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ABSTRACT

TRANSLATION-BASED MULTIMODAL LEARNING

by

ZHENGYI LU

Adviser: Jia Li, Ph.D.

Multimodal learning has become a critical area of research in artificial

intelligence, aiming to effectively integrate and translate information across different data

modalities such as images, text, and audio. However, existing approaches often struggle

with data scarcity and robustness when modalities are incomplete or missing. To address

this gap, this work investigates translation-based multimodal learning through two

complementary approaches: xDSBMIT and TransTrans, corresponding to end-to-end and

representation-level translation methods.

The xDSBMIT framework integrates the Diffusion Schrödinger Bridge (DSB)

with the diffusion process, offering an effective solution for multimodal image translation,

specifically applied to Synthetic Aperture Radar (SAR) to Electro-Optical (EO) and

Infrared (IR) image translation. TransTrans addresses multimodal sentiment analysis

through representation-level translation, reconstructing missing modalities in real-time

using a Transformer-based architecture. In experiments, xDSBMIT achieved high-quality

translations in SAR2IR and SAR2EO tasks with limited datasets, significantly

outperforming traditional methods. TransTrans demonstrated superior performance in

sentiment analysis under missing modality conditions. Overall, xDSBMIT and TransTrans

provide complementary solutions to challenges in translation-based multimodal learning,

advancing the state-of-the-art in image translation and sentiment analysis.
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CHAPTER ONE

INTRODUCTION

1.1 Translation-based Learning

With the rapid development of deep learning, multimodal Learning has become a

research hotspot in the field of Artificial Intelligence (AI). Among these, translation, as a

core technology, has achieved great success in Natural Language Processing

(NLP) [14–17]. Traditional text translation aims to achieve information conversion

between different languages, which is essentially data mapping between different

domains. The extension of this concept allows us to perform image-to-image translation

between different visual domains, such as style transfer and cross-sensor data conversion.

Initially, Neural Machine Translation achieved high-quality translation from source

language to target language through encoder-decoder architectures [15] and attention

mechanisms [18]. This success inspired researchers to apply similar architectures to the

image domain, proposing encoder-decoder-based Image-to-Image Translation [19]. Some

researchers use the Generative Adversarial Network (GAN) [20] framework to achieve

this, such as using cGAN [21] to assist translation with additional information or using

CycleGAN [22] for unpaired translation. Others employ the VAE [23] framework to learn

the probability distribution of data for high-quality image translation. The goal of both

methods is to learn the mapping from one image domain to another while preserving the

fundamental content of the images. For example, translating label maps into

photographs [13], or converting daytime cityscapes into nighttime scenes [24].

Furthermore, the concept of image translation has been extended to image

conversion between different styles and sensors. Style Transfer allows us to combine the

content of one image with the style of another, creating unique artistic effects [25, 26]. In

1



fields such as remote sensing and medical imaging, different sensors may capture different

features of the same scene. Through translation models, we can achieve mutual generation

between these different images. [27–31].

Meanwhile, Translation-Based Learning has been introduced into conversions

between other modalities, such as Image-to-Text [32–35], Audio-to-Text [36, 37],

Audio-to-Image [38], Image-to-Audio [39], and Text-to-Image [40]. The generated results

from these modality translations are new modalities, and the current needs of multimodal

learning have further developed, requiring repeated modality fusion after generating new

modalities.

1.2 Multimodal Learning

As the limitations of translation learning between modalities became increasingly

evident, researchers have sought to enhance these models by combining multimodal

learning [41] with the rapidly evolving field of representation learning [42]. This

integration allows for a deeper understanding of each modality’s unique features—be it

text, visual, or audio data—by representing them at the feature level before fusing the

learned representations. By utilizing shared representations, models can bridge the gap

between different data modalities, leading to more effective and complementary

information exchange across domains. This approach has enabled significant

improvements in tasks that require the integration of multiple modalities, such as machine

translation, image-to-text conversion, and audio-visual sentiment analysis.

Multimodal translation-based learning capitalizes on this concept by not only

enabling the mapping of information across modalities but also allowing the underlying

models to learn the intrinsic correlations and dependencies between these modalities.

Unlike conventional unimodal models, which focus on translating one type of data (e.g.,

text-to-text or image-to-image), multimodal translation-based learning aims to translate
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information between fundamentally different types of data. For example, the translation of

text into corresponding images or the generation of audio descriptions from video inputs.

By pre-representing the text, visual, and audio modalities and then merging these features

at a shared representation level, the resulting models can more effectively harness the

strengths of each modality, thereby improving the overall task performance.

One of the most significant applications of this approach is Multimodal Sentiment

Analysis [43–46]. In sentiment analysis, where emotion or opinion must be extracted

from data, relying on a single modality can be insufficient. For example, speech signals

may be distorted by excessive background noise, video frames might be occluded by

visual distractions, and textual data may be ambiguous or lack contextual depth. In such

scenarios, translation-based learning across multiple modalities becomes crucial. Through

multimodal fusion, these models can combine the information provided by

complementary data types—such as using video cues to supplement missing information

from audio or text. This process leads to a more robust analysis, enabling the system to

mitigate issues like noise, missing data, or ambiguities from individual modalities, thereby

improving the accuracy and robustness of sentiment recognition [47–53].

Multimodal translation-based learning, therefore, represents a significant leap

forward in the broader field of artificial intelligence, particularly for applications that

require rich, contextual understanding of diverse datasets. Whether it’s transforming

images into detailed textual descriptions, generating audio from visual inputs, or

enhancing sentiment analysis through multimodal fusion, this approach opens new

avenues for achieving higher performance in tasks that benefit from cross-modal learning.

By bridging the gaps between different types of sensory inputs, translation-based learning

not only addresses the limitations of unimodal systems but also unlocks the potential to

better capture the complex relationships inherent in multimodal data.
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1.3 Key Contribution

The two key approaches explored in this thesis, Explainable Diffusion Schrödinger

Bridge Model for Image Translation (xDSBMIT) and TransTrans, represent distinct

advancements in the field of translation-based multimodal learning, each catering to

unique challenges within specific application domains.

The first key attempt at end-to-end translation explored in this thesis is the

Diffusion Schrödinger Bridge (DSB) framework. DSB integrates the diffusion process

with the Schrödinger Bridge problem, a method that enhances both stability and

interpretability in multimodal image translation. The diffusion model progressively

transforms one image domain into another by leveraging the unique characteristics of the

image distributions. Applied to Synthetic Aperture Radar (SAR) to Electro-Optical (EO)

and Infrared (IR) image translation, this approach enables efficient, high-quality

translations even with limited datasets, offering significant improvements in remote

sensing applications.

The second key approach, focusing on representation-level translation, is the

TransTrans framework. Unlike xDSBMIT, which focuses on an end-to-end translation

mechanism, TransTrans addresses multimodal sentiment analysis by leveraging

translation-based learning to handle missing modalities in real-time. This

Transformer-based system incorporates a translation-driven mechanism that reconstructs

missing modalities, such as predicting missing visual data from audio and text features.

This not only enhances the robustness of multimodal learning but also improves sentiment

prediction accuracy, making it a powerful framework for scenarios with incomplete data.

The xDSBMIT framework excels in terms of interpretability and performs

remarkably well with limited data. By integrating the Diffusion Schrödinger Bridge with

multimodal image translation, xDSBMIT leverages the unique characteristics of different

modalities to achieve high-quality translations, even with small datasets. On the other
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hand, the TransTrans framework combines Transformer architecture with various

pre-trained models, tailoring its feature extraction methods to the specific characteristics

of each modality. This approach ensures that each modality—whether it be audio, text, or

visual data—is processed optimally, resulting in more robust and accurate sentiment

analysis, particularly in scenarios where data may be incomplete.

These two models demonstrate how translation-based learning can be applied

across diverse fields, from image translation in remote sensing to sentiment analysis in

social media and customer feedback. By addressing both data scarcity and multimodal

robustness, xDSBMIT and TransTrans provide complementary solutions that push the

boundaries of current multimodal learning research.

• xDSBMIT (Multimodal Image Translation):

– High interpretability and stability in image translation tasks.

– Effective in translating between SAR, EO, and IR images.

– Performs exceptionally well with limited datasets, reducing the need for

large-scale labeled data.

– Suitable for remote sensing and satellite imagery applications.

– Utilizes the Diffusion Schrödinger Bridge to achieve stable transformations

across image modalities.

• TransTrans (Multimodal Sentiment Analysis):

– Integrates Transformer architectures with pre-trained models for

modality-specific feature extraction.

– Specializes in handling audio, text, and visual data for sentiment analysis tasks.

– Improves robustness by reconstructing missing modalities in real-time.
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– Enhances sentiment prediction accuracy, especially in scenarios with

incomplete or noisy data.

– Focuses on the unique characteristics of each modality, ensuring optimal

feature processing.

Together, these two frameworks reflect the power of translation-based multimodal

learning, offering innovative solutions across different domains. As we move forward, the

next sections will explore the detailed architecture and experimental evaluation of these

models, providing insight into their performance and contributions to the broader field of

multimodal learning.
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CHAPTER TWO

LITERATURE REVIEW

2.1 END-TO-END TRANSLATION

End-to-end translation methods aim to directly map input from one modality to

another in a fully integrated system, where the entire translation process is trained jointly

without intermediate steps. These methods leverage deep learning techniques to learn

complex transformations between modalities such as image-to-image, text-to-image, and

audio-to-text translation. They have become increasingly significant in a variety of

applications, ranging from artistic content generation to practical uses in medical imaging

and autonomous systems.

One of the most successful approaches in end-to-end translation is the

encoder-decoder architecture, which was initially popularized in neural machine

translation (NMT) tasks [16]. In this framework, the encoder transforms the source

modality into an intermediate representation, which is then passed through a decoder to

generate the target modality. These architectures have been extended beyond text-based

tasks to applications such as image-to-image translation [13], audio-to-text

translation [36, 37], and other cross-modal tasks. An important enhancement in this

architecture is the incorporation of attention mechanisms [18], which dynamically focus

on relevant parts of the input during translation, significantly improving performance in

both natural language and image domains. The attention mechanism has also facilitated

the handling of long-range dependencies, enabling more accurate translation even with

complex and high-dimensional input data.

Another significant end-to-end translation approach is the use of conditional

generative adversarial networks (cGANs), which incorporate additional information, such
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Figure 2.1: Pix2Pix Framework. Source: [13]

as labels or other conditional data, to guide the generation process [21]. Unlike standard

GANs, cGANs have proven effective in generating high-quality outputs in tasks like

text-to-image and image-to-image translation. One of the pioneering models in

image-to-image translation is Pix2Pix, as shown in Fig 2.1, which is built on a conditional

GAN framework and is specifically designed for tasks with paired data [13]. Pix2Pix

learns the mapping from one domain to another by leveraging the known correspondence

between input and target images, and has been used for translating sketches into realistic

images, colorizing grayscale images, and converting semantic label maps into

photorealistic scenes. Pix2PixHD extends this approach by enabling high-resolution

image generation, making it suitable for more detailed and photorealistic outputs [24].

These models have been instrumental in advancing applications in content creation,

artistic style transfer, and realistic image synthesis. When paired data is not available,

CycleGAN introduces an innovative solution by enforcing cycle consistency [22].

CycleGAN allows training in scenarios where paired training data is unavailable, making

it applicable to a wide range of tasks such as style transfer, cross-sensor image translation,

and medical imaging [27]. This model addresses the challenge of unpaired translation by

ensuring that an image translated to another domain and back yields the original image,

thus maintaining consistency across translations. The cycle consistency constraint has
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made CycleGAN a powerful tool for many real-world applications where paired data is

challenging to collect, such as translating between artistic styles or enhancing satellite

images.

Variational Autoencoders (VAEs) provide yet another approach to end-to-end

translation by learning the latent probability distributions of the input modalities [23].

VAEs are effective in generating outputs that resemble the input data distribution, making

them suitable for tasks like image generation and style transfer. By learning a latent space

that can be sampled to generate new data, VAEs have found applications in synthetic

medical image generation and translating between different imaging modalities. Their

probabilistic nature allows VAEs to generate diverse outputs, making them useful for

scenarios where output variability is desired, such as in data augmentation for training

other deep learning models.

The Recurrent Multistage Fusion Network (RMFN) uses recurrent neural

networks (RNNs) to perform multistage fusion across different modalities, refining

features at each stage to capture both local and global dependencies [54]. This approach

has been particularly successful in tasks requiring temporal context, such as video-to-text

or speech-to-text translation, demonstrating the effectiveness of end-to-end models in

handling sequential data. By refining features across multiple stages, RMFN captures

intricate temporal patterns, making it highly effective for applications in video

summarization, human activity recognition, and multimedia analysis.

Transformer-based models have recently gained prominence in multimodal

end-to-end translation tasks, where their self-attention mechanisms enable capturing

long-range dependencies between different modalities [17]. Transformers are highly

effective in tasks such as video-to-text translation and audio-to-image generation,

achieving state-of-the-art results due to their parallel processing capabilities and attention

layers. Unified model architectures, such as GPT-3 and BERT-based multimodal
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transformers, aim to integrate multiple tasks and modalities into a single framework,

simplifying the training process and improving performance across various tasks. These

models utilize shared embeddings and attention layers to process multiple modalities in an

end-to-end fashion, paving the way for highly generalizable models that can handle a wide

range of translation tasks [55]. The flexibility and scalability of transformers have made

them an indispensable tool in tasks involving large datasets and complex multimodal

interactions, such as in virtual assistants and autonomous systems.

Diffusion-based models have also gained attention for their effectiveness in

modality translation. In paired translation tasks, diffusion models iteratively denoise latent

representations to match the target modality, ensuring smooth transitions between

modalities. Brownian Bridge-based diffusion methods have been particularly effective in

image coloring, where the model refines an initial noisy grayscale image into a fully

colored output through a series of stochastic transformations [56]. More advanced

approaches, such as the Diffusion Schrödinger Bridge (DSB) model, have been applied to

image-to-image (I2I) translation, learning to map between source and target modalities by

solving a Schrödinger Bridge problem, which improves image quality and provides

interpretable dynamics of the diffusion process [57, 58]. Additionally, recent research

from Tsinghua University has extended the Schrödinger Bridge framework to speech

translation tasks, enabling robust cross-modal translations between speech and text by

leveraging the smoothness and flexibility of diffusion processes, achieving state-of-the-art

results in multilingual speech translation [59]. The ability of diffusion-based models to

provide smooth and consistent transformations between modalities makes them a

promising direction for future research in tasks involving intricate cross-modal dynamics,

such as multi-language speech synthesis and detailed medical imaging translations.

An important recent development in end-to-end translation is DALL-E, an

advanced text-to-image model that represents a significant breakthrough in generating
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photorealistic images based on textual descriptions [40]. By using a transformer-based

architecture, DALL-E is capable of capturing intricate relationships between objects and

scenes, highlighting the potential of multimodal learning in creative tasks where input

modalities are vastly different. The success of DALL-E showcases the power of deep

learning in bridging the gap between text and visual understanding, opening new

possibilities in areas such as graphic design, content creation, and even assisting in

complex design processes across industries.

2.2 Representation-level Translation and Its Applications

Representation-level translation aims to learn shared latent spaces between

different modalities, thereby enabling models to effectively fuse and align information at a

representation level. This approach offers enhanced robustness to noise and missing data,

providing flexibility for a wide range of applications, including multimodal sentiment

analysis, medical imaging, cross-modal retrieval, and text-to-image generation. Compared

to end-to-end translation methods, representation-level approaches offer superior

adaptability and generalizability.

Effective representation-level translation requires precise alignment of the latent

spaces of different modalities. He et al. [60] demonstrated that masked autoencoders can

learn scalable latent space representations, facilitating the alignment between available

and missing modalities. However, while masked autoencoders offer significant

improvements, they may struggle with capturing complex inter-modal relationships. To

address this, graph-based fusion approaches have emerged as an effective solution that can

capture complex dependencies between modalities through graph-based structures.

Graph-based fusion has emerged as another significant approach for multimodal

fusion, effectively modeling relationships between different modalities by representing

them as nodes in a graph. Bischke et al. [61] illustrated the efficacy of this method in
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building segmentation tasks. By representing each modality as a node, the

message-passing algorithm integrates the available data into the latent representation

space, ensuring that the model can effectively handle missing modalities. Despite its

effectiveness, graph-based approaches are often computationally intensive, which can be a

limitation in large-scale applications. This has led to growing interest in using more

computationally efficient methods, such as Variational Autoencoders (VAEs), for handling

missing modalities.

Variational Autoencoders (VAEs) have also been employed to generate

representations for missing modalities by learning the latent distribution of the available

data. Hamghalam et al. [62] demonstrated that VAEs can impute missing information in

medical segmentation tasks by leveraging learned latent representations, thereby

generating accurate segmentation results. While VAEs provide a probabilistic framework

for handling missing data, they may still struggle with modeling highly structured data or

capturing long-range dependencies between modalities. To address this, hierarchical

encoder-decoder structures have been proposed as an extension to VAEs to better capture

complex data distributions.

Li et al. [63] proposed the use of hierarchical encoder-decoder structures to

generate missing modality representations, enabling downstream tasks to benefit from a

more comprehensive multimodal representation space. Although this hierarchical

approach enhances the ability to model complex data, it often requires extensive

computational resources and careful tuning. This limitation has motivated researchers to

explore more efficient architectures that can still effectively model inter-modal

relationships, such as the Transformer.

The Transformer architecture has also been effectively adapted to

representation-level translation. Tsai et al. [55] proposed a multimodal transformer model

that aligns features across modalities by mapping them into a common latent space. This
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approach allows for the effective processing of unaligned multimodal language sequences,

demonstrating the utility of representation-level translation in handling missing data in

natural language processing tasks. However, Transformer models can be sensitive to

modality alignment errors and require a large amount of training data. These limitations

have driven the development of alternative approaches like cross-modal fusion, which

directly leverages shared latent spaces to improve alignment robustness.

In medical imaging, Zhou et al. [64] and Sun et al. [65] explored cross-modal

fusion for brain tumor segmentation. By leveraging a shared latent space across MRI

modalities, their models effectively address the issue of missing modalities, leading to

improved segmentation performance. However, achieving well-aligned latent spaces

remains challenging, particularly when dealing with diverse and heterogeneous datasets.

To overcome this challenge, relation-aware approaches have been introduced to explicitly

learn correlations between available modalities.

For tasks such as Audio-Visual Question Answering (AVQA), Park et al. [66]

proposed a relation-aware missing modality generator that learns latent correlations

between modalities to predict missing features. This relation-aware approach enhances the

robustness of AVQA systems, making it a strong candidate for addressing modality

incompleteness in multimedia tasks. However, relation-aware models can be

computationally expensive and complex to train due to the need to learn intricate

relationships across multiple modalities. To simplify the training process while retaining

effectiveness, researchers have turned to self-supervised joint embeddings.

Kim et al. [67] introduced a self-supervised joint embedding architecture that

employs predictive learning to generate missing modality features. This self-supervised

approach aligns representations from existing modalities with those of missing modalities

without requiring end-to-end supervision, thus making it efficient for tasks involving

incomplete data. While self-supervised methods are often simpler to train, they may
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sometimes produce suboptimal feature quality, particularly in highly complex multimodal

scenarios. To address these quality issues, prompt learning techniques have been utilized

to improve the generation of high-quality latent features.

Prompt learning has also emerged as an effective technique for missing modality

generation. Guo et al. [68] developed a prompt learning framework that maps available

modality prompts into the latent space to generate representations for missing modalities.

By focusing solely on the representation level, this method reduces training complexity

while maintaining high performance, making it well-suited for multimodal tasks with

limited data availability. However, prompt learning approaches may not always generalize

well to new or unseen tasks, leading to the development of more adaptable models, such

as the U-Adapter, that can stabilize the integration of missing data.

Lin et al. [69] proposed the U-Adapter model for cross-modal fusion, which

enables stable integration of missing modality data by preventing domain shifts in the

latent space. The U-Adapter ensures that even when certain modalities are missing, the

latent space remains well-aligned, thereby improving the performance of downstream

tasks such as classification and segmentation. Although the U-Adapter provides a stable

solution for integrating missing modalities, further research is needed to explore its

adaptability across a broader range of domains and applications.

Collectively, these approaches demonstrate the versatility and effectiveness of

representation-level translation across various applications, underscoring the benefits of

robust latent space alignment, graph-based fusion, hierarchical learning, and

prompt-based generation methods. By focusing on a shared latent space representation,

these models achieve enhanced adaptability and resilience when dealing with incomplete

multimodal data. Importantly, none of the original methods are removed or deleted but

rather built upon to further advance the field, ensuring the retention of all foundational

contributions. Moreover, the continuous development of novel techniques seeks to address
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the limitations of previous methods, ensuring a more comprehensive and flexible

framework for representation-level translation in complex multimodal environments.
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CHAPTER THREE

DATASETS FOR TRANSLATION-BASED MULTIMODAL LEARNING

This section introduces several datasets commonly used in translation-based

multimodal learning. These datasets span various tasks, including image-to-image

translation, cross-modal sentiment analysis, and audio-to-text translation, providing

comprehensive resources for training and evaluating multimodal learning models.

3.1 Cityscapes [1]

Cityscapes dataset is widely used for urban scene understanding, particularly in

tasks such as semantic segmentation and image-to-image translation. It contains

high-resolution street scene images from 50 cities, with fine-grained annotations of 30

object classes. This dataset is particularly useful for tasks involving street view style

transfer, such as transforming daytime images into nighttime scenes, or translating

between different weather conditions.

Figure 3.1: Cityscapes Dataset. Source: [1]
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3.2 CMPFacades [2]

CMPFacades dataset consists of architectural facade images and their

corresponding labels. It is used extensively in image-to-image translation tasks that

involve architectural design, such as generating facade layouts or transforming the

appearance of buildings. This dataset is also valuable for tasks such as architectural style

transfer and facade completion, where models learn to generate realistic building facades

from simple line drawings.

3.3 Aachen Day-Night [3]

Aachen Day-Night dataset includes urban images captured at different times of the

day, making it ideal for day-to-night translation tasks. This dataset contains pairs of

images captured during the day and at night, which are useful for research in cross-sensor

data translation and enhancing night-time visual understanding in autonomous driving

systems. The dataset’s emphasis on varying lighting conditions enables robust model

training for domain adaptation between different lighting environments.

3.4 UNICORN 2008 [4]

UNICORN 2008 dataset features multimodal data from Wide Area Motion

Imagery (WAMI) and Synthetic Aperture Radar (SAR) sensors, as shown in Fig 3.2. It is

specifically designed for tasks that require simultaneous alignment of visual and

radar-based information. The dataset contains large format electro-optical (EO) sensor

images and SAR frames, captured at approximately 2 frames per second. Due to the

misalignment in time between EO and SAR frames, this dataset poses unique challenges

for sensor fusion and cross-modal translation tasks, such as radar-to-image translation and

vice versa.
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Figure 3.2: UNICORN 2008. Source: [4]

3.5 Wikiart [5]

Wikiart dataset contains a vast collection of artwork images, organized by style,

genre, and artist. It is widely used in style transfer tasks, where the goal is to apply artistic

styles from famous paintings to real-world images. The dataset spans various artistic

movements, providing models with the ability to learn style representations and apply

them to different content images. Wikiart is crucial for research in creative image

generation and cross-modal art synthesis.

3.6 Flickr30k [6]

Flickr30k dataset provides a large set of images paired with descriptive text

annotations. This dataset is commonly used in vision-and-language tasks such as image
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captioning, text-to-image generation, and cross-modal retrieval. With over 30,000 images

and detailed text descriptions, models can learn the relationship between visual content

and its textual representation, enabling the generation of textual descriptions from images

and vice versa.

3.7 MS COCO [7]

MS COCO dataset is a large-scale dataset widely used in multimodal learning,

particularly for tasks involving object detection, image segmentation, and image

captioning. It includes over 330,000 images with rich annotations, making it a versatile

dataset for both vision-only and vision-and-language tasks. In translation-based learning,

MS COCO is frequently employed in text-to-image and image-to-text translation tasks.

3.8 Places Audio Caption [8]

Places Audio Caption dataset combines visual and audio data, allowing for tasks

such as image-to-audio and audio-to-image translation. This dataset contains audio

descriptions of various scenes, providing a unique resource for training models that

translate between auditory and visual modalities. It is commonly used in research on

multimodal fusion and cross-modal translation between sound and imagery.

3.9 AudioSet [9]

AudioSet is a large-scale dataset of labeled audio events, containing over 2 million

human-labeled audio clips spanning more than 600 categories. This dataset is highly

valuable for multimodal translation tasks, especially in audio-to-text and audio-to-visual

translation. Models trained on AudioSet can learn to translate audio events into textual

descriptions or generate corresponding visual scenes based on sound.
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Figure 3.3: CMU-MOSI Dataset. Source: [10]

3.10 CMU-MOSI [10]

CMU-MOSI dataset is a multimodal sentiment analysis corpus that includes video,

audio, and text modalities. As we can see in Fig 3.3, it consists of 2,199 opinion segments

from YouTube videos, annotated for sentiment intensity on a continuous scale.

CMU-MOSI is widely used in sentiment analysis tasks where models must fuse

information from multiple modalities to predict sentiment polarity.

3.11 CMU-MOSEI [11]

CMU-MOSEI dataset extends CMU-MOSI with a larger collection of multimodal

sentiment data. It includes over 23,000 opinion segments from 1,000 speakers, covering

various topics. CMU-MOSEI provides sentiment and emotion annotations across text,
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Figure 3.4: CMU-MOSEI Dataset. Source: [11]

audio, and video, making it ideal for tasks that involve multimodal emotion recognition

and sentiment analysis.

3.12 IEMOCAP [12]

IEMOCAP dataset is a multimodal dataset created for emotion recognition tasks.

It contains audiovisual recordings of actors performing improvised and scripted dialogues,

with annotations for emotion categories such as anger, happiness, sadness, and neutral.

IEMOCAP is frequently used for emotion recognition tasks that require the fusion of

visual, auditory, and textual information.
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Figure 3.5: IEMOCAP. Source: [12]
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CHAPTER FOUR

xDSBMIT:AN END-TO-END TRANSLATION

4.1 Image-to-Image Translation

Image-to-Image (I2I) translation involves converting images from one domain to

another, leveraging techniques like style transfer, image colorization, super-resolution, and

image synthesis [70–72]. Recently, this field has extended to multimodal learning,

enabling translations across different modalities by training on extensive datasets [73].

These advancements have applications in artistic creation, medical imaging, and satellite

image analysis, broadening the spectrum of image translation and enhancing the

interpretation of visual data across various contexts.

Dynamic Data Driven Applications Systems (DDDAS) integrate instrumentation

data with models in real-time, allowing these models to dynamically manage the use and

acquisition of data. DDDAS-based methods adapt to the ever-changing nature of

real-world systems, providing a robust and flexible framework for various applications

that demand real-time data integration and dynamic system adaptability. Generative

Adversarial Networks (GANs) are extensively used for image translation in dynamic

data-driven applications systems (DDDAS) to generate augmented data for near-real

support to deployed systems [74]. Notable techniques include pix2pix for paired image

translation and CycleGAN for unpaired image translation [13, 75]. GAN-based methods

use continuous feedback from the discriminator to produce realistic images closely

approximating the ground truth, significantly advancing the field of image

translation [76–78]. However, GANs face challenges like training difficulties, vanishing

gradients, and poor interpretability.
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Figure 4.1: Image Generating via Diffusion Schrödinger bridge

To overcome these issues, diffusion-based methods for image translation have

been explored [79]. Traditional diffusion models progressively denoise an image until it

transforms into Gaussian noise, learning the reverse process to generate new

images [80,81]. However, these models struggle with paired image translation. To address

this, the Diffusion Schrödinger Bridge (DSB) has been proposed as an innovative

generative model, combining the Schrödinger Bridge framework with the diffusion

process to transition smoothly between distributions and generate high-quality images.

DSB has shown promising results in various applications. De Bortoli explored its

use in score-based generative modeling, demonstrating its versatility [82]. Liu

demonstrated its effectiveness in I2I translation [?], and Chen highlighted its superiority in

text-to-speech synthesis compared to traditional diffusion models [?]. However, previous

applications of DSB have focused on image restoration and colorization, not on

cross-modal image translation tasks. Additionally, there has been no practical

implementation of DSB in the field of satellite imagery. To address the cross-modal image

translation gap, and achieve stable, highly interpretable image translation, we propose the

24



application of the diffusion Schrödinger bridge in multimodal image translation tasks. As

shown in Fig. 4.1, the red arrows in the figure represent the sampling process, the Paired

Image Diffusion Schrödinger Bridge (DSB) can transform a noisy image at t = 1 into a

clear image at t = 0 through intermediate states. In addition to denoising, we have

accomplished translation between paired SAR and IR, as well as SAR and EO images,

based on the diffusion Schrödinger bridge framework. These tasks are crucial because

they enable the fusion of complementary information from different sensor modalities,

improving overall situational awareness and enhancing the quality of remote sensing

applications. Remarkably, with only 500 pairs of data, yielding results comparable to

those of pix2pix trained on a significantly larger dataset.

4.2 Diffusion Model and Schrödinger Bridge

A diffusion model is a class of generative models that simulates the process of

gradually adding noise to data until it becomes indistinguishable from random noise, and

then learns to reverse this process to generate data from noise [78]. The concept is

insmured by the physical process of diffusion, where particles move from areas of higher

concentration to lower concentration, leading to an equilibrium state. In the context of

machine learning, diffusion models are trained through a sequence of forward steps that

progressively corrupt the data with noise, followed by a learned reverse process that aims

to reconstruct the original data from the noisy state. The reverse process is tymucally

achieved through a neural network that is trained to predict earlier, less noisy states of the

data given its current state. Diffusion models have shown remarkable success in

generating high-quality, diverse samples in various domains such as images, audio, and

text, distinguishing themselves by their ability to model complex data distributions and

produce outputs with high fidelity and variation [80, 81].
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The Schrödinger Bridge (SB), dating back to Schrödinger [83] and revisited by

Léonard [84], is conceptualized as an entropy-regularized variant of the classical optimal

transport problem. This framework encompasses the subsequent stochastic differential

equations (SDEs):

dXt = [ ft +βt∇ logv(Xt , t)]dt +
√

βt dWt (4.1)

dX̃t =
[

f̃t −βt∇ logu(X̃t , t)
]

dt +
√

βt dW̃t (4.2)

where f is the drift term, W is the Wiener process, β is a constant, X0 ∼ pA and X1 ∼ pB

are distributed according to the boundary conditions in two discrete domains. The

potentials v and u, belonging to the space C1,2(Rd × [0,1]), are dynamic entities governed

by the ensuing coupled partial differential equations (PDEs). Here, the superscript 1,2

indicates that the functions have continuous first-order derivatives with respect to time and

continuous second-order derivatives with respect to spatial variables.

∂v(x, t)
∂ t

=−∇ · ( ftv)+
1
2

βt∆v (4.3)

∂u(x, t)
∂ t

=−∇ · ( f̃tu)+
1
2

βt∆u (4.4)

subject to the initial and terminal distribution conditions:

v(x,0) = pA(x), u(x,1) = pB(x) (4.5)

In the formulation eqs. (4.1) to (4.5), the path probability measures induced by the

SDEs in (4.3) and (4.4) coincide almost surely, reminiscent of the equivalence established
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in the earlier SDEs. Consequently, the marginal probability densities, hereinafter denoted

by q(·, t), are correspondingly equivalent.

The insights from existing diffusion models, score-based generative models, and

the Schrödinger Bridge problem will inform the development of xDSBMIT. By

integrating the stability and interpretability features of the Schrödinger Bridge with the

robust image generation capabilities of diffusion models, our approach aims to enhance

multimodal image translation. The related works provide foundational principles and

techniques that are crucial in formulating and optimizing the Explainable Diffusion Model

via Schrödinger Bridge in Multimodal Image Translation framework, which we detail in

the subsequent method section.

4.3 xDSBMIT Method

We begin by introducing the fundamental principles underlying our approach. The

xDSB leverages the probabilistic nature of diffusion models to transition between image

distributions. Specifically, xDSB models the distribution of paired images in the source

and target domains, ensuring that essential features of the source images are preserved in

the translation process. This is achieved through the Schrödinger Bridge problem, which

formulates a continuous path between two probability distributions. The path minimizes

the Kullback-Leibler (KL) divergence between the distributions, leading to an optimal

transport solution.

To formalize this, let µ ∈ PN+1 represent the distribution sequence of diffusion

paths, with µ0 = pA and µN = pB indicating the source and target distributions,

respectively. The objective is to find µ∗ that satisfies:

µ
∗ = argmin

µ
{KL(µ∥µref) : µ ∈ PN+1,µ0 = pA,µN = pB}. (4.6)
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In multimodal contexts, the distribution of paired images involves diverse

modalities [85, 86], such as SAR and IR, ensuring the translation preserves the

modality-specific features.

The xDSB training algorithm follows the iterative proportional fitting procedure

(IPF) [87] to refine the distribution sequence µ . The goal is to adjust µ iteratively until

convergence, ensuring that µ0 ≈ pA and µN ≈ pB. The IPF updates are given by:

µ
2n+1 = argmin

µ
{KL(µ∥µ

2n) : µ ∈ PN+1,µN = pB} (4.7)

µ
2n+2 = argmin

µ
{KL(µ∥µ

2n+1) : µ ∈ PN+1,µ0 = pA}. (4.8)

Each iteration alternates between optimizing the distribution at the source and

target ends, gradually refining the transition path to minimize the overall divergence. This

method accounts for the multimodal nature of image distributions by considering the

unique characteristics of each modality in the optimization process.

For a static version of the problem, we consider the entropy-regularized optimal

transport, which links the Schrödinger Bridge problem with traditional optimal transport

theory. The SB approach ensures the convergence of the distribution sequence by

balancing the entropy terms with the transport cost:

µ
∗
static = argmin

µ

{
Eµ

[
∥x0 − xN∥2

]
−2σ

2H(µ) : µ ∈ P2,µ0 = pA,µN = pB

}
. (4.9)

The Diffusion Schrödinger Bridge (DSB) combines the dynamic aspects of

diffusion processes with the optimal transport properties of the Schrödinger Bridge. In

DSB, the forward and backward transition probabilities are updated iteratively to ensure
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convergence towards the equilibrium state [88]. The forward and backward passes are

given by:

pt+1|t(xt+1|xt) = N(xt+1;xt + γt ft(xt),2γtI), (4.10)

qt|t+1(xt |xt+1) = N(xt ;xt+1 + γtbt+1(xt+1),2γtI). (4.11)

where γt is a constant and I is the identity matrix. The training loss functions for

DSB are defined to minimize the discrepancies between the forward and backward

transitions:

LB
t+1 = E(xt+1,xt )∼pn

t+1,t

[
∥Bn

t+1(xt+1)− (xt+1 +Fn
t (xt)−Fn

t (xt+1))∥2
]
, (4.12)

LF
t+1 = E(xt ,xt+1)∼qn

t,t+1

[
∥Fn

t (xt)− (xt +Bn
t+1(xt+1)−Bn

t+1(x))∥
2
]
. (4.13)

where B and F are two learnable neural networks. The diffusion process of DSB

optimizes towards a static goal.

The Explainable Diffusion Model via Schrödinger Bridge (xDSB) integrates

diffusion models with the Schrödinger Bridge framework to enhance the stability and

interpretability of multimodal image translation. Diffusion models simulate the gradual

addition of noise and learn to reverse this process through denoising steps, generating

high-quality images. Score-based generative models iteratively refine samples using the

score function, the gradient of the log probability density. The Schrödinger Bridge

provides an optimal transport solution by creating a continuous path between two

probability distributions, minimizing the Kullback-Leibler divergence. In xDSB, iterative
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proportional fitting (IPF) refines the distribution sequence to ensure convergence towards

an optimal transport path [89]. The model combines static entropy-regularized optimal

transport with dynamic diffusion processes, optimizing transitions using neural networks.

This approach ensures equilibrium states, enhancing the quality and efficiency of image

translations across different modalities. The algorithm design is as follows:

Algorithm 1 Training the xDSB Model

1: Input: pA(·) and pB(·|X0) datasets
2: Initialization: Initialize µ and model parameters θ

3: repeat
4: Sample t ∼ U ([0,1])
5: Sample X0 ∼ pA(X0), X1 ∼ pB(X1|X0)
6: Compute Xt ∼ q(Xt |X0,X1) according to the Schrödinger Bridge formulation
7: Update µ using iterative proportional fitting (IPF)
8: Perform gradient descent step on ε(Xt , t;θ)
9: until convergence =0

Algorithm 2 Generating Images with the Trained xDSB Model

1: Input: XN ∼ pB(XN), trained ε(·, ·;θ)
2: for n = N to 1 do
3: Predict Xε

0 using ε(Xn, tn;θ)
4: Sample Xn−1 ∼ p(Xn−1|Xε

0 ,Xn) according to the trained model
5: end for
6: Output: X0 =0
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CHAPTER FIVE

TRANSTRANS:A REPRESENTATION-LEVEL TRANSLATION

5.1 Multimodal Sentiment Analysis

The advent of digital media has led to an explosion in the availability of

multimodal data, which includes a combination of audio, text, and visual

information [90]. The rich and diverse data opens new avenues for research in fields such

as sentiment analysis, where understanding human sentiment through different modalities

can enhance user experiences, detect emotional well-being, and predict consumer

behavior [91]. Traditional sentiment analysis models primarily focused on a single

modality, usually text [92]. However, relying solely on text can be limiting, as it often fails

to capture the full spectrum of human emotions. For instance, intonation and pitch in

audio, or facial expressions in video, provide crucial context that can significantly

influence the interpretation of sentiment [93,94]. Multimodal sentiment analysis leverages

the complementary information provided by different modalities to enhance the accuracy

and robustness of sentiment predictions [55], and has consequently emerged as a powerful

approach by integrating multiple data sources to achieve a more comprehensive

understanding of sentiment [95].

Recent advances in deep learning, particularly with Transformer architectures,

have further revolutionized the field of multimodal sentiment analysis [17]. Transformers,

introduced by Vaswani et al., have demonstrated remarkable success in various domains,

including natural language processing (NLP) and computer vision [17]. Their ability to

model long-range dependencies and handle different types of input data makes them

particularly well-suited for multimodal tasks [96]. For example, the Multimodal

Transformer (MulT) by Tsai et al. utilizes cross-modal attention to effectively capture
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interactions between audio, text, and visual modalities, significantly improving sentiment

analysis performance [55].

Despite these advancements, the robustness of multimodal models in the presence

of missing or incomplete data is a critical challenge remains [97]. Real-world applications

often encounter scenarios where one or more modalities may be unavailable or corrupted.

This missing data can severely impact the performance of multimodal framework, as they

rely on the complementary information from all modalities [97]. Current

Transformer-based models, while effective in handling multimodal data, struggle to

maintain robustness when faced with missing modalities.

Translation-based model can predict and compensate for missing data, ensuring

reliable sentiment analysis even when some modalities are absent [47–49, 53]. However,

these methods inadequately harness the inherent strengths of individual modalities and

employ an excessively intricate translation framework. To address this research gap, we

propose a novel Transformer-based translation-driven multimodal sentiment analysis

system named TransTrans. Our framework integrates the strengths of Transformer

architectures with a translation-based approach to enhance robustness against missing

modalities, and different pre-trained models were applied to extract features specific to

each modality.

5.2 Transformer-based and Translation-based Method

Transformer models, known for their ability to handle long-range dependencies,

have become fundamental in multimodal sentiment analysis. Their adaptability across

tasks allows for effective fusion of different modalities, such as audio, text, and visual

data. The Multimodal Transformer (MulT) by Tsai et al. [55] and other models like MISA

model by Hazarika et al. [98] have demonstrated significant improvements in sentiment

analysis by employing cross-modal attention mechanisms to capture interactions between
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modalities. These advancements underline the potential of transformer-based models in

achieving state-of-the-art performance across various benchmarks. Additionally, Yu et

al. [54] presented a hierarchical Transformer model that captures both intra-modal and

inter-modal interactions for sentiment analysis, demonstrating significant improvements

over traditional methods.

More recently, Wang and Liu proposed a cross-modal Transformer architecture for

sentiment analysis, which uses a dual-stream approach to process and fuse multimodal

data [99]. This model outperformed existing methods by effectively capturing the

interactions between different modalities. Similarly, Wang and He introduced a

multimodal sentiment analysis framework based on a hybrid Transformer architecture,

combining cross-modal and intra-modal attention mechanisms to achieve state-of-the-art

performance [100]. However, these models didn’t consider the scenarios of missing or

unreliable modalities, which causes performance deterioration under such scenarios.

Translation-based approaches have gained significant attention in multimodal sentiment

analysis due to their ability to handle missing or noisy data by translating features across

different modalities, thereby enhancing model robustness. Liang et al. utilized translation

mechanisms within multimodal transformer networks, translating modalities into a shared

space to facilitate sentiment analysis in video-grounded dialogue systems [47]. This

approach simplifies the fusion process and improves robustness, but may lead to

information loss when dealing with significant modality differences, affecting sentiment

prediction precision. Tsai et al. proposed a factorized multimodal representation approach

that translates information across modalities to enhance sentiment-related features [48].

While this method captures interdependencies effectively, it might struggle with complex

multimodal interactions, potentially compromising predictive performance.

Pham et al. introduced a cyclic translation mechanism to learn robust joint

representations by cyclically translating features between modalities [49]. This method
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maintains high performance even with incomplete data, but the potential introduction of

redundant information can increase training complexity. Additionally, the MTMSA model

presented by Liu et al. specifically addresses the challenge of uncertain missing modalities

by translating visual and audio data into text, utilizing a transformer-based network to

ensure robust sentiment predictions even under incomplete data conditions [53].

Our model differentiates itself from the aforementioned translation-based models

by leveraging the unique strengths of each modality through modality-specific pre-trained

models, integrated within a streamlined Transformer architecture. Unlike existing

methods, it avoids complex translation mechanisms, instead directly aligning features

across modalities, reducing information loss and computational complexity while

maintaining robustness and accuracy, even with incomplete data.

5.3 TransTrans Framework

The proposed framework, TransTrans, consists of three core components:

modality-specific feature extraction, translation and concatenation, and sentiment

prediction. For feature extraction, the framework uses pre-trained models tailored to each

modality, ensuring optimal feature representation for audio, text, and visual data. The

extracted features are then passed through a translation mechanism to handle potential

missing modalities by predicting the absent data and combining it with the available

modalities. This approach ensures robust sentiment prediction, even when some modality

data is incomplete, enhancing the overall reliability of the model. Fig. 5.1 illustrates the

overall architecture of our system.

We utilize three state-of-the-art models for feature extraction from audio, text, and

visual data:

• CLAP (Contrastive Language-Audio Pretraining): A pre-trained model designed

for extracting high-level audio features [101].
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Figure 5.1: The Architecture of TransTrans.

• BERT (Bidirectional Encoder Representations from Transformers): A widely-used

model for capturing contextual information from text [102].

• ViViT (Video Vision Transformer): A Transformer-based model tailored for visual

data analysis [103].

Each model processes its respective modality, generating feature representations

RA, RT , and RV .

Let UA, UT , and UV denote the input data for audio, text, and visual data,

respectively. The modality-specific feature extraction can be formulated as follows:

RA = CLAP(UA)

RT = BERT(UT )
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RV = ViViT(UV )

5.4 Translation and Prediction

To handle cases where one or more modalities are missing, our framework

implements specific strategies for each scenario, as illustrated on the right side of Fig. 5.1.

5.4.1 Missing Text

In the case of missing text, we do not require additional training. Instead, we

employ GPT-2 to perform cross-modal translation from audio to text. The audio features

RA are directly passed through a GPT-2 model that generates the corresponding textual

features R̂T . This predicted text representation is then used alongside the available

modalities.

5.4.2 Missing Audio

For missing audio, the available text features RT are first extracted using BERT.

These text features are then passed through four Transformer blocks to predict the missing

audio features R̂A. The training of these blocks is guided by a reconstruction loss, defined

as:

Laudio =
1
N

N

∑
i=1

∥RA − R̂A∥2

This loss ensures that the predicted audio features closely match the original audio

features when available.
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5.4.3 Missing Video

Similarly, when the video modality is missing, the model uses both available audio

and text features RA and RT . These features are concatenated and passed through a

separate set of Transformer blocks to predict the missing visual features R̂V . The

reconstruction loss for the visual modality is defined analogously:

Lvideo =
1
N

N

∑
i=1

∥RV − R̂V∥2

This approach ensures that the model can robustly handle cases where one or more

modalities are absent by effectively reconstructing the missing modality features.

5.4.4 Sentiment Prediction

After obtaining the fused representation Rfusion, which is a concatenation of RA,

RT , and RV or their predicted version, the model proceeds to sentiment prediction using a

series of Transformer blocks. Through extensive testing, we determined that utilizing 12

Transformer blocks yields the best performance. These blocks are trained to predict

sentiment using a combination of cross-entropy loss and mean squared error loss.

For classification tasks, the cross-entropy loss LCE is defined as:

LCE =−
C

∑
i=1

yi log(ŷi)

where C is the number of sentiment classes, yi is the true label, and ŷi is the

predicted probability.

For regression tasks, particularly when predicting continuous sentiment scores, the

mean squared error loss LMSE is used:

LMSE =
1
N

N

∑
i=1

(ŷi − yi)
2
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These losses guide the training of the Transformer blocks, ensuring that the model

can accurately predict sentiment based on the fused multimodal representation.
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CHAPTER SIX

RESULTS

6.1 Image-to-Image Translation

In our study, we utilize a comprehensive collection of datasets spanning different

imaging modalities to support our research on multi-modal image translation which is one

key application of end-to-end translation. Synthetic Aperture Radar (SAR) images capture

radar signal representations of the Earth’s surface, providing valuable data under

conditions where optical sensors might fail, such as in adverse weather. Infrared (IR)

images offer critical insights into thermal properties of the landscape, important for

environmental monitoring. Electro-optical (EO) sensors contribute images in the visible

spectrum, including both RGB and grayscale images, which are predominantly used in

computer vision applications due to their detailed representation of visible light

information. Lastly, the RGB images provide high-resolution, color imagery of

agricultural and urban landscapes. The data in our experiments are sourced from the

UNICORN dataset and the PBVS 2024 public competition. The UNICORN dataset

comprises paired SAR and EO data, while the dataset provided in the PBVS 2024 open

competition includes paired SAR, IR, and RGB data, as illustrated in Fig. 6.1. These

datasets form a robust foundation for exploring and enhancing techniques in image

translation across various modalities.

Using an NVIDIA RTX8000 GPU, xDSBMIT demonstrated significant efficiency

compared to DDPM. During the training phase, xDSBMIT had notably lower runtimes, as

shown in Fig 6.2, it took 4.3 hours to train on 1000 data points, whereas DDPM required

7.5 hours. Similarly, in the testing phase, as shown in Fig 6.3, xDSBMIT completed

testing in 2.5 hours for 1000 data points, compared to 3.8 hours for DDPM. Overall,
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Figure 6.1: Paired Images: SAR, IR and RGB

xDSBMIT exhibited superior efficiency in both training and testing, highlighting its

advantages for real-world applications.

The SAR2IR task utilizes the dataset provided in the PBVS 2024 open

competition. As shown in Fig. 2, we demonstrated the feasibility of translating Synthetic

Aperture Radar (SAR) images into Infrared (IR) imagery. The translated IR images

effectively reconstructed the primary contours and structural details present in the original

SAR data, as evidenced by the image sequence in the middle column of Fig. 6.4.

However, despite these promising results, the translated images exhibited diminished

brightness and were unable to capture some finer details compared to the original IR

images. These observations suggest that while the approach is effective in capturing major

features, further refinement is needed to enhance the detail fidelity and brightness levels of

the translated images, thus improving their utility for practical applications in remote

sensing.

In the subsequent SAR2EO translation experiment, notable advancements were

achieved using a relatively modest dataset of only 500 training images from UNICORN
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Figure 6.2: Training Runtime

dataset. Despite the limited data, our approach surpassed the performance benchmarks set

by well-established frameworks such as pix2pix, pix2pixHD, and traditional GAN

models. The results indicate a significant improvement not only in the accuracy of the

translated EO images but also in the clarity and color fidelity. This breakthrough

demonstrates the potential of our model to efficiently learn and generalize from sparse

datasets, outperforming existing methods in both qualitative and quantitative evaluations.

The successful application with minimal training data underscores our model’s robustness

and efficiency, suggesting it as a highly effective tool for enhancing EO image generation

in remote sensing technologies. Table 6.1 provides a performance comparison of different

image translation methods for SAR2EO. Our model, referred to as EDSB-500, exhibits

superior performance across both LPIPS and FID metrics. Specifically, EDSB-500

achieved an LPIPS score of 0.35 and an FID score of 0.10, outperforming the GAN-500,
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Figure 6.3: Testing Runtime

pix2pix-500, and pix2pixHD-500 models, which recorded higher LPIPS and FID scores.

LPIPS (Learned Perceptual Image Patch Similarity) measures the perceptual similarity

between generated and real images. The LPIPS is constructed based on the VGG-16 [104]

architecture. Lower LPIPS scores indicate higher perceptual quality, as the generated

images are closer to the real ones in terms of human visual perception. In our experiment,

the EDSB-500 model achieved the lowest LPIPS score, suggesting that it produces more

perceptually accurate images compared to the other models. FID (Fréchet Inception

Distance) evaluates the quality of generated images by comparing the distributions of real

and generated image features extracted by a pre-trained Inception network [105]. Lower

FID scores indicate that the generated images have a distribution closer to the real images,

thus reflecting higher quality. The EDSB-500 model achieved the lowest FID score,

indicating a significant improvement in image quality and fidelity over the other models.
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Figure 6.4: SAR2IR translation. Left: SAR. Middle: IR generated via translation. Right:
Ground Truth of IR.
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These results highlight the effectiveness of our model in generating high-quality EO

images from SAR data, even with a limited training dataset.

Table 6.1: Performance comparison of different image translation methods for SAR2EO

LPIPS FID
GAN-500 0.52 0.44
pix2pix-500 0.48 0.27
pix2pixHD-500 0.45 0.18
xDSBMIT-500 0.35 0.10

6.2 Multimodal Sentiment Analysis

To show the performance of reprensentation-level translation, we evaluate the

TransTrans framework on two benchmark datasets of multimodal sentiment analysis,

CMU-MOSI and CMU-MOSEI. Each dataset contains synchronized audio, text, and

visual data with sentiment annotations. The evaluation metrics include Mean Absolute

Error (MAE), Correlation (Corr), two-class accuracy (Acc-2), F1 score, and seven-class

accuracy (Acc-7).

Firstly, to find out the original capability, we conducted a series of experiments to

compare the performance of TransTrans with other state-of-the-art multimodal sentiment

analysis models, including TFN [106], ICCN [107], MulT [55], BERT [102],

Self-MM [45], and Modified TEASEL [108], with all three modalities presented. The

results are summarized in Table 1.

As shown in Table 1, TransTrans achieves the best performance across all metrics,

including the lowest MAE of 0.628, the highest correlation of 0.833, the highest two-class
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Table 6.2: Performance comparison with state-of-the-art sentiment analysis models on
CMU-MOSI.

Model MAE Corr Acc-2 F1 Acc-7
BERT 0.739 0.782 85.20 85.20 -
Self-MM 0.713 0.798 85.98 85.94 -
TFN 0.901 0.698 80.28 80.77 34.94
ICCN 0.860 0.710 83.00 83.21 39.23
MulT 0.871 0.698 83.02 82.80 40.10
TEASEL 0.632 0.812 86.92 85.31 45.52
TransTrans 0.628 0.833 87.24 85.4 46.68

accuracy of 87.24%, the high F1 score of 85.4%, and the highest seven-class accuracy of

46.68%. These results demonstrate the effectiveness of our translation-based approach in

enhancing the robustness and accuracy of multimodal sentiment analysis.

Table 6.3: Comparison of translation-based methods in missing modality experiments on
CMU-MOSI.

Model Acc-0.2 Acc-0.5
AE 78.03 69.30
MCTN 77.21 69.98
MTMSA 83.85 79.16
TransTrans 83.93 78.34

Then it’s the experiments of missing modalities. We simulate the scenarios by

randomly deleting specific level of original data from each modality and compare

TransTrans with other translation-based sentiment analysis methods. There are three

experiments corresponding to missing audio, missing text and missing video, individually.

The results are the average of the three experiments. Table 2 presents the results on the
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CMU-MOSI dataset. Acc-0.2 corresponds to the condition where 20% of a single

modality is missing, while Acc-0.5 represents the scenario where 50% of a modality is

missing.

From the results, it is evident that TransTrans model achieves the best or close to

the best performance in both scenarios, obtaining 83.93% for Acc-0.2 and 78.34% for

Acc-0.5. This demonstrates that TransTrans is highly effective at handling missing

modalities, maintaining robust accuracy even when 50% of the modality data is absent.

MTMSA obtains 83.85% for Acc-0.2 and 79.16% for Acc-0.5, which is comparable to the

performance of TransTrans. Other models, such as AE [109] and MCTN [49], show

significantly lower performance, particularly under the Acc-0.5 condition. This highlights

the robust performance of TransTrans model in dealing with substantial modality loss.

Table 6.4: Ablation study on translation mechanism in CMU-MOSI

Modality Combination Model Accuracy
Video+Audio Self-MM 0.783

TransTrans 0.832
Video+Text Self-MM 0.830

TransTrans 0.847
Text+Audio Self-MM 0.649

TransTrans 0.825

We also performed an ablation study to evaluate the impact of the translation

mechanism on our model’s performance. The results are summarized in Table 3. We

tested the accuracy of our model under different modality combinations when one

modality is missing.
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Figure 6.5: Confusion Matrices of TransTrans on CMU-MOSI and CMU-MOSEI

The results in Table 3 show that our model consistently outperforms the baseline

Self-MM [45] across all modality combinations. For instance, when visual modality is

missing, our model achieves an accuracy of 0.832 compared to 0.783 with the Self-MM

model. Similarly, when the text modality is missing, our model achieves an accuracy of

0.847 compared to 0.830 with the Self-MM model. These improvements highlight the

effectiveness of our translation mechanism in handling missing modalities.

These experimental results validate the effectiveness of TransTrans framework in

multimodal sentiment analysis. By incorporating a translation mechanism, TransTrans not

only improves the robustness of the system against missing modalities but also enhances

the overall performance across various metrics.

Fig. 6.5 shows the confusion matrices for the TransTrans model on the

CMU-MOSI and CMU-MOSEI datasets, providing a comprehensive view of the model’s

classification performance across various emotions. The model demonstrates good

accuracy in predicting “Sad” and “Happy” emotions, achieving 65.03% and 79.08% on
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CMU-MOSI, and 59.92% and 78.27% on CMU-MOSEI, respectively. However, it is

evident that “Disgust” and “Fear” are more challenging to classify, as these emotions are

frequently misclassified. The model shows a significant tendency to confuse “Disgust”

with “Angry” and struggles with distinguishing “Fear” from other emotions, indicating

that these two categories share overlapping features that the model finds difficult to

separate. This consistent challenge across both datasets highlights the need for further

refinement in handling subtle and complex emotional expressions, particularly for

“Disgust” and “Fear”.
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CHAPTER SEVEN

CONCLUSION

7.1 Overview of Thesis

This thesis has explored translation-based multimodal learning, focusing on two

complementary models: xDSBMIT and TransTrans. The xDSBMIT framework integrates

the Diffusion Schrödinger Bridge model for image translation tasks, specifically

addressing the challenges of translating SAR to EO and IR images. This approach

provided significant improvements in translation quality, even with limited datasets,

demonstrating stability and interpretability through its unique integration of diffusion

processes. TransTrans, on the other hand, tackled the issues of multimodal sentiment

analysis, leveraging translation-driven learning to handle missing modalities using

Transformer-based architecture. By focusing on representation-level translation,

TransTrans demonstrated resilience and accuracy in sentiment prediction, outperforming

existing models, especially in scenarios with incomplete data.

The thesis provided a detailed experimental evaluation of these models, showing

that both xDSBMIT and TransTrans contribute substantially to advancing the

state-of-the-art in their respective application domains. xDSBMIT excels in interpreting

and generating high-quality image translations from different sensor modalities, while

TransTrans effectively manages multimodal data for sentiment analysis, even under

missing data conditions. Together, these models reflect the power and potential of

translation-based multimodal learning in diverse fields, ranging from remote sensing to

social media analysis.
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7.2 Future Directions

While this thesis has addressed several challenges in translation-based multimodal

learning, there are numerous opportunities for further exploration. One promising

direction is enhancing the scalability of xDSBMIT to accommodate larger datasets and

different sensor modalities. Expanding its application to other domains, such as medical

imaging, climate analysis, or multimodal Unmanned Aerial Vehicle (UAV) data, could

further demonstrate its versatility and robustness. Additionally, optimizing the diffusion

process for computational efficiency may allow for faster training and inference times,

which is crucial for real-time applications.

For TransTrans, future work could focus on enhancing the model’s ability to

handle more complex missing modality scenarios, particularly involving dynamic data

like video or streaming information. Integrating additional modalities, such as

physiological signals like EEG and eye movement, could provide richer multimodal data

and improve sentiment analysis accuracy. Moreover, exploring unsupervised or

semi-supervised approaches could address the issue of data scarcity and reduce the

reliance on labeled datasets, making the model more adaptable to real-world applications.

Overall, the findings of this thesis lay the foundation for future advancements in

translation-based multimodal learning, and the proposed directions aim to further improve

robustness, applicability, and scalability in practical scenarios.

50



REFERENCES

[1] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban
scene understanding,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3213–3223, 2016.

[2] R. Tylecek and R. Sára, “Spatial pattern templates for recognition of objects with
regular structure,” in Proceedings of the German Conference on Pattern
Recognition, pp. 364–374, 2013.

[3] T. Sattler, Q. Dai, M. Fritz, and L. Van Gool, “Aachen day-night: A dataset for
large-scale scene recognition across different lighting conditions,” in Proceedings
of the IEEE International Conference on Computer Vision (ICCV), pp. 540–547,
2017.

[4] C. Leong, T. Rovito, O. Mendoza-Schrock, C. Menart, J. Bowser, L. Moore,
S. Scarborough, M. Minardi, and D. Hascher, “Unified coincident optical and radar
for recognition (unicorn) 2008 dataset,” 2008. Dataset.

[5] W. R. Tan, C. S. Chan, H. Aguirre, and K. Tanaka, “Improved artgan for
conditional synthesis of natural image and artwork,” IEEE Transactions on Image
Processing, vol. 28, no. 1, pp. 394–409, 2019.

[6] B. A. Plummer, L. Wang, C. M. Cervantes, J. C. Caicedo, and S. Lazebnik,
“Flickr30k entities: Collecting region-to-phrase correspondences for richer
image-to-sentence models,” in Proceedings of the IEEE International Conference
on Computer Vision (ICCV), pp. 2641–2649, 2015.

[7] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in Proceedings of the
European Conference on Computer Vision (ECCV), pp. 740–755, 2014.

[8] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A 10 million
image database for scene recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 40, no. 6, pp. 1452–1464, 2018.

[9] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C. Moore,
M. Plakal, and M. Ritter, “Audioset: An ontology and human-labeled dataset for
audio events,” in Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 776–780, 2017.

[10] A. Zadeh, M. Chen, S. Poria, E. Cambria, and L.-P. Morency, “Mosi: Multimodal
corpus of sentiment intensity and subjectivity analysis in online opinion videos,”
arXiv preprint arXiv:1606.06259, 2016.

51



[11] A. Zadeh, P. Liang, S. Poria, E. Cambria, and L.-P. Morency, “Cmu-mosei: A
multimodal dataset for sentiment analysis and emotion recognition,” arXiv preprint
arXiv:1803.09457, 2018.

[12] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J. N. Chang,
S. Lee, and S. S. Narayanan, “Iemocap: Interactive emotional dyadic motion
capture database,” in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 335–338, 2008.

[13] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with
conditional adversarial networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017.

[14] P. Koehn, F. J. Och, and D. Marcu, “Statistical phrase-based translation,” in
Proceedings of the 2003 Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics, pp. 127–133,
2003.

[15] N. Kalchbrenner and P. Blunsom, “Recurrent continuous translation models,” in
Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing (D. Yarowsky, T. Baldwin, A. Korhonen, K. Livescu, and S. Bethard,
eds.), (Seattle, Washington, USA), pp. 1700–1709, Association for Computational
Linguistics, Oct. 2013.

[16] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2, p. 3104–3112, 2014.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in neural information
processing systems, vol. 30, 2017.

[18] D. Bahdanau, “Neural machine translation by jointly learning to align and
translate,” arXiv preprint. https://arxiv.org/abs/1409.0473, 2014.

[19] Y. Pang, J. Lin, T. Qin, and Z. Chen, “Image-to-image translation: Methods and
applications,” IEEE Transactions on Multimedia, vol. 24, pp. 3859–3881, 2022.

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications
of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[21] M. Mirza, “Conditional generative adversarial nets,” arXiv preprint.
https://arxiv.org/abs/1411.1784, 2014.

52



[22] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation
using cycle-consistent adversarial networks,” in Proceedings of the IEEE
international conference on computer vision, pp. 2223–2232, 2017.

[23] D. P. Kingma, “Auto-encoding variational bayes,” arXiv preprint,
https://arxiv.org/abs/1312.6114, 2013.

[24] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-resolution image synthesis and semantic manipulation with conditional
gans,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 8798–8807, 2018.

[25] L. A. Gatys, “A neural algorithm of artistic style,” arXiv preprint,
https://arxiv.org/abs/1508.06576, 2015.

[26] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using convolutional
neural networks,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2414–2423, 2016.

[27] D. Nie, R. Trullo, J. Lian, L. Wang, C. Petitjean, S. Ruan, Q. Wang, and D. Shen,
“Medical image synthesis with deep convolutional adversarial networks,” IEEE
Transactions on Biomedical Engineering, vol. 65, no. 12, pp. 2720–2730, 2018.

[28] Z. Shi, P. Mettes, G. Zheng, and C. Snoek, “Frequency-supervised mr-to-ct image
synthesis,” in Deep Generative Models, and Data Augmentation, Labelling, and
Imperfections: First Workshop, DGM4MICCAI 2021, and First Workshop, DALI
2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, October 1,
2021, Proceedings 1, pp. 3–13, 2021.

[29] X. Shao and W. Zhang, “Spatchgan: A statistical feature based discriminator for
unsupervised image-to-image translation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 6546–6555, 2021.

[30] L. Wang, Y. Chae, and K.-J. Yoon, “Dual transfer learning for event-based end-task
prediction via pluggable event to image translation,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 2135–2145, 2021.

[31] S. Du, J. Yu, G. Xie, R. Lu, P. Li, Z. Cai, and K. Lu, “Sar2eo: A high-resolution
image translation framework with denoising enhancement,” in Australasian Joint
Conference on Artificial Intelligence, pp. 91–102, Springer, 2023.

[32] P. Anderson, B. Fernando, M. Johnson, and S. Gould, “Spice: Semantic
propositional image caption evaluation,” in Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part V 14, pp. 382–398, Springer, 2016.

53



[33] S. Li, Z. Tao, K. Li, and Y. R. Fu, “Visual to text: Survey of image and video
captioning,” IEEE Transactions on Emerging Topics in Computational Intelligence,
vol. 3, pp. 297–312, 2019.
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