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ABSTRACT 
 
 
 

VELOSTAT SENSOR ARRAY FOR OBJECT RECOGNITION AND HUMAN 
POSTURE RECOGNITION 

 
by 

 
LIANGQI YUAN 

 
 
Adviser: Professor Jia Li, Ph.D. 
 
 
 Pressure as one of the patterns of objects and humans has always been necessary 

research and has a wide range of applications in recognition and prediction. This thesis 

presents a cost-effective pressure sensing system for object recognition and human 

posture recognition. During the design process of the pressure sensing system, three 

different applications have been proposed: an Object Recognition Board, a Smart 

Cushion, and a Smart Bed Sheet, which are used to recognize ten objects, five sitting 

postures, and four sleeping postures, respectively. The pressure sensing system consists 

of a 27x27 piezoresistive sensor array made of carbon composite material Velostat, a 

signal processing subsystem for signal scanning, amplification, registration, and 

generation. A convolutional neural network is used to classify various objects through the 

pressure signals produced and processed by the sensing array. Based on systematic 

characterizations and calibrations of sensing materials and system sensitivity, three 

experiment setups are established. For pressure images collected with the preestablished 

three experiment setups, the accuracy of object recognition, sitting posture recognition, 

and sleeping posture recognition achieved 0.9914, 0.9660, and 0.9990, respectively.  
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CHAPTER ONE 

INTRODUCTION 
 
 
 

1.1 Overview 

Tactile sensing is one of the most fundamental sensing mechanisms the human 

body develops. In the current world of human-computer interaction and intelligent health, 

the tactile signal has been widely used as inputs for information processing and control, 

enabling machine recognition of external excitations. The current areas where such 

recognition and interaction are enthusiastically pursued include, but are not limited to, 

medical treatments [3][4], biological products [5][6], wearable electronics [7][8], and 

robotics [9][10]. In a tactile sensing system, an electrical signal is generated as a response 

to physical parameters such as temperature, pressure, vibration, texture, friction, etc. 

when the object is in close contact with the tactile sensor [3][11]. Pressure sensor is one 

of the largest categories of all sensors thanks to its diverse sensing mechanisms and, more 

importantly, easy device fabrication process, thus possible low cost. Moreover, due to the 

miniature size enabled by semiconductor process-based microfabrication technologies, a 

variety of pressure sensors have been adopted in wearable electronics and medical 

devices where flexible sensor deployment is crucial. 

Based on their physical responses and sensing mechanisms, pressure sensors can 

mainly be categorized into the following types, i.e., capacitive, piezoelectric, optical, and 

piezoresistive [11][12][13][14]. Capacitive pressure sensors feature high sensitivity, low-

temperature dependence, and low noise floor, which are desirable for applications with 

high precision and harsh environments [15][16][17]. Piezoelectric materials have found 
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promising applications in wearable electronics thanks to their dual energy flow – can be 

used as both sensing and energy generating elements. In this area, a variety of 

triboelectric devices with self-powering capability have been actively attempted, despite 

that the fabrication processes for such materials and devices are normally not compatible 

with standard technologies [12]. Optical pressure sensors have great attributes such as 

high sensitivity and outstanding interference immunities. However, their bulky system 

configurations hinder their applications in many areas where deployment flexibility is a 

concern [18][19]. Piezoresistive pressure sensors, however, take many forms of materials 

and structures for a large array of applications. Because of their overall easy fabrication, 

low-cost, simple signal processing circuitry, and standard data acquisition process, 

piezoresistive sensors have steadily been the dominating category in pressure sensing 

[20][21]. In contrary to silicon and metal-based piezoresistive sensors and strain gains for 

process control and specific pressure monitoring, some flexible piezoresistive materials 

have demonstrated their great advantages in easy deployment, which is of particular 

importance for biomedical and human-machine interacting systems. 

This chapter introduces the properties of the carbon composite material Velostat, 

the Velostat-based piezoresistive sensor and its shortcomings, related applications, and 

existing technologies. The contributions and outline of this thesis are presented at the end 

of this chapter. 

1.2 Properties of Velostat Materials 

The past research on Velostat has been focused on characterizations of the 

electrical and mechanical properties associated with particular applications of the 

material. In [30] and [55], piezoresistive sensitivity, hysteresis, repeatability, etc. have 
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been investigated. Some researchers have confirmed the usability of the material in terms 

of hysteresis and repeatability. In addition, other papers do not have a unified 

measurement unit (Newtons; Pascals) [56]. Our research found that the use of Pascals is 

an inappropriate measurement unit for the Velostat sensor. It’s well known that various 

parameters related to the deployment of Velostat material as a sensing element are 

involved when such a sensing system is constructed. For instance, when used as a force 

sensor where Velostat material is made contact with certain electrodes as a measuring 

instrument, the changes of the Velostat sensor resistance are a function of the following 

factors: Velostat material properties, applied force, and applied time, the contact area 

between the measuring instrument and the Velostat sensor, the area of the intersection of 

the conductive wire, and the relative position of the center of the measuring instrument, 

and the intersection of the conductive wire, etc. However, thus far, not too much research 

has been conducted on the relations between the resistance of the Velostat sensor and the 

applied pressure and applied time from the application perspective of object recognition. 

In our research using the Velostat sensor as the piezoresistor, the relative position of the 

element and the force measuring instrument is relatively static - the probe of the force 

measuring instrument is always located in the center of the measuring element, which 

allows us to maintain other conditions unchanged to characterize the pressure response of 

the sensing element. Based on our systematic studies on the piezoresistive responses of 

Velostat, including the sensitivity and resistance changes under different pressures and 

times, we have proposed appropriate experiment setups with specific object weight to 

obtain higher recognition accuracy. 
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In designing the above particular experiment setups for our purpose, we have 

addressed some practical issues in previously reported applications of Velostat sensors. 

Dzedzickis et al. [56] reported the effects of surface roughness of new and used Velostat 

materials, as well as the loading, on the stability of sensor responses. Other researchers 

[28][57] have investigated the overall time dependence of the output voltage of the 

Velostat sensors. However, none of the above research has drawn a conclusion as to 

when data acquisition should be performed after the force or pressure is applied to the 

sensor for reliable image construction.  

This happens to be one of the most critical influencing parameters in the 

establishment of a pressure image database. On the one hand, if the collection time is too 

short, a large amount of pressure image information under different conditions will be 

lost. On the other hand, if the collection time is too long, redundancy occurs with a large 

number of duplicated data in the dataset, which will reduce the processing resources. We 

investigated this issue by characterizing the data acquisition system of the Velostat sensor 

array by examining the transient response of the sensor resistance systematically. 

Comprehensive studies on steady-state values, variance, rise, fall, and settling transients 

in unloaded, loaded, and released states of the sensor array resistance are conducted to 

find the optimal responses of the sensor array. An experiment setup and measurement 

scheme for optimization of data collection and release time has been established to ensure 

the diversity, richness, and universality of pressure image data sets. 

1.3 Piezoresistive Sensor Based on Velostat 

To this end, various pressure sensor arrays based on Velostat, an elastic polymer 

with conductive additive with piezoresistive characteristics, have been extensively 
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explored recently [22][23]. Sundaram et al. [24] have demonstrated tactile gloves for 

object-grasping robotics, in which a convolutional neural network (CNN) is employed to 

recognize the type of objects and judge the responding gestures of the robotics through 

the signals provided by Velostat sensors integrated into the gloves. Chen et al. [25][26] 

have developed pressure sensor insoles to assist inertial measurement unit (IMU) for 

indoor human positioning. Hudec et al. [27] have utilized Velostat pressure sensors in 

their mattress designed to detect the position of a lying person to prevent bedsores. 

Hopkins et al. [28] used a Velostat strip pressure sensor to characterize the lower limb 

pressure in adaptive tests in a prosthesis. Niu et al. [29] evaluated athletic helmet’s 

comfort and stability level based on the data acquired from a flexible pressure sensor 

array in the helmet. In the above emerging areas as customized and remote healthcare, 

tele-sportscare, etc., Velostat pressure sensors have been playing an increasingly 

important role in providing original signals for subject monitoring.  

However, compared with rigid piezoresistive sensors made of crystals such as 

silicon and metals, Velostat pressure sensors commonly suffer a certain extent of 

performance disadvantages such as inferior repeatability, hysteresis, and nonlinearity, 

which originate from some notorious defects of such polymeric material, including a 

certain degree of plastic deformation, non-uniformity in material composite and texture 

[30]. Moreover, when used in sensor arrays, due to the plastic characteristic of Velostat 

and the chaotic currents in the resistor array, considerable crosstalk in neighboring grids 

has been consistently observed [31]. Furthermore, the non-uniformity in material 

composite and texture have also contributed to even the non-uniformity in the crosstalk.  
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Velostat material can be thought of as a piezoresistive resistor, and this resistive 

sensor array usually suffers from various electrical disturbances that degrade the 

accuracy, reliability, and robustness of the system. The crosstalk is a critical issue that 

affects image recognition accuracy. It originates from both mechanical and electrical 

responses of the sensor. Mechanical crosstalk is caused by the non-ideal force diffusion 

of the flexible material under pressure [58]. Considering the fabrication of sensor arrays, 

we only utilize separated sensors in the Smart Bed Sheet to limit the effects of 

mechanical crosstalk. Electrical crosstalk is a widespread problem in resistive sensor 

arrays, which usually causes loss of accuracy [59][60][61] and ghosting [62]. The 

electrical crosstalk can be divided into two types, i.e., electrical crosstalk Type A and 

Type B. The Type A crosstalk is caused by the random current flowing through the 

Velostat resistance in related areas in the sensor or sensor array. Particularly, for the 

sensor structure used in this thesis, this type of crosstalk is related to the surface 

resistance of the Velostat material. Based on the observation that compared with the bulk 

cross-sectional resistance that is employed for pressure sensing, the resistivity of the 

surface layer is relatively low in the thickness direction (< 31,000 ohms/sq.cm), the 

sensing error caused by this resistance element is relatively small thus can be neglected. 

Detailed studies on the effect of such surface resistance will be reported in the future. 

Electrical crosstalk type B is due to the fact that current always flows through a path with 

smaller resistance, which is a critical element in the determination of the performance of 

the sensor in this study. The proposed experimental setup aims at addressing this 

crosstalk particularly. The cause of the specific Type B electrical crosstalk is that when 

calculating the resistance of a target piezoresistive sensor element (cross spot), not only 
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the current flows through this target piezoresistive sensor, but also through the adjacent 

sensors. It’s equivalent to a parallel connection of several piezoresistive sensors. Many 

researchers have proposed many solutions [63][64] in this regard. Hidalgo-López et al. 

[31] add additional calibration rows and columns to the original resistance array. 

Suprapto et al. [65] used diodes to shield the reverse current of each sensor. Yet, most of 

the methods are inadequate in ensuring the needed flexibility and signal-to-noise ratio 

(SNR) of resistor arrays. To address this challenge, we choose a “zero potential method” 

in which operational amplifiers are used as auxiliary circuits for SNR boost. 

Consequently, in addition to enhancing the contrast of pressure images in visualization 

applications, the ability of convolutional neural networks to automatically perform 

feature extraction on pressure images also ensures the accuracy of the system. 

The above common issues with Velostat sensors would be challenging for 

conventional signal compensation methods. Fortunately, recent advancements in 

information fusion and processing have opened a new window in signal processing and 

enhancement [32]. Particularly, powerful artificial intelligence has found their 

applications in addressing the otherwise tenacious problems as in the Velostat pressure 

sensors and arrays.  

1.4 Applications Based on Pressure Sensor Array 

In recent years, with the continuous development in the fields of robotics, human-

computer interaction, and intelligent life, achieving high-precision object recognition and 

human gesture recognition is a challenge. Object recognition technology is widely used 

in robots to assist robotic arm in grabbing objects by obtaining information such as the 

shape, position, and angle of the object. For object recognition, computer vision provides 
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a feasible solution. However, computer vision has limitations in handling details such as 

object mass, roughness, and stiffness. For example, computer vision has difficulty 

distinguishing objects of similar shapes, such as real fruits and fruit models. Therefore, 

the tactile sensing system is a significant supplement for object recognition because it is 

able to capture the details of multiple attributes of the object and is a low-cost solution.  

The monitoring and recognition of human sitting and sleeping postures are 

important ways to improve people's life smart, automation, and health. Accurate and 

robust sitting posture recognition is an important technique to provide smart life for 

sedentary people, such as the elderly, students, and drivers. Sitting posture recognition 

can effectively prevent diseases [33][34], correct sitting posture [35][36], and improve 

driving safety [37][38]. Similar to sitting posture, human sleeping posture is also related 

to human health. Unhealthy postures also increase the dedication of people to worsening 

illnesses [39][40][41]. For the task of human sitting and sleeping posture recognition, 

researchers have proposed different solutions such as computer vision [42][43], wearable 

sensors [44][45], and pressure sensors [46][47][48][49]. For human applications such as 

human-computer interaction, computer vision has privacy concerns for human 

classification tasks due to its intrusive design. Besides, the use of wearable sensors for 

human gesture recognition and gait analysis is also one of the popular solutions in recent 

years. However, wearable sensors are not suitable for daily environments due to their 

troublesome and uncomfortable features, especially in the elderly-led demand. Sheet with 

pressure sensor does not have the above problems and has a variety of solutions, which 

has attracted intensive research interests. Different human behaviors can produce 

different sitting and sleeping postures, resulting in different pressure distributions on the 
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pressure sensor. Compared with separated pressure sensor in other literatures, the 

proposed pressure sensor array can be spread all over the sheet to collect complete human 

body pressure distribution information, which is proven to have higher accuracy, visual 

solutions, and is capable of handling complex tasks [50][51][52][53][54]. 

In addition to the physical sensing element, image processing is also essential for 

the force and pressure image system demonstrated in this work. Using CNN to recognize 

and classify tactile images has proven to be an effective method [66][67][68]. Gandarias 

et al. [69] developed an adaptive gripper based on the Tekscan pressure sensor array to 

recognize fifteen objects, including the inert objects and human limbs. This kind of 

gripper with pressure sensor has broad application prospects in the method of obtaining 

external information and the ability of external control on robotics. Compared to the 

commercial pressure sensor array Tekscan, the fabricated Velostat sensor array has 

advantages in price, flexibility, and foldability. Moreover, due to the marginal effect, the 

high-resolution pressure sensor array has a more expensive manufacturing cost, but the 

improvement in accuracy is limited. Wan et al. [70] report a sitting pressure image 

acquisition system to recognize sitting posture and locate the hip position, providing 

visualization options. However, beyond the rigid bottom required for their sensor, which 

can be seen that the sensor hardware of their system has the possibility of further 

optimization. Also, the accuracy of classifying the sitting model was lower than expected. 

Hu et al. [54] established a sleeping posture recognition system based on Velostat, which 

is similar to our methodology. However, their understanding of electrical disturbances in 

sensor arrays such as crosstalk is slightly weaker. In particular, the machine learning 

models in these literatures do not perform as well as expected when dealing with pressure 
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images with extensive crosstalk effects. A common approach in the above literatures is to 

employ transfer learning on some popular neural networks. However, how to find a 

dataset of similar type, size, resolution, and classification tasks to pressure images is the 

most crucial criterion. Otherwise, it will lead to negative transfer. In this thesis, we 

designed our own CNN ResNet-PI suitable for pressure images, which is a lightweight 

neural network that requires low data volume, occupies fewer resources, and can obtain 

comparable accuracy. 

For real-world tactile perception applications such as identification and analysis 

of grasping, sitting, gait, etc., classification tasks are dynamic and continuous 

[77][78][79][80][81]. Although it could be extended to series image data sets processing, 

the purpose of this thesis is to develop solutions based on the particular characteristics of 

the Velostat pressure sensor array we have demonstrated and some corresponding 

applications. Although Convolutional Recurrent Neural Networks (CRNNs), 

Convolutional Dense Neural Networks (CDNNs), and 3D CNNs have been tried for 

dynamic pressure image solutions, their performance is insufficient. The first reason is 

that dynamic pressure images treat multiple images as one sample, which reduces the 

number of samples in the pressure image dataset. The second is that complex and 

heavyweight neural networks such as CRNN, CDNN, and 3D CNN have more 

parameters, which leads to the training of the model consuming more resources. The 

Velostat sensor array combined with the CNN framework provides a feasible solution 

and mechanism for future enhancement and applications.  

In our design, the pressure images generated by the Object Recognition Board, 

Smart Cushion, and Smart Bed Sheet have the exact resolution, so the same CNN 
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architecture is used to train the three pressure image datasets, respectively. According to 

the size and resolution of the pressure images, ResNet-PI, a modified version based on 

ResNet18, has been demonstrated in this thesis to recognize objects, sitting posture, and 

sleeping posture.  

1.5 Thesis Contribution to the Current State of Knowledge 

In the work reported in this thesis, a 27x27 Velostat piezoresistive sensor array for 

objects, sitting postures, and sleeping postures recognition through pressure pattern 

identification is demonstrated. Three experiment setups are first developed to ensure the 

accuracy, reliability, and consistency of the signal generation, data rendering, and 

interpretation. Through the following experiments with the setups on systematic material 

characterizations and sensor calibrations, a baseline tactile signal database is established. 

Using ResNet-PI, a high-precision recognition CNN, the aforementioned system issues 

associated with material properties of Velostat, have been effectively tackled. The 

contributions of this paper are: 

1. Systematic material study on the polymer composite in Velostat to understand the 

electrical and mechanical characteristics of the conductive material. The resistivity of the 

material as a function of applied pressure is studied, and the quasi-static response is also 

characterized. 

2. Pressure sensor array design and establishment of three experiment setups and data 

processing scheme for quantitative evaluation of the performance of the Velostat sensor 

array using both electronic signals and imaging processing. The first setup is to establish 

a baseline for the optimized response of the system, in which a series of objects with the 

same weight but various shapes are used for pattern identification. In the second and third 
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setup, quasi-static responses of the system are characterized, with rise, fall, and settling 

transients being studied, respectively. 

3. Based on the mechanism of the Velostat pressure sensing system and three 

experimental setups, we developed three applications: Object Recognition Board, Smart 

Cushion, and Smart Bed Sheet. In the above implementation, ResNet-PI, a residual 

convolutional neural network, was employed for pressure image recognition. Accuracy of 

0.9914, 0.9660, and 0.9990 was observed on pressure image datasets of ten objects, five 

sitting postures, and four sleeping postures, respectively. 

1.6 Thesis Outline 

The remaining chapters of this thesis are presented as follows. Chapter Two 

parameterizes the properties of Velostat as a piezoresistive sensing material. Chapter 

Three presents the construction of signal processing circuits, fabrication and properties of 

Velostat sensor array, and the related experimental results, including resistance sensitivity 

and quasi-static response. Chapter Four demonstrated the contrast enhancement, the 

proposed convolutional neural network architecture, and the fabrication and classification 

results of three applications of the Object Recognition Board, Smart Cushion, and Smart 

Bed Sheet. Chapter Five summarizes the research, discussions, and future research plans. 
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CHAPTER TWO 

VELOSTAT AS PIEZORESISTIVE SENSING MATERIAL 
 
 
 

2.1 Overview 

Although Velostat as a carbon composite material is popular in piezoresistive 

sensing in previous literature, the properties of Velostat materials have not been 

discussed. In this chapter, we systematically studied Velostat as a piezoresistive sensing 

material, discussed the factors affecting the resistance of Velostat, and parameterized the 

resistance of the Velostat material. 

2.2 Parameterization of Velostat Material 

Velostat material is flexible, stretchable, light, thin (0.1mm thick), and low in 

price. Eleven square inches of Velostat material sells for $4.95. As a polymer composite 

material, Velostat consists of carbon-impregnated polyethylene, a resistive material based 

on quantum tunneling and percolation [56][71]. Through scanning electron microscope 

(SEM), the changes of carbon particles (white area) and gap (black area) under pressure 

can be observed, as shown in Figure 1 is the surface of Velostat with a magnification of 

5000x. When no pressure is applied, the gaps between the polymer clusters measure an 

average value of 1 micron. Under pressure, the gap is statistically reduced to 

approximately 0.6 microns. When pressure is applied, the gap becomes smaller, and the 

effective distance between the conductive elements decreases, thus the overall 

conductivity of the material increases. 
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(a) (b) 
Figure 1. SEM image of Velostat material at 5000 times magnification, (a) without 
pressure, (b) with pressure. 
 

 

According to the model for conductive polymer composite materials established 

by Zhang et al. [72], the relative resistance of the composite material at any applied time 

𝑡 of pressure can be expressed as: 

𝑅(𝑡)

𝑅
= 𝑓(𝜎, 𝐷, 𝜃, 𝜑, 𝜀, 𝜓, 𝑛) (3.1) 

where 𝑅(𝑡) is the instantaneous resistance of the composite material at applied time 𝑡; 𝑅 

is the original resistance, 𝜎 is the applied pressure, 𝐷 is the nominal diameter of the filler 

particles, 𝜃 is the filler volume fraction, 𝜑 is the potential barrier height, 𝜀 is the original 

strain, 𝜓 and 𝑛 are constants related to creep behaviors in the material. When these 

factors are fixed, the relative resistance is only related to 𝑡, and the relative resistance 

decreases as 𝑡 increases [72]. In our experiment, the applied pressure 𝜎 which as the 

object weight also needs to be taken into consideration. We fix other factors unchanged 

and consider 𝜎 and 𝑡 as independent variables separately. At the same time, the resistance 
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of the polymer composite material 𝑅 rather than the relative resistance is studied as a 

dependent variable. Equation (3.1) can be rewritten as: 

𝑅(𝜎; 𝑡) = 𝑓(𝜎; 𝑡|𝐷, 𝜃, 𝜑, 𝜀, 𝜓, 𝑛) (3.2) 

Velostat is used as the piezoresistive resistor in our sensor array design. Except 

for pressure, there are similarities such as tension and mechanical bending will also 

decrease the resistivity of Velostat. Figure 2 shows a schematic diagram of the changes in 

the gap (black area) and conductive carbon particles (white dot) inside the Velostat when 

pressure, tension, and mechanical bending are applied to Velostat. 

 

 

 
Figure 2. Velostat cross-sectional schematic diagram, (a) normal state, (b) with pressure, 
(c) tension applied, (d) mechanical bending. 
 

 

In order to test the influence of the applied pressure 𝜎 and applied time 𝑡 on the 

Velostat resistance, a setup with a push-pull force gauge (Max Load 500 N Stand Tester) 
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was designed in this research, as shown in Figure 3 (a). The setup features a single-input 

single-output (SISO) characterization scheme, as illustrated in Figure 3 (b). 

 

 

(a) (b) 
Figure 3. Evaluation method of Velostat resistance sensitivity, (a) Push Pull Force Gauge, 
(b) measuring circuit. 
 

 

The resistance of Velostat was calculated using Arduino Uno and breadboard. 

Figure 3 (b) shows the schematic diagram of the circuit. The basic principle is a voltage 

divider circuit. The resistance value of Velostat can be calculated by: 

R௦௧௧ = R௪  
𝑉௨௧

𝑉 − 𝑉௨௧

(3.3) 

where R௦௧௧ is the resistance value of Velostat, R௪ is the known resistance value, 

𝑉௨௧ is the output voltage, which is the voltage converted from the value read by the 
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Arduino analog pin, and 𝑉 is the power supply voltage. Push-Pull Force Gauge is used 

to apply different pressures and different times, and the results are presented in Chapter 

Three. 
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CHAPTER THREE 

VELOSTAT SENSOR ARRAY 
 
 
 

3.1 Overview 

After the properties of the Velostat material are parameterized in Chapter Two, 

Chapter Three presents the design, fabrication, and properties experiments of the Velostat 

sensor array. The resistance sensitivity of the Velostat is significantly reduced due to the 

effect of crosstalk in the piezoresistive sensor array. We are concerned with the Velostat 

sensor array under the influence of crosstalk and when the idea pressure and transient 

response are achieved. Therefore, we designed experiments for Velostat resistance 

sensitivity and quasi-static response and proposed three experimental setups accordingly. 

To obtain a high-quality pressure image data set, it was necessary to test the 

electrical properties and the effect of crosstalk on the sensor array. Using the Object 

Recognition Board as an example, we conducted experiments on two crucial parameters, 

object pressure 𝜎 and applied time 𝑡 that affect the resistance of Velostat. For 𝜎, the 

resistance sensitivity of the SISO sensor and a single element in the sensor array were 

measured respectively, and the ideal object weight was found. For 𝑡, the sensor array 

quasi-static response was measured, and the appropriate collection time and release time 

were found. These three experimental setups were used in data collection to obtain 

higher-quality raw pressure image datasets. 

3.2 Design and Fabrication of Velostat Sensor Array 

The three applications: Object Recognition Board, Smart Cushion, and Smart Bed 

Sheet all use the same sensor array fabrication structure and signal processing subsystem. 
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They only differ in protective layer material, size, and resolution. In order to use the 

piezoresistive material Velostat to obtain the pressure information of the object. We have 

fabricated a pressure sensor array with 27 rows and 27 columns. A total of 729 sensors 

are composed of piezoresistive resistance Velostat. We chose the zero-potential method 

[63][73] based on electrical grounding. This method does not require the insertion of 

diodes or crystals to affect the sensor array's flexibility, and the impact on SNR is 

minimal. Furthermore, use shift registers and analog multiplexers to scan the entire 

sensor array row by row to obtain each sensor array point's value. Each element in the 

sensor array is a pixel on the generated pressure image. Figure 4 shows the circuit 

structure of this method. 

 

 

 

Figure 4. Schematic circuit diagram of the sensor array. Twenty-seven shift registers (four 
chips) and twenty-seven analog multiplexes (four chips) are used to select the rows and 
columns to be read. Each row and column have a grounded operational amplifier to 
reduce the impact of crosstalk. 
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As noted in Figure 4, 𝑅(𝑖, 𝑗) is the sensor element in the 𝑖-th row and 𝑗-th column 

of the piezoresistive resistance sensor array made by Velostat. Velostat sensor array has a 

seven-layer structure, and it is a symmetrical structure. The top and seventh layers are 

protective layers. Three applications used different protective layer materials. The second 

and sixth layers are adhesion layers, using 0.236mm 200MP adhesive transfer tape 

acrylic to ensure the firmness of the protective layer and the relative position of the 

conductive thread and Velostat. The third and fifth layers are the column conductive and 

row conductive layers, using conductive threads made of stainless-steel fibers, which are 

soft, easy to fabricate, and have low resistivity. The fourth layer is Velostat material. The 

structure diagram of the sensor array is shown in Figure 5. 

 

 

 
Figure 5. Schematic diagram of the sensor array. Blue is the protective layer, yellow is the 
adhesion layer, the silver thread is the conductive thread, and the black is Velostat. 
 

 

The remaining signal processing circuit consists of operational amplifiers, shift 

registers, analog multiplexers, and Arduino Nano. Arduino Nano scans each element's 
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value by switching rows and columns, and after digital signal processing, it sends each 

element’s value to Processing to generate a pressure image. Figure 6 shows the printed 

circuit board (PCB) of the signal processing circuit. The DuPont line is used as the 

connecting line to facilitate the second production in the later stage. 

 

 

 
Figure 6. PCB for signal processing subcircuits. 
 

 

3.3 Resistance Sensitivity 

For the research of resistance sensitivity, the influence of applied time 𝑡 should be 

eliminated as much as possible. The recording time is fixed to be a one-second delay after 

the pressure is applied. To reduce the jitter and the inaccuracy of delay recording, the 

experiment was repeated three times, and the measurements were averaged. Moreover, 

there was an interval of 1 hour between each experiment to restore Velostat to its initial 

state.  
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Since the resistance sensitivity of the sensor array is a direct factor in generating 

the pressure image, a single element in the sensor array is more worthy of attention. The 

resistance of a single element on the sensor array will be affected by crosstalk, and its 

resistance will be significantly reduced. We define the resistance of a single element in 

the sensor array as the effective resistance, and the resistance of the SISO sensor that is 

not affected by crosstalk as the actual resistance. The actual resistance and the effective 

resistance are compared to observe the effect of crosstalk on the sensor array. Using the 

circuit shown in Figure 7 and (3.3), pressure is applied to Velostat sensor cyclically to 

obtain the relation of the actual resistance and the effective resistance versus applied 

pressure 𝜎. 

 

 

(a) (b) 
Figure 7. Resistance vs. pressure curve. (a) Actual resistance and effective resistance 
comparison, the two exponential curves fitting of the actual resistance, and the actual 
resistance intersection point is 65 Newtons. (b) Effective resistance with pressure curve, 
the two exponential curves fitting of the effective resistance, the effective resistance 
intersection point is 55 Newtons.  
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Figure 7 (a) shows that as 𝜎 increases, the actual resistance decreases 

exponentially in two exponential curves, the first curve will be faster, and the second 

curve will be slower. The actual resistance intersection of these two exponential curves is 

65 Newtons, which means that the actual resistance of the Velostat sensor is more 

sensitive to pressures less than 65 Newtons. At the same time, under the same pressure, 

the effective resistance is almost equal to one-tenth of the actual resistance.  

Figure 7 (b) shows the same properties of effective resistance. When 𝜎 increases, 

the effective resistance decreases exponentially in two exponential curves. The 

intersection is 55 Newtons. According to these two intersections, the ideal weight of the 

object is around 60 Newtons. If the object is too light to be recognizable, additional 

weight (up to 60 Newtons) needs to be applied to make sensor array resistance fall to a 

recognizable value. This leads to the first experiment setup. 

Experiment Setup 1: Object Weight. The ideal object weight is around 60 Newtons for 

high accuracy. 

It is worth noting that although in our experiments, the characteristic of the faster 

exponential curve is not used as one of the experimental setups, it is a versatile 

characteristic that deserves attention. Although the selected ten rigid and easily 

distinguishable objects will bring higher accuracy, the pressure of the objects is evenly 

distributed on several elements due to their uniform texture. If due to uneven texture or 

objective pressure distribution, this may bring more achievable functions to the Velostat 

sensor array, which will be one of the future works. 
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3.4 Quasi-Static Response 

Each element of the Velostat sensor array corresponds to each pixel on the 

pressure image. Due to the non-necessity and inaccuracy of the secondary resistance 

calculation, here we directly use the reading of the Arduino Nano as the value of the 

pixel, which is called the analog reading 𝐺. For applied pressure 𝜎 and applied time 𝑡 that 

affect the Velostat sensor array resistance in (3.2), it is more appropriate to study the 

relationship between 𝜎 and resistance, and the relationship between  𝑡 and 𝐺. Since the 

Velostat sensor array resistance has a higher dynamic range than 𝐺, the curve of 𝜎 and 

resistance can more realistically reflect the changing trend. Applied time 𝑡 as a key factor 

of generating pressure images, directly affects the diversity and quantity of pressure 

image data sets, so the curve of 𝑡 and 𝐺 is more suitable for discussion. 

Quasi-static response is defined to express the relationship between 𝑡 and the 

analog reading 𝐺. According to our experience, during the process of applying pressure 

to the Velostat, the increase rate in the analog reading 𝐺 will slow down. After a long 

enough time, 𝐺 will reach a steady state. First, we define the steady-state analog reading 

𝐺 values in three states: 

𝐺௦௧௧
തതതതതതതത =

1

𝜏
ቌ  𝐺௦௧௧(𝑖)

ೞ்ೌ

ୀ ೞ்ೌିఛାଵ

ቍ

for 𝑠𝑡𝑎𝑡𝑒 ∈ {𝑢𝑛𝑙, 𝑙𝑜𝑎𝑑, 𝑟𝑒𝑙} (3.4)

 

where 𝑠𝑡𝑎𝑡𝑒 represents three possible states. 𝐺௨ represents the analog reading in the 

unloaded state, 𝐺ௗ represents the analog reading in the loading state and 𝐺 

represents the analog reading in the release state. 𝑇ୱ୲ୟ୲ୣ represents the total time of a 
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single 𝑠𝑡𝑎𝑡𝑒 continuously collected, for each state we use the same formula, but 𝑇ୱ୲ୟ୲ୣ is 

different for each state. 𝐺௦௧௧(𝑖) represents the 𝑖-th 𝐺 value in the continuously collected 

element analog reading 𝐺. Due to electrical noise and disturbance, 𝐺 is in an oscillating 

state.  

The steady-state value is obtained by averaging the last unit time length 𝜏 in the 

duration of each state. The green, red, and blue shaded parts of Figure 8  show the steady 

state of unloaded, loaded, and released states. 

 

 

 

Figure 8. Schematic diagram of the analog reading 𝐺 curve with time. Shown as a 
continuous collection of unloaded 𝑇௨ = 5 minutes, then loaded for 𝑇ௗ = 30 minutes, 
and then released for 𝑇 = 30 minutes. The green, red, and blue curves represent the 
analog reading 𝐺 values in the unloaded, loaded, and released states, respectively. The 
green, red, and blue shaded parts represent the steady state of unloaded, loaded, and 
released states for a unit time length 𝜏. 
 

𝜏 
𝑇ௗ 



 26

Whether the element undergoes plastic deformation before and after loading is 

also concerned. The difference 𝑑𝑖𝑓𝑓 between the unloaded state and the released state is 

defined as: 

𝑑𝑖𝑓𝑓(%) =
|𝐺௨
തതതതതത − 𝐺

തതതതത|

𝐺௨
തതതതതത

× 100% (3.5) 

We are interested in how long it takes for an element’s 𝐺 to reach an acceptable 

value. Three quasi-static responses are defined to show the performance of the sensor 

array analog reading 𝐺. Without loss of generality, the acceptable 𝐺 value is a percentage 

of the steady-state value, noted by 𝜇. In our experiment, 𝜇 = 80% (or 90%) is used as 

the percentage. Rise transient 𝑡 of the element 𝐺 from the start of loading until it rises to 

the acceptable 𝐺 value is defined as: 

𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 
∈்ೌ

𝐺ௗ(𝑖) ≥ 𝜇ௗ(𝐺ௗ
തതതതതതത − 𝐺௨

തതതതതത) + 𝐺௨
തതതതതത (3.6) 

Similarly, fall transient 𝑡 of the element analog reading 𝐺 from the start of 

release until it falls to the acceptable 𝐺 value is defined as: 

𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 
∈்ೝ

𝐺(𝑖) ≤  𝐺ௗ
തതതതതതത − 𝜇(𝐺ௗ

തതതതതതത − 𝐺
തതതതത) (3.7) 

𝑡 and 𝑡 as the quasi-static response, we are most concerned about are shown in 

Figure 8. Stability is the relative difference between the 𝐺 value and the steady-state 

value is less than a percentage, noted by 𝛿. In our experiment, 𝛿 = 10% is used as the 
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threshold. Settling transient 𝑡௦ is defined as the element analog reading 𝐺 from the start of 

the state to reach and stabilize at 𝛿 of 𝐺ௗ
തതതതതതത or 𝐺

തതതതത: 

𝑡௦ = 𝑎𝑟𝑔𝑚𝑖𝑛 
∈ ೞ்ೌ

(𝐺௦௧௧(𝑖) − 𝐺௦௧௧
തതതതതതതത)

𝐺௦௧௧
തതതതതതതത

≤ 𝛿௦௧௧

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡௦ ≤ 𝑖 ≤ 𝑇௦௧௧ (3.8)

 

To obtain the steady-state element analog reading 𝐺 in the three states of 

unloaded, loaded, and released, unit time 𝜏 needs to be set. The difference between the 

mean for 5 minutes and 60 minutes of the unloaded state is less than 0.1%. So 𝜏 =

5(mins) is considered to be an appropriate value, short enough not to waste time and 

enough to reflect the steady state. The unloaded state only records a unit time length 

𝑇௨ = 𝜏 = 5(mins). Taking into account the situation of long-term use, the loaded and 

released states collect the total time length is 𝑇ௗ = 𝑇 = 30(mins) to observe their 

changes. In the long-term pressure application, there will always be a period of a slow 

rise in analog reading 𝐺, which is unnecessary for collecting pressure image data sets. 

Therefore, compared to the released state, set 𝜇ௗ = 80% to eliminate the interference 

of the slow rise of the loaded state. Due to the low resolution of Arduino Nano (8-bit 

ADC), the analog reading 𝐺 will oscillate even in steady state. This kind of oscillation is 

acceptable, and what we care about is whether there is a general tendency for the analog 

reading 𝐺. 𝛿௦௧௧ = 10% is set to eliminate the influence of oscillation, and the main 

measurement is when the general trend of change ends. The settings of these parameters 

are shown in Table 1. 
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Table 1. Parameter setting of sensor array performance measurement. 
 

𝜏 

(mins) 

𝑇௨ 

(mins) 

𝑇ௗ 

(mins) 

𝑇 

(mins) 
𝜇ௗ 𝜇 𝛿௦௧௧ 

5 5 30 30 80% 90% 10% 

 

 

Using the setup shown in Table 1, four pixels of the index (5,1), (10,1), (15,1), 

and (20,1) were tested under a force of 100 Newtons. 65-minute pixel 𝐺 change curve is 

shown in Figure 9, and the performance measurement results shown in Table 2 were 

obtained. 

 

 

 

Figure 9. Analog reading 𝐺 change curve of four pixels in three states. The green, red and 
blue curves are unloaded, loaded, and released states, respectively. 
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Table 2. Performance of four pixels analog reading 𝐺 under unloading, loading, and 
release states. 
 

 𝑮(5,1) 𝑮(10,1) 𝑮(15,1) 𝑮(20,1) 

𝐺௨ 143.1967 145.1033 146.5367 141.9467 

Loading 

𝐺ௗ
തതതതതതത 176.6200 174.5400 181.8167 175.5233 

𝐺ିௗ 179 178 184 179 

𝑡(𝑠) 8 10 13 8 

𝑡௦ିௗ(𝑠) 1285 1789 1105 1773 

Release 

𝐺
തതതതത 143.8339 145.5847 146.7375 142.2259 

𝐺ି 142 143 143 140 

𝑡(𝑠) 3 2 4 2 

𝑡௦ି(𝑠) 89 28 96 38 

𝑑𝑖𝑓𝑓(%) 0.44 0.33 0.14 0.20 

 

 

To ensure the diversification of the data set, a lower sampling rate and appropriate 

sampling time are essential. The lower sampling rate is set to 1 sample/sec in our 

experiment. Appropriate sampling rate needs to ensure the number and difference of 

pressure images in the data set, which can be determined by 𝑡. Figure 9 and Table 2  

show that in the first 𝑡 = 10 seconds, the analog reading 𝐺 quickly rises to an acceptable 

value. 𝑡௦ିௗ of each element is greater than 1000 seconds, which proves that the analog 
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reading 𝐺 rises slowly under long-term pressure, and this rise is small enough to be 

ignored. In order to avoid repeated pressure images and the element rising to an 

acceptable value, the collection time is defined as 10 seconds to ensure the diversity and 

universality of the pressure image data set. Based on these facts, the second experiment 

setup is proposed as the following. 

Experiment Setup 2: Collection Time. Only the first 10 seconds of pressure images 

should be continuously recorded. 

In order to ensure that the pressure images are collected with the same initial 

conditions each time, it is essential to release them after the sensor array is used. The 

release time is usually specified by 𝑡ௗ and 𝑡௦ି in Figure 9 and Table 2, 𝑡 is less than 5 

seconds, and 𝑡௦ି is less than 100 seconds. In order to reduce unnecessary waste of 

time, the pressure images are collected for 10 seconds (experiment setup: collection time) 

and then performed a short release. Such a collection action lasted 30 minutes and then 

performed a long release. This short release is given by 𝑡ௗ, and the long release is given 

by 𝑡௦ି. We slightly extend both release transient 𝑡ௗ and 𝑡௦ି to ensure that each 

element on the sensor array is released enough. The short release time is defined as 5 

seconds, and the long release time is defined as 100 seconds. The difference between 

unloaded and released is given by 𝑑𝑖𝑓𝑓. It can be seen that the difference of each element 

is less than 1%, which shows the excellent repeatability of the sensor array. So, the third 

experiment setup is stated below. 
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Experiment Setup 3: Release Time. After continuous collection of images each time, 5 

seconds are required to release. After 30 minutes of collection, an additional 100 seconds 

must be released. 

The entire system, including the sensor array and signal processing subsystem, 

only costs approximately 45 US dollars and demonstrates considerable characteristic 

parameters, as shown in Table 3. 

 

 

Table 3. Velostat sensor array characteristic parameters. 
 

Preset Pressure Resolution 𝑡 𝑡 𝑡௦ିௗ 𝑡௦ି 

60 N 1 Pixel/5 mm ≈10 s ≈5 s > 1000 s < 100 s 

 

 

Comprehensive characterization of the Velostat sensor array has been conducted 

prior to signal processing of the acquired pressure images in the three experiment setups.  
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CHAPTER FOUR 

APPLICATION IMPLEMENTATION AND CLASSIFICATION 
 

4.1 Overview 

In this chapter, according to the Velostat sensor array design and fabrication 

method in Chapter Three, we fabricated three applications to verify the feasibility of the 

Velostat-based pressure sensing system. In order to effectively identify pressure images, 

a convolutional neural network ResNet-PI is proposed as an image classification 

algorithm. Contrast enhancement has been shown to be an effective data preprocessing 

method in our previous work, which is capable of weighting different pixels.  

Based on the proposed design in Chapter Three, we fabricated three applications: 

an Object Recognition Board, a Smart Cushion, and a Smart Bed Sheet. Data collection 

was then performed according to the three experiment setups. ResNet-PI is used to train 

on three datasets respectively and implement different classification tasks. Human-related 

tasks such as sitting posture recognition and sleeping posture recognition are considered 

more challenging. The dataset was collected multiple times to obtain a ResNet-PI model 

with more diversity and temporal universality. Secondary validation is proposed to verify 

the accuracy of the model in real-time applications. 

4.2 Contrast Enhancement 

Since the piezoresistive material Velostat can be regarded as resistant in both the 

unloaded and loaded state, the analog reading 𝐺 of the sensor array is non-zero even in 

the unloaded state. Moreover, due to the fabrication differences of the sensor array, 

electrical noise, and different element positions, the initial analog reading 𝐺 of each pixel 

is different. In order to initialize the bias on each pixel and prevent the analog reading 𝐺 
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from becoming negative, the analog reading 𝐺 of each pixel has been continuously 

collected for a period of time in advance to calculate the mean and standard deviation. 

Each pixel’s original analog reading 𝐺 subtracts the mean to initialize the bias and then 

adds four standard deviations to prevent it from becoming negative.  

𝑮ᇱ(𝑖) = 𝑮(𝑖) − 𝑴𝒆𝒂𝒏 + 4𝑺𝒕𝒅 (4.1) 

where 𝑮(𝑖) is the original analog reading 𝐺 matrix of the sensor array at the 𝑖-th moment. 

𝑮ᇱ(𝑖) is the initial analog reading 𝐺 matrix after the bias is eliminated at the 𝑖-th moment. 

𝑴𝒆𝒂𝒏 and 𝑺𝒕𝒅 are respectively the mean and standard deviation of the analog reading 𝐺 

matrix collected for a period of time (1 hour) in advance. In order to apply contrast 

enhancement to pressure images, we first need to initialize the pixel analog reading 𝐺. 

Only nine pixels of analog reading 𝐺 are shown here for discussion. Table 4 shows the 

detailed information of these 9 pixels analog reading 𝐺. 

Although the low variance and standard deviation (less than 1) show that the 

sensor array is very stable in the unloaded state, due to sensor fabrication and electrical 

noise, each pixel analog reading 𝐺 mean on the sensor array is unevenly distributed in the 

interval 136 to 149. This uneven distribution and high bias will affect the sensitivity and 

recognition accuracy of the pressure image. Equation (4.1) is used here to subtract bias 

and initialize the sensor array.  

After obtaining the initialized analog reading 𝐺 matrix through (4.1), the next 

step is to enhance the contrast between the signal and noise in the pressure image. We 

assume that the output span of pixel analog reading 𝐺 is divided into a low output span 

and a high output span. 

Table 4. Average, variance and standard deviation of nine pixels analog reading 𝐺. 
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Pixel Coordinates Mean Variance Standard Deviation 

G (1,1) 143.1069 0.5979 0.7732 

G (1,10) 141.9957 0.4233 0.6506 

G (1,20) 146.1117 0.3794 0.6160 

G (10,1) 145.7284 0.4498 0.6707 

G (10,10) 142.1016 0.1207 0.3475 

G (10,20) 143.9753 0.2105 0.4588 

G (20,1) 146.7424 0.4633 0.6806 

G (20,10) 142.7388 0.3435 0.5861 

G (20,20) 145.2029 0.4600 0.6782 

 

 

As the pressure increases, the pixel analog reading 𝐺 increases and moves from 

the low output span to the high output span. At the same time, the distribution of 

electrical noise remains unchanged. What we can expect is that there is a high amount of 

electrical noise and a low amount of signal in the low output span. Conversely, there are a 

high amount signals and a low amount of noise in the high output span. The essence of 

the designed contrast enhancement is to increase the high output span while maintaining 

or weakening the low output span.  

We have selected three candidate functions. One Boolean function is the 

thresholding, and two nonlinear scaling functions are power and exponential. 
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Thresholding is our priority as the simplest way to increase the contrast. The formula for 

thresholding can be expressed as: 

𝑮୲୦୪ୢ
ᇱᇱ (𝑖) = ൜

255   , 𝑮ᇱ(𝑖) ≥ 𝛾

0        , 𝑮ᇱ(𝑖) < 𝛾
(4.2) 

where 𝑮୲୦୪ୢ
ᇱᇱ (𝑖) is the threshold contrast enhanced analog reading 𝐺 matrix of the sensor 

array at the 𝑖-th moment. 𝛾 is a custom threshold coefficient to be tested for the best 

result. Thresholding needs to traverse each pixel in 𝑮ᇱ, if the pixel value is greater than 𝛾, 

it is signal, and if it is less than 𝛾, it is noise. Power and exponential are used as common 

nonlinear scaling functions, and they directly calculate 𝑮ᇱ. The formula of power can be 

expressed as: 

𝑮୮୭୵ୣ୰
ᇱᇱ (𝑖) = 𝑮ᇱఈ(𝑖) (4.3) 

where 𝛼 is a custom power coefficient to be tested for the best result. The formula of 

exponential can be expressed as: 

𝑮ୣ୶୮
ᇱᇱ (𝑖) = 𝑒ఉ𝑮ᇲ() (4.4) 

where 𝛽 is a custom exponential coefficient to be tested for the best result. After getting 

the initialized pressure image, Equation (4.2), (4.3), and (4.4) is used to enhance the 

contrast of the pressure image. According to the original pressure image data set, the 

initialized pressure image analog reading 𝐺 changes from 0-5 (low output span) when 

unloaded and changes from 5-15 (high output span) when loaded. 

Although contrast enhancement can effectively attach different weights to the low 

output span and high output span, the classification accuracy is high enough without 

contrast enhancement due to the convolutional neural network's powerful automatic 

feature extraction capability. There are some difficulties in using contrast enhancement to 
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improve the classification accuracy, such as choosing the appropriate coefficient. In 

previous work, we used an exhaustive method to find the most suitable coefficients. 

However, the coefficients found by this method are limited, and they can only be used in 

specific data sets. So, in this thesis, contrast enhancement is not used as data 

preprocessing. It is only used in visualization applications. 

4.3 Convolutional Neural Network 

CNN has been widely used in computer vision for an object, sitting posture, and 

sleeping posture recognition. In our experiment, we also apply CNN to pressure images 

for the CNN can extract feature vectors in the pressure image to calculate the probability 

of an image’s category for matching. Since the size and resolution of the pressure images 

generated by the three applications are the same, the same CNN architecture is used to 

train and identify different pressure image datasets, respectively. 

To use CNN to classify these objects, a residual neural network based on 

ResNet18 [74] was developed. Figure 8 shows the block diagram of the modified version 

of ResNet for Pressure Image (ResNet-PI) in this work. To make the neural network 

more suitable to the collected pressure images (with a low resolution of 27×27×1) in this 

work, a simplified ResNet-PI scheme modified from ResNet-18 is adopted to reduce the 

number of convolutional layers and CNN parameters for a more lightweight CNN 

architecture. In particular, the Dropout layer was added to ResNet-18, as shown in the 

purple block in Figure 10. The dropout layer can prevent the model from overfitting and 

make the model more generalizable. In ResNet-PI model, the Dropout rate is set to 0.2. 

ResNet-PI is implemented in TensorFlow. To detail the configuration, the size of 

the initial convolutional layer is set as 3×3, the stride as 1, the number of initial filters as 
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16, and the total number of layers as 14. With such a lightweight CNN and low-

resolution image data set framework, this configuration not only guarantees overall 

performance sufficient to our requirements but also provides a potential real-time 

solution for other human-related applications. The initial learning rate is 10ିଷ, learning 

rate becomes 0.1 times the initial learning rate after every 100 epochs of training. A total 

of 200 epochs are trained. The batch size is 32, and the selected loss function is 

classification cross-entropy. 

ResNet-PI has 3 ResNet layers, and each ResNet layer has two basic blocks 

(dashed blocks). The ResNet layer is distinguished by different fill colors (blue, red, 

yellow), and down-sampling (dashed line) is required between the two ResNet layers. In 

order to save space, only the first basic block is drawn completely. Each basic block is 

composed of 2D Convolution Filter (Conv), Rectified Linear Unit (ReLU), Batch 

Normalization (BaN), and Dropout. The two layers are connected by the skip layer. 

Finally, the output of the ResNet layer performs the Average Pooling (Avg Pool) 

operation and uses Dense to output the label of the object. 

 

 

 

Figure 10. ResNet-PI architecture block diagram.  
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4.4 Object Recognition Board 

According to the structural design of the general Velostat sensor array in Chapter 

Three, the protective layers of the Object Recognition Board are covered with a 0.0127 

mm polyvinyl chloride (PVC) protective film. This protective film is transparent, soft, 

thin, and cheap. It not only maintains the robustness of the sensor array but also does not 

weaken the pressure signal of the object. Figure 11 annotates the size and resolution of 

the Object Recognition Board. 

 

 

 
Figure 11. Schematic diagram of the Object Recognition Board. 
 

 

For easy movement, better performance, and robustness, the Object Recognition 

Board is placed on a hard wooden board. Figure 12 shows the overall Object Recognition 

Board, including the PCB and sensor array, used to collect object pressure information. 

We have selected ten objects for data collection, with seven objects that are 

distinguishable shape numbers made by LEGOs, and three objects from daily life, 
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including an iron block, a Pepsi can, and a Perrier bottle, as shown in Figure 13. These 

objects were chosen because of their rigidity, distinguishable contours, and low surface 

area characteristics. Combining three experimental setups, the pressure image data set 

was collected by placing these objects at different positions in the Velostat sensor array at 

different rotation angles.  

 

 

 
Figure 12. Object Recognition Board. 
 

 

We collected 8066 original pressure images of 10 objects. Following experiment 

setup: object weight, these ten objects have been added with additional pressure to reach 

60 Newtons. When collecting pressure images, follow the collection time in experiment 
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setup: collection time and the release time in experiment setup: release time. Besides, the 

original data set was expanded four times by rotation and translation.  

The whole data set has 32264 pressure images, which is divided into the training 

data set (22584 images) and test data set (9680 images) at a ratio of 7:3. Figure 14 shows 

the pressure image of ten objects after contrast enhancement. These images are only to 

provide visual application prospects and will not be used for the training of ResNet-PI. It 

can be seen that the objects pressure characteristics are clearly visible even in the case of 

low resolution and noise. 

 

 

 
Figure 13. Ten objects were used to collect object pressure information. The order from 
left to right and top to bottom is Pepsi, Perrier, one, two, iron block, seven, three, five, 
nine, eight. Since four, six, and nine are easily confused, only one of them is selected. 
Pepsi, Perrier, and iron block collect the bottom pressure image in the direction shown in 
the figure. Seven LEGO numbers are flipped to collect pressure images of the numbers 
side. 
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Figure 14. Pressure images of ten objects after contrast enhancement. 
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The confusion matrix is shown in Figure 15, which can be seen that most of the 

errors come from similar object pressure images, such as "three" with "eight" and "five" 

with "eight" have been confused. The main reason may be that the resolution of the 

fabricated sensor array is not high (the distance between the two pixels is approximately 

5 mm), and the edge features of objects may be in the blank area between two elements. 

Figure 16 (a) and Figure 16 (b) show the accuracy curve and loss curve of the model, 

respectively. The obvious convergence and close match of the processed data to the 

training model validate that our model parameter settings are appropriate for such an 

application. 

 

 

 
Figure 15. Confusion matrix for ResNet-PI recognizing ten objects. 
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(a) (b) 
Figure 16. ResNet-PI training model for 10 objects, (a) model accuracy curve, (b) model 
loss curve. 

 

 

To highlight the advantages of the ResNet-PI we designed, Table 5 compares 

several common image classification algorithms. It can be seen that the pressure image 

data set generated by our Velostat sensor array has distinguishability, which can work on 

multiple popular CNNs and achieve valuable accuracy. Also, it can be observed that with 

a much simplified and light weighted scheme configured to our Velostat sensor array, 

ResNet-PI demonstrates a remarkable accuracy that’s comparable to some other popular 

CNNs. The performance suggests its great potential in many other human-related 

applications where real-time classifications are highly desired.  

 

 

Table 5. Comparison of accuracy between ResNet-PI and four other classification 
algorithms. 
 

ResNet-PI AlexNet [49] VGG19 [50] ResNet-50 [51] 

0.9914 0.9923 0.9659 0.9912 
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4.5 Smart Cushion 

Smart Cushion has the same structure as the Object Recognition Board, but 100% 

cotton cloth is chosen as the protective layer material because of its firmness, comfort, 

and low price. Compared with PVC protective film, cotton cloth is sturdier and more 

suitable for human sitting activities. Figure 17 (a) shows the designed human sitting 

posture collection system. When the human body sits on the Smart Cushion, Velostat 

receives different human body pressure distributions and produces different resistance 

distributions. In order to ensure that the initial conditions of the experiment remain 

unchanged, when each sitting posture of the subject is collected, the relative position of 

the laboratory seat and the Smart Cushion should be kept unchanged. For this reason, we 

use tape to fix the Smart Cushion and the PCB on the laboratory chair seat and backrest, 

as shown in Figure 17 (b) and Figure 17 (c), respectively. The pressure sensor array made 

by Velostat is made in the middle of the Smart Cushion, leaving room around for 

conductive threads. According to experience and previous literature, the Smart Cushion is 

placed in the area where the human body contacts the laboratory chair seat and generates 

the most significant pressure, as shown in Figure 17 (d). 

Based on daily life experience and previous literature, we set up five sitting 

postures: (a) normal, (b) forward, (c) backward, (d) left & right, (e) upright, as shown in 

Figure 18. These five sitting postures all change from the "normal" sitting posture, and 

"forward" represents thinking in daily activities, and the body's center of gravity moves 

forward. "Backward" stands for rest and the center of gravity of subject moves backward. 

"Left & right" represents a relaxed and lively left and right cross-legged posture, and 

people usually appear in this sitting posture when watching TV and movie.  
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(a) (b) 

(c) (d) 
Figure 17. Human sitting posture collection system. (a) Overall sitting posture collection 
system includes the Smart Cushion, signal processing subsystem PCB and a host 
computer, (b) the Smart Cushion fixed on the laboratory chair seat, (c) the signal 
processing subsystem PCB fixed behind the laboratory chair backrest, (d) schematic 
diagram of the Smart Cushion structure. 
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"Upright" represents a sitting posture that is usually tense and attentive when 

listening to a lecture. At this time, only half of the buttocks are on the chair, and the 

position of the caudal vertebra will move forward. The "upright" sitting posture 

deliberately changes the position of the caudal vertebrae to meet the requirements of 

various sitting posture recognition tasks. 

 

 

 
Figure 18. Schematic diagram of 5 sitting postures in human daily activities, (a) normal, 
(b) forward, (c) backward, (d) left & right, (e) upright. 
 

 

In our experiment, human sitting posture data collection followed the 

experimental setup in the previous study. When the subjects sat down and adjusted their 

posture, they began to collect 10 seconds of data continuously, and the sampling 

frequency was 2 samples/sec. After every 10 seconds of continuous data collection, the 

subject needs to stand for at least 5 seconds, and release at least 100 seconds in the 

middle of each posture to make the Smart Cushion release to its initial state. Figure 19 

shows the pressure image of the subject's "normal" sitting posture, and the contours of the 

thighs and the areas of different pressure distribution can be clearly seen, which shows 
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the prospect of the Smart Cushion in visualization applications. Again, Figure 19 is just 

for visualization purposes, and only raw pressure images are used for ResNet-PI training. 

In general, a trained CNN model usually performs better on a dataset that is not 

sufficiently diverse, and the CNN model will overfit in this case. Such a CNN can only fit 

the data well on the training data. Although it is evident that our pressure images have 

huge noise and ResNet-PI also uses Dropout layers to avoid overfitting, we noticed that 

the trained ResNet-PI does not perform well in developing real-time applications. 

 

 

 

Figure 19. The pressure image of the subject's "normal" sitting posture after contrast 
enhancement, filtering, and resizing. 

 

 

Unlike the Object Recognition Board, the pressure images generated by the Smart 

Cushion cannot be rotated and flipped to expand the number of pressure images for a 

more diverse dataset. The pressure distribution generated by the human sitting posture 

always has the same orientation (people do not sit facing the backrest). We believe that 

the main reason for low diversity is that the subject’s muscle memory when the sitting 
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posture is collected leads to the singularity of the sitting posture in the data set, and the 

sitting posture when the real-time application is developed a few days later is quite 

different from the original data set. The secondary reasons include changes in the 

subject's weight, laboratory temperature, the initial state of the Smart Cushion, and the 

electrical resistance of the Smart Cushion after long hours of work.  

To obtain a time-universal ResNet-PI model suitable for real-time applications, 

we collected sitting postures at different times to generate the dataset. We collected four 

datasets at different times in two days, with an interval of six hours between each data set 

to obtain diverse pressure images. These four datasets are all collected with 500 

(samples/dataset/posture), a total of 10,000 sitting posture images dataset for ResNet-PI 

training. Then on the third day, 100 (samples/posture) were collected, a total of 500 

sitting posture images secondary validation dataset was used to test the temporal 

universality of the Smart Cushion. 

Figure 20 (a) shows that the sitting posture test dataset collected multiple times 

has a confusion matrix with an accuracy of 1.0. Figure 20 (b) shows that the secondary 

validation dataset has a confusion matrix with an accuracy of 0.9660. It can be seen that 

the trained ResNet-PI model possesses high accuracy even for the data collected on the 

third day, which demonstrates the temporal universality and diversity of the model. 

4.6 Smart Bed Sheet 

Compared with the Object Recognition Board and the Smart Cushion, the Smart 

Bed Sheet is changed on the basis of the Smart Cushion in order to meet the large area 

requirement of human sleeping posture and the low fabrication price. According to the 

previous discussion of the Velostat sensor array, the pressure distribution represented by 
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the pressure image is only related to the resistance of the Velostat at the intersections of 

the row and column conductive threads (pressure sensor elements) and the pressure 

distribution between the elements is not valid. 

 

 

 
(a) (b) 

Figure 20. Confusion matrix of sitting posture recognition, (a) test dataset, (b) second 
validation dataset. 

 

 

Therefore, we use separated Velostat sensor elements as shown in Figure 21, 

which has three advantages: saving material, avoiding stray current flowing through the 

Velostat resistance material to adjacent elements, and avoiding the deformation caused by 

human body pressure to affect adjacent elements through the material. The design 

approach of separated Velostat sensor elements can reduce the use of Velostat material 

by 64%. 

Figure 21 (a) shows the structure, size, and actual sensing area of the Smart Bed 

Sheet. Unlike the Object Recognition Board and the Smart Cushion, the distance between 
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sensor elements in the vertical and horizontal directions of the Smart Bed Sheet is not 

equidistant, as shown in Figure 21 (b). In order to conform to the length and width of the 

human body when lying on the bed, the size of the Smart Bed Sheet is set to be equal to 

the Queen size, and the actual sensing area will be slightly smaller than the bed sheet. 

Figure 22 (a) shows the Smart Bed Sheet placed on a Queen size mattress for 

collecting subject sleeping posture data. The fabricated Smart Bed Sheet is flexible, soft, 

and portable, and Figure 22 (b) shows its foldability and low weight. 

Referring to daily life experience and previous literature, we set up four sleeping 

postures: (a) supine, (b) prone, (c) left lateral, (d) right lateral, as shown in Figure 23. 

These four sleeping postures are mainly defined by the chest orientation, which is up, 

down, left, and right, respectively. To ensure the diversity of the pressure image dataset, 

subjects were asked to perform data collection on the Smart Bed Sheet as in daily sleep, 

which included acceptable translation and rotation of the subject's body relative to the 

Smart Bed Sheet. In addition to the position of the subject's body on the Smart Bed Sheet, 

the rotation and bending of the subject's limbs relative to the body were also acceptable, 

as shown in Figure 23. 

On the basis of following three experimental setups, the sampling period was set 

to 5 seconds, and the sampling frequency was set to 2 samples/sec. Between each 

sampling period, subjects were asked to leave the Smart Bed Sheet for at least 5 seconds 

and then lie down in a different relative position and rotation. One thousand periods were 

collected for each sleeping postures, so a total of 40,000 sleeping posture pressure images 

dataset were collected. 
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(a) 

 
(b) 

Figure 21. Schematic diagram of the Smart Bed Sheet, (a) structure, size, and actual 
sensing area, (b) separated sensor elements size and spacing. 
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(a) (b) 

Figure 22. Actual image of the Smart Bed Sheet. (a) Smart Bed Sheet is placed on a 
Queen size mattress, (b) The Smart Bed Sheet is folded and the total weight is 2749 
grams. 

 

 

 

Figure 23. Schematic diagram of four sleeping postures, (a) supine, (b) prone, (c) left 
lateral, (d) right lateral. The subjects' diverse sleeping postures are indicated by the 
shaded bodies. 

 

 

Figure 24 shows the pressure image of the subject's "supine" sleeping posture, and 

the human body pressure distribution can be clearly seen, which shows the prospect of 

the Smart Bed Sheet in visualization applications. Again, Figure 24 is just for 

visualization purposes, and only raw pressure images are used for ResNet-PI training. 
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Using a similar strategy as for sitting posture recognition, data collection for 

sleeping posture also follows the diversity and temporal universality approach. The 

dataset used for training was collected at different times over multiple days, a total of 

10,000 sleeping posture images dataset for ResNet-PI training. In addition to this training 

dataset, a secondary validation dataset was collected the following day to verify the 

temporal universality of the Smart Bed Sheet. 

 

 

 

Figure 24. The pressure image of the subject's "supine" sleeping posture after contrast 
enhancement, filtering, and resizing. 

 

 

Figure 25 (a) shows that the sleeping posture test dataset collected multiple times 

has a confusion matrix with an accuracy of 1.0. Figure 25 (b) shows that the secondary 

validation dataset has a confusion matrix with an accuracy of 0.9990. It can be seen that 

the trained ResNet-PI performs well on both the test dataset and the secondary validation 

dataset, which shows the ability of the model to handle datasets of different times and the 

prospect of developing real-time applications. 
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(a) (b) 

Figure 25. Confusion matrix of sleeping posture recognition, (a) test dataset, (b) second 
validation dataset. 
 

 

According to the high classification accuracy of the three applications, we verified 

that the generality of the proposed Velostat-based pressure sensing system. The Object 

Recognition Board, Smart Cushion, and Smart Bed sheet were fabricated to achieve 

different recognition and classification tasks. Although they have similar structures and 

materials, they have different sizes and resolutions. Especially the pressure-sensing 

system also receives different pressure distributions according to different recognition 

tasks.  

The specific characteristics of the proposed Object Recognition Board, Smart 

Cushion, and Smart Bed Sheet are shown in Table 6. This table shows that our pressure 

sensing system can develop effective applications at different sizes and resolutions, 

demonstrating its generality and utility. 
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Table 6. The specific characteristics of the proposed Object Recognition Board, Smart 
Cushion, and Smart Bed Sheet. 
 

 
Model Size 

(𝑚𝑚 × 𝑚𝑚) 

Sensing Size 

(𝑚𝑚 × 𝑚𝑚) 

Resolution 

(𝑚𝑚 × 𝑚𝑚
𝑃𝑖𝑥𝑒𝑙ൗ ) 

Price 

(USD) 

Object Recognition 

Board 
140 × 140 140 × 140 5 × 5 25 

Smart Cushion 381 × 381 304.8 × 304.8 11.3 × 11.3  45 

Smart Bed Sheet 2030 × 1525 1785 × 1395 67.3 × 52.3 220 
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CHAPTER FIVE 

CONCLUSION 
 
 

5.1 Overview of Thesis 

In this thesis, a pressure sensing system based on a Velostat sensor array is 

presented for acquiring and processing pressure image datasets. The system includes a 

Velostat piezoresistive sensor array, a signal processing subsystem, and a convolutional 

neural network ResNet-PI for recognizing pressure images. The parameters, such as 

pressure 𝜎 and applied time 𝑡 that affect the Velostat material and sensor array output are 

discussed. According to the resistance sensitivity and quasi-static response, three 

experiment setups are developed, including object weight, collection time, and release 

time, which can increase the universality, repeatability, and reliability. ResNet-PI was 

developed to recognize and classify pressure images from three applications: Object 

Recognition Board, Smart Cushion, and Smart Bed Sheet. In particular, data collection is 

performed multiple times in human-related applications to increase the diversity and 

temporal universality of the dataset. ResNet-PI recognized ten objects, five sitting 

postures, and four sitting postures and achieved the best recognition accuracy of 0.9914, 

0.9660, and 0.9990, respectively. In summary, through thorough characterization of 

Velostat material and sensor array, we have demonstrated that such sensor array can be 

used for the generation of reliable pressure images. The lightweight ResNet-PI also 

provides a high-performance, considerable accuracy, and feasible recognition and 

classification solution for this system. 
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5.2 Future Directions 

What we have demonstrated is that our current framework is a viable solution to 

the still image recognition task. However, in the real world, most pressure recognition 

tasks are dynamic tasks, as we discuss in Chapter 1.4. It can be anticipated that with 

added a special neural network layer for time correlation processing, the system 

presented in this paper can be readily extended to more human-related applications where 

real-time pattern recognitions are vital. Generally speaking, this special neural network 

layer can be Long short-term memory (LSTM), 1D CNN, and fully connected (Dense) 

layer, etc., which correspond to different processing methods for features. In this dynamic 

image recognition neural network, ResNet-PIs corresponding to the number of input 

images first extracts the features of the pressure images, and then a special neural 

network layer processes the relationship between this series of images. Take LSTM as an 

example, one of the most popular neural network layers for processing time, it can be 

used to process a series of outputs of ResNet-PI. In addition to dynamic classification 

applications, considering the time-varying characteristics of Velostat resistance, noise, 

subject habits, etc., such a CRNN is a necessary neural network for future real-world 

applications.  

Another future direction is to have more clearly visible, higher contrast, and high-

resolution visualization applications. The fabrication of pressure sensor array hardware 

and related applications presents difficulties, especially in large size and high-resolution 

applications. However, the increase in size and resolution is limited for recognition 

accuracy gains due to marginal effects. Current sensor arrays generate pressure images 

with a resolution of 27 × 27, which is far from adequate for visualization applications in 



 58

human activity monitoring. In addition to filtering and contrast enhancement, super-

resolution of current pressure images is also a necessary research scheme. Traditional 

super-resolution methods include bicubic interpolation, deep neural network and, 

generative adversarial network [82]. Our future direction is to develop a super-resolution 

generative adversarial network applied to pressure images. This SRGAN-PI achieves 

super-resolution by learning from our pressure image dataset as well as publicly available 

high-resolution human lying pose dataset [83]. This high-resolution dataset makes it 

possible for our system backend to output high-quality monitoring. 
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