductance of

L = µ0d = 3.1 fH for the ATJ in that experiment. As will be explained in the next section,

S and d will be varied to adjust R, C, and L and thus optimize ATJ performance.

The value of the output voltage Vmax cannot exceed the breakdown voltage

Vb ' Ebd, where Eb is the breakdown electric field for the tunneling barrier. Note that

Eb = 0.4−0.6 V/nm for a MgO thin film [93].

6.5 Results and discussion for static regime

This section begins with a discussion about optimizing the ATJ for operation in the

static regime, then briefly discuss the ATJ as a detector of single frequencies. The

optimization of the ATJ design to allow Vdc to be greater than 1 mV. This will be achieved

by changing parameters d and S to maximize the transfer of input signal power to the ATJ.

Using with ATJ parameters as in the previous experimental work [69] as presented

in section 6.4, and an active impedance of the external circuit has a value of Rext = 50 Ω,

which is typical for microwave and terahertz electronics, and the input signal power is

Pext = 1 µW, the maximum TF output will be Vdc ∼ 10−4 mV at fext ∼ 0.1 THz. This

small voltage is primarily due to the large values of the junction resistance Ratj and

capacitance C, which causes poor impedance matching and reduction of ac power

transferred to the junction.

The ATJ performance can be improved by choosing appropriate geometrical

junction parameters and thus the ATJ equilibrium resistance Ratj ∼ exp(κd)/S, junction

inductance L∼ d, and the junction capacitance C ∼ S/d. In Figure 6.4, the relationship

between Vdc, S, and d is examined in order to improve performance.

Figure 6.4(a) shows that in general, Vdc increases monotonically with the decrease

of d, the MgO layer thickness. Vdc can, at certain frequencies, have a maximum value

with respect to d. For example, when fext = 0.1 THz, there is a maximum at d ≈ 0.8 nm.
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This occurs when the active junction impedance R becomes comparable to the external

active impedance Rext. For values of d . 1 nm, Vdc plateaus or decreases instead of

increasing monotonically. This plateau or decrease is due to the increase of the impedance

mismatch and junction capacitance. Taking this into account, in the following simulations

we consider an ATJ having a MgO barrier thickness of dopt = 1.0 nm, which is a common

value for existing tunnel junctions and can be readily fabricated [91, 92, 93].

An additional improvement of the TF signal detector performance can be achieved

by varying the junction cross sectional area S. This is considered in Figure 6.4(b). For

simplicity, a square-shape junction with a single effective lateral junction size a =
√

S has

been assumed. As one can see, for different frequencies the value of Vdc is constant for

lower values of lateral junction size a. At these low a values, the performance of the signal

detector is hindered mainly due to the resistance mismatch effect. For higher values of a,

the value of Vdc decreases. For high a values, the device efficiency is reduced mainly due

to the influence of the large junction capacitance. At junction sizes where R−Rext ≈ X , as

shown by the green line in the figure, the influence of junction capacitance and resistance

mismatch have similar levels. While there is no optimal value for a, it is evident that lower

values leads to improved behavior. Therefore, a junction size of aopt = 300 nm has been

chosen.

Figure 6.5 shows the output dc voltage Vdc calculated numerically from

Equation (6.8) with new spacial dimensions of d = dopt = 1.0 nm and aopt = 300 nm.

This graph demonstrates that with appropriate physical dimensions, the ATJ is capable of

producing a strong dc voltage output with a reasonably sized input signal. This figure also

demonstrates that Vdc in the frequency range 0.1−1.0 THz from an AFM-based detector

connected to a standard impedance load, can be comparable to, or may even exceed, the dc

voltage extracted via an inverse spin Hall effect from the detector based on a bi-anisotropic

NiO/Pt structure [71]. Also in contrast to the detector based on bi-anisotropic NiO/Pt spin
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Figure 6.4: Dependence of the output dc voltage Vdc at input power of 1 µW on (a) MgO
barrier thickness d and (b) lateral size of the ATJ square-cross-section a=

√
S . Calculations

were performed using Equation (6.8) and Equation (6.4), Equation (6.10), Equation (6.11)
for an ATJ with parameters similar to those observed in experiment (see Section 6.4 for
details) operating at the frequencies fext = 0.1 THz (black solid line), fext = 0.5 THz (red
dashed line), and fext = 1.0 THz (blue dashed dotted line). In (b), the optimal thickness
of the MgO barrier dopt = 1.0 nm was used. Green line shows curve that represents
dependence of output dc voltage at deflection point for different frequencies.
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Johnson-Nyquist thermal noise floor rms voltage (red line) calculated from Equation (6.8)
using typical ATJ parameters stated in section 6.4, and parameters d = dopt = 1.0 nm
and a = 300 nm at the temperature T = 293 K under input power of 1 µW.

Hall oscillator [71], the ATJ in this system does not require any special conditions for the

AFM layer, therefore the experimental realization seems to be relatively straightforward.

With these new dimensions, the device parameters will be Copt = 7.81 fF, and

Lopt = 1.26 fH. It is noteworthy that for both the optimized parameters and the ATJ

presented in Ref [69], that ξ � 1 for signal frequencies fext ≤ 2 THz. This means that the

nonlinear coefficient (1−ξ )/√q in Equation (6.7) through Equation (6.9) can be

approximated by

(1−ξ )/
√

q ≈ 1/
√

1+β 2 ≈ 1/
√

1+ω2
extR

2
atjC

2 . (6.12)

This is clearly visible in Figure 6.5.
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Before concluding this section, please note that according to Equation (6.8) and

Equation (6.11), the output dc voltage of the detector Vdc ∼ ∆Ratj ∼ η/(2+η) increases

with the increase of the TAMR ratio η . Although here the TAMR ratio η is considered as

a fixed parameter that is defined experimentally, in practice η can be tuned in several

ways, for example by adding a bias dc current through the junction, adding a bias

magnetic field, or by changing the operating temperature of the ATJ. However, the

influence of the temperature on η and Vdc in an ATJ-based detector could be substantially

nonlinear, similar to the behavior of conventional ferromagnetic tunnel junctions [94, 95].

It is notable that with this analysis, an ATJ operating at a single frequency can, in

fact, function as a THz detector[72]. For a detector it is reasonable for ρ = 0 and

f0 = fext, however, in a detection application generally the phase is unknown and thus

φ 6= 0. To prevent full attenuation of vlpf(t) in cases where θ( fext, t)+φ ≈ π
2 in

Equation (6.2), signal averaging could be used to remove the phase dependance. The

general principles of operation ATF based TF detector is similar to conventional

spintronic detectors [83, 96, 97] based on ferromagnetic materials. However, there are one

important difference: an ATJ-based detector can detect signals with substantially larger

frequencies ( fext ∼ 0.1−10 THz) than ferromagnetic detectors.

Concluding this section, it has been shown that by changing of the thickness d and

area S of the MgO layer, an ATJ can be designed to match an external signal and thus

produce a strong dc voltage. Specifically, there is an optimal d to improve ATJ sensitivity,

and decreasing S also improves sensitivity. It has also been shown that the nonlinear

coefficient (1−ξ )/√q causes the sensitivity to decrease with increasing frequency.

6.6 THz spectrum analysis with an ATJ

Spectrum analysis will be simulated in the bandwidth from 0.5 THz to 0.75 THz.

This bandwidth, ∆ fch = 250 GHz, will be scanned at a rate of ρ = 10 GHz/ns. At this
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Figure 6.6: Simulation of spectrum analysis by an ATJ. (a) Input spectrum, shown by black
lines, with a signal at every 10 GHz between 0.55 THz and 0.75 THz. Blue dashed line
shows envelope of input spectrum. (b) Output spectrum for a scan from 0.5 to 0.75 THz,
with a scan time of 25 ns. The scan rate was 250 GHz/25 ns ≈ 10 GHz/ns. Black curve
shows Uspec, including parasitic impedance. Thin blue line represents (6.5). Red dashed
line shows the envelope of vlpf(t) without parasitic impedance.
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rate, the entire bandwidth can be scanned in T = 25 ns. The ATJ as simulated will have

parameters identical to the simulation used to produce Figure 6.1, and the physical

dimensions used to produce Figure 6.5. Additionally, the low pass filter was simulated

with a cutoff frequency fc = 25 GHz.

To demonstrate the viability of the system, the analysis of a signal with multiple

frequencies will be simulated. The input current iext(t) has a spectrum as shown in

Figure 6.6(a), with signals every 10 GHz from 0.55 THz to 0.70 THz, each with a power

of 1 µW. The envelope of input spectrum is given by the blue dashed line. It has been

assumed that these signals were generated with a high-Q AFM generator, and have a low

linewidth[75]. After following the algorithm presented in section 6.2, an output spectrum

was produced via simulation is shown in Figure 6.6(b).

At this power level, for frequencies > 0.4 THz, the Johnson-Nyquist thermal noise

floor rms voltage VJN is larger than the ATJ output voltage vlpf(t). Specifically, with the

simulation parameters, VJN =
√

4kBT R0 fc = 0.09 mV, where kB is the Boltzmann

constant and the temperature is T = 293 K. A magenta curve in Figure 6.5 shows VJN in

comparison to vlpf(t). Despite, the fact the thermal noise is larger than the input signal, the

matched filter can produce an effective output. This improvement of the SNR is a result of

the matched filter, which can make the effective minimum detectable signal (MDS)

∼20 dB below VJN.

The black curve in Figure 6.6b shows the output spectrum vout(t), including the

effects of parasitic impedance. It is evident that the output curve has a spike that

corresponds with every input frequency. While in general the amplitude of the spikes is

linear with Iext∆Ratj, the amplitude of the vout(t) has an offset that depends on both

frequency and phase mismatch. vout(t) follows the thin blue line, which decreases with

frequency according to Equation (6.12), as expected. There is also a minor phase

dependent variation in the amplitude of the output spectrum, as was shown in Figure 5.3.
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The red dashed curve shows the envelope of vout(t), while ignoring the effects of parasitic

impedance. This amplitude variation is expected, and can be removed by signal averaging

or other means. The relative error of these amplitude variations is about 2%. The bottom

portion of the black curve shows interference that is the result of incoherent mixing from

the matched filter. The amplitude of this curve scales with signal power, and can limit

dynamic range. Please note that both types of amplitude variations can be easily

normalized, as the signal processing occurs at low frequency according to Equation (6.2)

and thus can occur in the digital domain.

Concerning frequency accuracy, by using this algorithm, this simulated system

was able to determine the frequency of the input spectrum with high precision and high

accuracy. Specifically, the peak of each spike in Figure 6.6(b) is within 5 MHz of the input

frequency, and thus has a frequency accuracy > 99.9999%.

The lower end of the dynamic range is determined by the Johnson Nyquist thermal

noise floor rms voltage VJN, which was mentioned above. The upper end of the dynamic

range for the simulated parameters is determined by the breakdown voltage Vb as

described in section 6.4. With the dielectric MgO layer as simulated, Vb ≈ 0.5 V. With this

value, the total dynamic range for the ATJ is ≈ 90 dB. The dynamic range can be

improved in several ways. One method is to employ a smaller cutoff frequency fc, which

will impact RBW. Alternatively, the thickness d of the dielectric layer can be adjusted to

affect the desired change in dynamic range. Care must be taken to ensure that vlpf(t)

remains larger than the MDS for the entirety of the scanning bandwidth ∆ fch. The

dynamic range is independent of the scan rate ρ .

The RBW of the simulated spectrum analysis matches well with the theoretical

best RBW0. Specifically, the average full width half maximum of the individual spikes

inFigure 6.6b. was ∼200 MHz, which is near the theoretical limit for RBW.
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For the simulated parameters, the maximum ramp rate is ρmax ≈ 0.1 THz/ps,

several orders of magnitude faster than simulated here. The RBW is of course dependent

on ρ according to Equation (2.22), and the frequency sensitivity is relatively unchanged

with increasing ramp rate, while for phase dependent variation in the peak amplitude, the

error in responsivity increases with increasing RBW.

6.7 Conclusion

In conclusion, the author has presented in this chapter the theory that a

Pt/AFM/MgO/Pt ATJ can generate an oscillating TAMR with at THz frequency. It was

demonstrated with simulation that these THz frequency TAMR oscillations can be

dynamically tuned to increase linearly with time as at rates as fast as 0.1 THz/ps. A circuit

model was presented that allowed the optimization of the ATJ output voltage by adjusting

the thickness and area of the MgO layer, thus allowing impedance matching between an

ATJ and an external THz signal to be improved. Then, a basic THz signal detector, and a

THz spectrum analyzer was presented. The spectrum analyzer, as simulated with

optimized parameters, scanned between 0.5 THz and 0.75 THz in 25 ns, with a dynamic

range > 40 dB, a resolution bandwidth of 200 MHz, and determined the frequency of an

extender signal with a relative error less than 10−4%.

126



APPENDIX A

MATHEMATICS OF PULSE COMPRESSION
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In Equation (2.16), the output spectrum generated from a matched filter spectrum

analysis algorithm was presented as

vout(t) = |vlpf(t)∗hmatch(t)|2 . A.1

The goal in this appendix is to explicitly determine vout(t). vlpf(t) here is given by:

vlpf(t) =


2cos

(
φ(ωext, t)+ψ

)
−T

2 < t < T
2 ,

0 otherwise.

A.2

and the matched filter is given by

hmatch(t) = e− jφ(ωm,t) . A.3

When Equation A.2 and Equation A.3 are substituted into Equation A.1, the

convolution becomes

vlpf(t)∗hmatch(t) =
1
T

∫ T
2

−T
2

2cos
(
φ(ωext,τ)+ψ

)
e− jφ(ωm,t−τ) dτ ,

where τ is a constant of integration. By Euler’s formula, 2cosx = e jx + e− jx, this can be

split into two integrals,

vlpf(t)∗hmatch(t) = v1(t)+ v2(t) , A.4

where,

v1(t) =
e jψ

T

∫ T
2

−T
2

e j
(

φ(ωext,τ)−φ(ωm,t−τ)
)

dτ , A.5

v2(t) =
e− jψ

T

∫ T
2

−T
2

e− j
(

φ(ωext,τ)+φ(ωm,t−τ)
)

dτ . A.6

In order to find an explicit function for Equation A.4, the integrals Equation A.5

and Equation A.6 must be evaluated.
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Substituting φ(ωext,τ) and φ(ωm, t− τ) into Equation A.5 and simplifying yields,

v1(t) =C1
1
T

∫ T
2

−T
2

e j2πρ(t+ζ )τ dτ , A.7

where ζ = (2ω0−ωext−ωm)/2πρ and C1 = e j
[
ψ−πρt2−(ω0−ωm)t

]
. Integrating

Equation A.7 results in a fairly simply function:

v1(t) =C1sinc
(

π∆ fch(t +ζ )
)
, A.8

where a sinc(x) is defined as sin(x)/x.

Substituting φ(ωext,τ) and φ(ωm, t− τ) into Equation A.6 and simplifying yields,

v2(t) =C2

∫ T
2

−T
2

e− j2πρτ2+ j2πρ(t−χ)τ dτ , A.9

where C2 = (1/T )e− j
[
ψ+πρt2+(ω0−ωm)t

]
and χ = (ωm−ωext)/2πρ . From [98], this

reduces to

v2(t) =C2C3

[
erfi
(√
− j2πρ (t−χ + T

2 )
)
− erfi

(√
− j2πρ (t−χ− T

2 )
)]

, A.10

where C3 =
√

j
2
√

2ρ e j2πρ(t−χ)2 . This is a fairly cumbersome equation. Fortunately, for

t < |T/2|, can be approximated by:

v2(t)≈ 2C2C3e− j π
4 . A.11

The validity of this approximation is demonstrated graphically in Figure A.1, with

Equation A.11 shown by a thick gray line, and the exact function with a thin black line.

With the exception of some minor variations in the exact function, the approximation

matches the exact function quite well.
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Figure A.1: Validity of the approximation v2(t) ≈ 2C2C3e− j π
4 . Both graphs show the

approximation with a solid gray line, and the exact function with a black line. Top graph
shows the real part of v2(t), and the bottom graph shows the imaginary part of v2(t).
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Substituting Equation A.8 and Equation A.11 into Equation A.4 and Equation A.1

gives an equation for vout(t):

vout(t) = sinc2
(

π∆ fch(t +ζ )
)
+ ε(ψ)

1√
2∆ fchT

sinc
(

π∆ fch(t +ζ )
)
+

1
2∆ fchT

,

where ε(ψ) = cos
(

2πρ(t−χ)2−2ψ− π
4

)
.

If ωm is chosen such that ωm = ω0, then ζ =−t∆ and χ = t∆. With t∆ and some

rearrangement, these two equations can be re-written as:

vout(t) = sinc2
(

π∆ fch(t− t∆)
)
+ ε(ψ)

√ρ√
2 ∆ fch

sinc
(

π∆ fch(t− t∆)
)
+

ρ
2∆ f 2

ch
, A.12

ε(ψ) = cos
(

2πρ(t + t∆)
2−2ψ− π

4

)
. A.13
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