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ABSTRACT 

 

 

 

HUMAN OCCUPANCY DETECTION VIA PASSIVE COGNITIVE RADIO AND 

SIGNATURE SYNTHESIS 

 

by 

 

Bing Liu 

 

 

Adviser: Jia Li, Ph.D. 

 

 

Human occupancy detection (HOD) in an enclosed space via passive radio 

frequency (RF) data is a new and challenging research area because a human subject 

cannot easily be detected due to spectrum variation. We provide a complete, low-cost, 

and eco-friendly HOD solution via passive RF data through deep learning initially. The 

system can accurately estimate the human occupancy status and the efficiency is 

improved significantly through cognitive radio (CR) and adaptive sensing technology. 

Moreover, our trained RF human signatures generative adversarial network (GAN) 

(HSGAN) model is capable of synthesizing passive human RF signatures given the 

baseline spectrum of the environment measured without human occupancy. This study 

compensates the deficiencies of the exiting HOD technologies in an innovative and 

effective way. Using only passive RF signals, the crowed wireless environment is 

protected, and the privacy is not a concern. The solution can be applied almost anywhere 

as it does not dependent on specific types of wireless signals. The robustness is ensured 

by the awareness of its surrounding RF environment and the adaption in an unknown 

spectrum is achieved through its prediction ability.  
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CHAPTER ONE 

INTRODUCTION 

 

 

 

1.1 Problem Statement 

The field of human detection has many important applications, ranging from 

autonomous vehicles safety [1], smart building surveillance [2], and site security [3], to 

critical disaster relief operations. Even in less extreme applications, such as assisted 

living, hospitals, or smart homes, simply detecting the presence of a person is almost 

always the first step to any monitoring system. Human detection technology increases the 

efficiency of these systems, which can be lifesaving in many situations. Many solutions 

have been developed to solve the problem of human detection. The existing human 

occupancy sensing modalities include a visual camera [4], as well as lidar [5], radar [6], 

[7], infrared [8], and ultrasonic sensors [9]. These modalities all have their own 

individual strengths and weaknesses. Cameras, for example, are capable of providing 

detailed feature information, which is suitable for human subject identification and 

tracking, but can be restricted by factors such as lighting and perspective. Optical 

modalities such as cameras can be considered invasive and may generate privacy 

concerns. Lidar and radar systems are expensive, and both require signal emitters. The 

existing wireless systems can be interfered by the actively emitted signals. The 

installation angle and position are very important factors that must be considered when 

installing human detection devices such as infrared, ultrasonic sensors, lidar and radar. 

These modalities are prone to being physically obstructed or jammed. Therefore, it will 
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be beneficial to develop a non-polluting, passive, and low-priced solution to human 

occupancy detection (HOD).  In order to composite the existing HOD technologies, this 

article proposes a HOD system via passive RF data through deep learning in the enclosed 

spaces. 

1.2 Proposed Solution 

A complete HOD solution and investigation via passive RF data in the enclosed 

spaces is proposed in this thesis and implemented in three phases.  

1.2.1 Phase One 

We explore feasibility of identifying the presence of one or more people inside an 

enclosed space using passive radio frequency (RF) signals via deep learning neural 

network. The system works as following: (1) a software defined radio (SDR) collects 

passive RF wireless signals from surrounding environment in the enclosed spaces by 

scanning from its lowest frequency to its highest frequency; (2) labels are assigned to RF 

raw data automatically during data collection; (3) raw data is extracted from the a certain 

number of manually selected frequency bands. (4) a convolution neural network (CNN) 

model is trained with the extracted frequency bands raw data and corresponding labels; 

(4) the trained CNN model estimates the human occupancy status using the extracted 

frequency bands raw data which is unsee during the training process. The experimental 

results prove that the idea of HOD via deep learning of passive RF data is feasible by 

CNN’s very high accuracy at different locations of interest such as the residential rooms 

and the office. 



3 

1.2.2 Phase Two 

The system prosed in the initial phase can only work in the fixed location, 

significant amount of training data is required to build the CNN model and manually 

selecting frequency bands lacks flexibility and efficiency. In order to build a more 

efficient and flexible real time HOD system, dynamic bands selection and online training 

methodologies are adopted in this phase. An advanced cognitive radio (CR) HOD over 

RF analysis (CRhodora) system is developed accordingly: (1) the system dynamically 

reconfigures a CR to collect RF frequency signals at different places of interest; (2) 

principal component analysis (PCA) and recursive feature elimination with logistic 

regression (RFE-LR) algorithms are applied to find the frequency bands sensitive to 

human occupancy when the baseline spectrum changes with locations; (3) with the 

dynamically collected passive RF signals, four machine learning (ML) classifiers are 

applied to detect human occupancy including support vector machine (SVM), k-nearest 

neighbors (KNN), decision tree (DT), and linear SVM with stochastic gradient descent 

(SGD) training; (4) finally, the trained classifier is used for HOD in real time through 

online training strategy. The experimental results show that the proposed system can 

accurately detect human subjects not only in residential rooms but also in commercial 

vehicles, which demonstrates passive CR is a viable technique for HOD. More 

specifically, the RFE-LR with SGD achieves the best results with a limited number of 

frequency bands. The proposed adaptive spectrum sensing method has not only enabled 

robust detection performance in various environments, but also improved the efficiency 

of the CR system in terms of speed and power consumption. 
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1.2.3 Phase Three 

The wireless environment can be easily interfered by jamming signals or by 

replaying recorded samples. Hence, the knowledge of the RF environment is a critical 

aspect of a passive RF signals-based security monitoring system. Instead of retraining 

detectors with newly collected data, future systems should adapt to a new environment by 

predicting the RF signatures with human occupancy given the baseline spectrum of the 

environment measured without human occupancy. Synthesizing RF signatures of human 

occupancy is a challenging research area due to the lack of prior knowledge of how a 

human body alters the RF data. A human RF signatures generation system via generative 

adversarial networks (GAN) is proposed in this phase to synthesize spectrum with human 

occupancy using the baseline spectrum at the area of interest: (1) a SDR scans the 

spectrum from its lowest frequency to its highest frequency in an enclosed space with and 

without human occupancy, where labels are automatically assigned to the collected 

samples; (2) frequency bands sensitive to HOD are selected by the PCA algorithm; (3) a 

RF human signatures GAN (HSGAN) is proposed and trained with the average powers in 

the selected frequency bands of the baseline spectrum; (4) the trained HSGAN model 

synthesizes passive RF signals with human occupancy via the baseline spectrum without 

human occupancy collected in the enclosed space; (5) the trained HSGAN model predicts 

the human RF signatures in the enclosed space at a new location using the HSGAN 

model trained in other locations; (6) the HSGAN model is quantitatively evaluated via 

two classifiers including a CNN model and a KNN classifier for the quality of the 

synthesized spectrum; The experimental results show that the proposed HSGAN model is 

not only capable of predicting the human RF signatures using the baseline spectrum at the 
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trained location but also it can produce human RF signatures using the baseline signals at 

a new location without training; in addition, a 99.5% correlation between synthesize 

human RF signatures and real human RF signatures results from the HSGAN. 

1.3 Contributions 

First, we explore feasibility of identifying the presence of one or more people 

inside an enclosed space by using passive RF signals via deep learning neural network, 

which to the best of our knowledge, is the initial research in this aspect. The main 

contributions of the initial research work are: (1) a new environment friendly and low 

cost approach to detect human occupancy in an enclosed space by collecting passive RF 

wireless signals from surrounding environment; (2) description of a system built during 

the experiment to implement our idea; (3) a CNN model to classify human occupancy 

that takes wireless RF raw data as input and produces detection results; (4) experimental 

results as an illustration of the feasibility of our proposed approach.  

Second, the passive CR based CRhodora system provides following contributions: 

(1) adaptive spectrum sensing via reconfigurable CR is applied for HOD; (2) online 

training enhances system robustness for real-time performance; (3) results demonstrate 

traditional classifiers achieve better performance of human detection using much less 

training samples and number of frequency bands than the CNN. 

Third, synthesis of passive human RF signatures via generative adversarial 

network contributes in below aspects: (1) a HSGAN model is proposed to synthesize 

passive RF data in the enclosed space and the proposed HSGAN model can generate 

human RF signatures via a baseline spectrum; (2) the trained HSGAN model can predict 

the human RF signatures in a new environment via transfer learning where the variation 
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of wireless signals caused by human body are unseen during training; (3) the synthesized 

RF data is quantitatively evaluated by the HOD results and calculated correlation 

between the generated signals and real signals; (4) the comprehensive measured results 

are presented in this thesis for operational usability. 

1.4 Thesis Outline 

The rest of this thesis is organized as follows. Chapter Two introduces the related 

works. Chapter Three presents the initial research using software defined radio to 

passively collect RF data and applying CNN for HOD. Chapter Four details an advanced 

HOD system which dynamically reconfigures a CR to collect passive RF signals at 

different places of interest. Dynamic bands selection algorithms are applied to find the 

frequency bands sensitive to human occupancy when the baseline spectrum changes with 

locations. With the dynamically collected passive RF signals, four ML classifiers are 

applied to detect human occupancy. Chapter Five depicts the human RF signatures 

generation system via GAN to synthesize spectrum with human occupancy using the 

baseline spectrum at the area of interest; the HSGAN model and the quantitatively 

evaluated synthesis results are presented. Finally, Chapter Six concludes the thesis and 

points out future research directions. 
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CHAPTER TWO 

RELATED WORKS 

 

 

2.1 Human occupancy detection 

Different technologies have been developed for HOD, or sometimes referred to as 

occupancy detection, including wireless detection and video surveillance. During the 

mid-90s, the subject of HOD began with infrared sensing [8]. Recently, passive wireless 

detection became popular as a wireless transceiver was not required to be carried by a 

human [10]. Li et al., used RFID tags in their experiment for human detection and 

behavior classification instead of passive RF [11]. Another systems depended on a Wi-Fi 

network to identify common occupant activities from Wi-Fi channel state information 

measurements [12]. Lv et al., made use of an active emitter to send wireless signals rather 

than using passive RF to quantify the quality of human actions via RF wireless signals 

[18]. Detecting objects for airspace surveillance by passive RF data was described in 

[13], but has not been applied to human detection in previous studies. Sparse vibration 

sensors estimated room-level building occupancy status by extracting human footsteps 

from the ambient vibrations [14]. This solution proposed by Pan et al. was restricted by 

the senor installation location to count entering and leaving room times. HOD inside 

vehicle was addressed by Birch et al., through color image segmentation techniques [15]. 

Shih et al. focused on human subject detection in a building by using a camera network 

[16]. Both solutions are not desirable when privacy is a concern. In order to compensate 

the solutions mentioned above, an occupancy detection solution is desired which should 

not depend on specific types of wireless signals nor introduce any concern of privacy. To 
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make the system environment friendly and reduce the cost, the system should not emit 

active signals or occupy the limited communication channels. Furthermore, the 

deployment of the detection devices should be simple and adaptable. 

2.2 Passive Sensing 

Lidar, radar and ultrasonic sensors fall into the active sensing category, which 

includes a transmitter sending out a signal to be bounced back off the target and a 

receiver gathering the data upon its reflection. An example is micro-Doppler radar to 

discern humans from wildlife [17]. Opposite from active sensing, passive sensing 

techniques only detect or respond to certain type of input from the physical environment 

such as vibrations, light, radiation, heat or other phenomena occurring in the subject’s 

environment. Passive sensing comes with the inherent advantage of not requiring an 

active signal source, and thus cannot be detected by observed parties as it only receives 

data. Compared to active modalities, implementing countermeasures against a passive 

modality becomes difficult, as rather than relying on a transmitter whose activity might 

be detected with equipment, passive modalities instead exploit information that can be 

collected without an active signal source. Several such examples of passive sensing-based 

technologies include photographic, thermal, electric field, chemical, infrared and seismic 

signatures. For example, an innovative photographic sensor was used to accurately 

control the defrosting process for a commercial size air source heat pump [18]. In the 

research [19], wildlife was detected by thermal cameras so that they could be protected 

from injuring and killing by the agriculture machinery. Mechanical seismic sensor system 

designed from paired geophones measures the field rotation rate [20]. A passive radar 

system based on Wi-Fi transmissions was investigated on two-dimensional target 
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estimation problem [21]. Passively sensing RF signals has multiple benefits such as 

utilizing less the already crowded spectrum, avoiding third-party detection, and reducing 

power requirement. Passive wireless signals are available almost anywhere except 

extreme environments such as under the sea. Our HOD system over passive RF analysis 

system does not depend on any specific wireless signal types such as Wi-Fi or cell 

network. 

2.3 Deep learning 

Deep learning has shown its effectiveness in many fields such as automatic 

speech recognition, image recognition, visual art processing, natural language processing, 

customer relationship management, recommendation systems, financial fraud detection, 

etc. Recently, some researchers have initialized the study of radio signal modulation 

recognition and wireless interference identification by using convolutional neural 

network (CNN) through the collected passive RF data. In [22], experiment was conducted 

to classify different modulation formats. Paper [23] presented the research work of deep 

learning-based radio signal classification by comparing CNN and residual neural network 

(RNN). However, the studies in [22] and [23] primarily focused on the characteristics of 

wireless signals themselves instead of their applications. Authors of [24] introduced an 

approach to detect and identify a specific radio transmitter uniquely among other similar 

devices by using software defined radio (SDR) and CNN. Researchers of [25] have also 

conducted an experiment to classify the emitter of the wireless signal. Article [26] 

depicted the experiments of using CNN and deep neural network (DNN) to identify rogue 

RF transmitters. But [24]–[26] focused on the scope of the wireless system. The study 

conducted in [13] showed a CNN system being used to assess the quality of human 
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actions via RF wireless signals. However, the research in [13] used an active emitter to 

send wireless signals rather than using passive RF.  

Human presence detection is addressed by research work in [11] where RFID tags 

were used in the experiment for human detection and behavior classification instead of 

passive RF. The research of [27], [28] are focused on the analysis of human activities by 

using deep learning to process wireless RF signals. However, active radio signals were 

still used in these experiments. Passive RF data was utilized to detect objects in paper 

[29] but deep learning was not used in this study. By utilizing a deep learning neural 

network for wireless signals classification, the network can potentially achieve better 

performance in a complex wireless signal environment. None of the studies mentioned 

above and papers mentioned in [30] used wireless passive RF signals to classify the 

human occupancy inside an enclosed space through a deep learning neural network. 

Based on the existing research, the feasibility of using deep learning to analyze passive 

RF data to detect human occupancy in an area of concern, is addressed in this research. 

2.4 Cognitive radio 

A software defined radio (SDR) is a radio communication system which utilizes a 

group of technologies including hardware and software. Some or all functions of the 

radio are reconfigurable through software or firmware which are operated on the 

programmable processors. SDR has many applications in various fields such as spectrum 

monitoring [24], RF transmitter identification [25] and other areas. For example, it was 

used as a receiver to estimate mobile station’s location through received signal strength 

[31]. Bonoir et al. applied SDR to remote wireless tomography in their experiment [32]. 

In the research work, SDR was used to recognize gesture through Wi-Fi signals by Zhang 
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et al. [33]. CR has evolved from SDR by adding additional functions including sensing its 

environment, tracking changes, and reacting upon its findings by reconfiguring its setting. 

As described by Jondral, CR emerged in recent decades due to the rapid deployment of 

new wireless devices and applications [34]. The inefficient usage of limited spectrum 

resources by the fixed channel allocation policy urges this innovative technology to be 

applied quickly and widely. CR enables the development of dynamic spectrum access 

network which can utilize the spectrum and energy more efficiently in an opportunistic 

fashion and void the inference with licensed users [35]. A general metric is proposed by 

Wang et al. to facilitate the configurable balanced trade-off between spectral efficiency 

and energy efficiency for CR [36]. Liu et al. proposed a cluster-based cognitive industrial 

internet of things to improve the spectrum sensing and the performance of transmission 

through CR [37]. Power consumption can be saved by actively predicting the channel 

utilization status through sensing the spectrum with CR device versus continually 

scanning the wireless environments [38], [39]. Furthermore, reinforcement learning is 

applied by Lin et al. to power allocation of the transmission channel and the control 

channel in CR network reduces the wasting of power [40]. Energy can be saved by 

incorporating the CR communication network with the smart grid which automatically 

monitors and controls grid activities [41]. Joshi et al. surveys CR wireless sensor 

networks and its potential application areas to military and security, health care, home 

appliances, real-time surveillance, transportation and vehicular networks and so on [42]. 

The encouraging results of these existing applications indicates that CR can be an ideal 

candidate for HOD via passive RF sensing. 
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2.5 Feature selection 

There are three common elements that classification is based on, signals, features, 

and decisions. Processing all the signals is expensive, while decisions lack completeness, 

so most approaches seek feature analysis. In ML, feature selection is the process to 

automatically or manually determine features for decision making. Feature selection can 

remove the redundant or irrelevant features in the data without losing much of 

information. Feature selection can simplify the model, shorten the training time, and 

further enhance model generalization. The confidence (or credibility) of classification can 

be improved by dynamically determining how many features are necessary and which 

features are salient. The feature selection process falls into three categories, supervised, 

semi-supervised or unsupervised depending on the availability of labels of the data, fully 

available, partially available or none, respectively. Dynamic feature selection is a widely 

popular technique to demonstrate efficient and adaptive solutions using clustering 

algorithms applied on RF data. Recent books highlight the advantages of ML and deep 

learning to RF imagery and communications data [43]. In the real time system, radio 

modulations were properly classified by only selecting a small portion of spectral 

correlation density that can be used to classify signals without the need for system 

synchronization [44]. Feature selection was identified as the core step by Wang et al. to 

secure wireless transmission via RF distinct native attribute [45]. The indoor location 

estimation was optimized by adding the feature selection phase to the methodology which 

was performed through genetic algorithm (GA) [46]. All the research works mentioned 

above indicate that ML can benefit from feature selection technique. 
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2.6 Generative Adversarial Networks 

The wireless environment is difficult to control and is vulnerable to jamming 

signal disturbance sent by malicious devices. Knowing and inspecting the spectrum at the 

location of interest becomes an indispensable part of HOD from wireless signals. 

Researchers have initiated various approaches to protect the security of wireless 

environment. SDR and CNN were used by Riyaz et al. to detect and identify a specific 

radio transmitter uniquely among other similar devices [24]. The emitter of the wireless 

signal was classified by four ML algorithms from the adversarial devices by [25], [47]. 

However, both research works mention passively monitor the wireless environment 

instead of proactively predicting spectrum variations. Generative models in ML project 

the changes in the wireless network. The GAN was proposed by J. Goodfellow et al. in 

2014 to estimate the generative model via the adversarial process [48]. The GAN has 

been widely employed in multiple areas and drew attention from some researchers in the 

field of wireless communication due to its capability of synthesizing data. Roy et al. [26] 

used the RF data generated by GAN to simulate the spoofing signals thus the rogue 

transmitters could be recognized from the trusted devices through the classifier which 

was trained with the simulation data and trusted data. Missing spectral information was 

recovered via GAN by Tran et al. [49] in domain of a ultra-wideband (UWB) radar 

system. Li et al. [50] implemented sparsely self-supervised GAN to estimate the 

corrupted cellular network data. The significant accuracy improvement was made by Liu 

et al. [51] in the field of real-time smartphone indoor localization via GAN. With these 

very promising outcomes from the above studies, there is motivation to apply GANs to 
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train a generative model which can predict human RF signatures through the baseline 

spectrum via the adversarial process.  
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CHAPTER THREE 

OCCUPANCY DETECTION VIA DEEP LEARNING 

 

 

3.1 Introduction 

This research is conducted under assumption that human subjects will produce 

signatures in the collected passive RF signals of the corresponding location. The presence 

of human subjects, the size and the speed of the subjects will alter the RF signals, and the 

subtle variation can be detected by the neural network.  

3.2 Advantages 

The usage of passive RF data shares some of the same traits with passive radar 

systems in which no actively transmitted signals are required, and the object is detected 

through third party emitters. In addition to that, both passive radar and the proposed 

solution have low power consumption and are difficult to detect. Both solutions can be 

used to find a moving target and monitor an air space when the target is not visually 

observable. Because the solutions do not use an active emitter and only collect passive 

RF signals from the surrounding environment, the solution does not introduce radio 

spectrum pollution into the increasingly crowded wireless space. This approach does not 

generate any interference with the existing wireless system due to only collecting passive 

RF data. A desirable trait as wireless signals transmission is restricted in certain areas. 

Due to the nature of the modality, the system possesses a larger detection coverage and is 

not as limited by factors such as installation angle and position, unlike other methods. 

Because the solution is reliant on passive RF, the installation costs and complexity are 

greatly reduced. Ambient RF signals exist everywhere, which can be utilized for human 
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subject detection. Therefore, this approach is not limited by location. Nor is it limited by 

factors such as light or weather conditions either. Further investigation of the impact of 

extreme weather conditions such as thunder and lightning to the system is still required. 

In addition, the solution also costs less without active emitter present. 

3.3 Technical Approach 

In this experiment, the presence of one or more people in an enclosed space such 

as an office room or a home study room is addressed. At the time when this experiment 

was conducted, there was not traditional signal processing algorithms were applied for 

processing such complex patterns; no existing formula or algorithm has been attested to 

solve this problem; there is no evidence to prove this is a linear problem. Deep learning is 

noted for having excellent pattern recognition capabilities and excellent performance for 

solving nonlinear problems with unknown relationships. Motivated by recent advances 

and the remarkable success of CNN, the initial study focuses on applying CNN to solve 

this problem. Shared weights and biases greatly reduce the number of parameters 

involved in a CNN. The convolutional layer will reduce the number of parameters it 

needs to get the same performance as the fully connected model. It will result in faster 

training for the convolutional model, and ultimately help to build deeper networks. The 

pooling layers simplify the information in the output from the convolutional layer. In 

detail, a pooling layer takes each feature map output from the convolutional layer and 

prepares a condensed feature map. With the computation capability of CNN, it can be 

trained with enormous data by consuming less time comparing to the fully connected 

deep neural network [24]. 
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In order to teach CNN model to detect human occupancy, adequate training data 

needs to be collected. SDR is adopted by our research to collect passive RF signals. SDR 

is a radio communication system where components that have been implemented in 

hardware are implemented by software on a personal computer or embedded system. 

SDR defines a collection of hardware and software technologies where some or all the 

radio’s operating functions are implemented through modifiable software or firmware 

operating on programmable processing technologies. There are several benefits of using 

SDR to collect the RF raw data, such as being easy to process with software programs, 

having a wide range of utility, and providing a cost-effective means of implementing 

software upgrades. 

3.4 Experiment Design 

Passive RF signal HOD system is developed during our experiment and is described in 

Figure 1. It is composed of three subsystems: data acquisition, data preprocessing, and 

classification. The antenna collects the passive RF signals in an enclosed space sent by 

opportunistic transmitters. These signals are in turn preprocessed by SDR and then 

converted from analog signals to digital raw stream data. From there, the raw stream data 

is then preprocessed before it is fed into CNN model. Finally, the person presence 

probability is calculated by CNN model and the classification result is sent through its 

output layer. The details of the experiment are given in the following subsections, 

including RF signal acquisition, RF signal pre-processing, experimental scenarios design, 

CNN model training and HOD. 

3.4.1 RF signal acquisition 

To eliminate the contamination of the data from irrelevant electronic devices, only  
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Figure 1. Human occupancy detection system. 

 

 

the laptop and SDR used to collect data and a personal cell are powered on in the 

enclosed space during data collection. The laptop and SDR always work regardless the 

occupancy status. To simulate the real-life environment that people carry the cell phone 

in most situations and make sure our system does not depend on the signals emitted by 

the cell phone, the cell phone is left power on or off in the enclosed space randomly 

regardless the occupancy status. Passive RF raw data collection is described in Table 1. 

RTL2832U is used to collect RF raw data at two separate locations, a study room in a 

single-family house and a fourth-floor office in a six-floors building, with and without 

human occupancy. Labels are assigned to RF raw data automatically during data 

collection.  
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The SDR continuously scans the spectrum from the lowest frequency 2.4 MHz to 

the highest frequency 1760MHz. The sample rate of 2.4 MHz is chosen in our experiment 

because it is the verified highest sample rate at which the regular universal serial bus 

(USB) controllers do not lose samples although the theoretically possible sample rate is 

3.2 MHz. RF raw data is collected, with and without known primary signals such as FM, 

TV, and cellular passive signals, at the locations of interest. Selective frequency band and 

full frequency band RF raw data is collected.  

A total number of 197 selective bands are chosen by adaptive step, meaning that 

small scan steps are used for active bands and large scan steps are used for inactive 

bands. Step size is set based on FCC Table of Frequency Allocations, observation of 

frequency spectrum at collecting location through SDR and local radio station frequency 

list.  

Full band includes all frequency bands with an even step size of 1.2MHz. 4800 

samples per frequency band are collected at sample rate of 2.4MHz during each 2 

milliseconds. 2 milliseconds per frequency band is adopted so that sufficient number of 

signals can be collected to maintain the detection accuracy and the system can be fast 

enough to monitor the occupancy status in real time. At each experiment location, the 

study room and the office, the antenna is placed at a fixed position and direction is fixed. 

Two identical SDRs are used to collect the data which can reduce the data collection time 

and can eliminate the device dependency. Both selective bands and full band is scanned 

with the same setting of sample rate, duration and period as listed in Table 1. 
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Table 1. Passive radio frequency data collection. 

Items Description 

Collection Device RTL2832U 

Location Closed space: an office and a home study room 

Human Presence 0: No person in an enclosed space; 1: One or more person in an enclosed space 

Data Labelling Automatically assign scenario ID (0 or 1) and location ID to collected RF raw data 

Frequency Range From 24MHz to 1760MHz 

Frequency Band 

Selection 

Selective Band: small step for active bands, large step for inactive bands 

Full band: even step 1.2 MHZ 

Sample Rate 2.4MHz 

Period Continually collecting for a few hours each time 

Duration 2 milliseconds per frequency band 

 

 

3.4.2 RF signal pre-processing 

The RF raw data collected at the 197 selective bands is fed to neural network 

directly with required format and no further frequency band data extraction is needed. 

Data preprocessing is then applied on full band RF raw data to extract band data of 

interest. These extraction bands are: active bands including and excluding cell network 

bands, inactive frequency bands including and excluding cell network bands, and random 

frequency bands. The number of each frequency band is listed in Table 2.  

The extraction method is described as below. In order to determine what bands 

are active and inactive, a continuous 48 hours full band RF raw data is collected at home 
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Table 2. Frequency band selection. 

Frequency Band Group Number of Band 

Selective Band 197 

Active Band 76 

Active Band Excluding Cell Network Band 53 

Inactive Band 137 

Inactive Band Excluding Cell Network Band 94 

Random Band 128 

 

 

study room and this data is used to calculate average power in the spectrum. To estimate 

the power spectrum, the average power per frequency band is calculated. The number of 

samples per frequency band, denoted by 𝑁, is 4800. 𝑝(𝑓) is the average power of 

frequency band centered at 𝑓 and is calculated as below,   

𝑝(𝑓) = 10 ∗
𝑙𝑜𝑔10(∑ 𝑎𝑖(𝑓)

2𝑁

𝑖=1
)

𝑁

2

                                    (2.1)  

where 𝑎𝑖(𝑓) is the amplitude of the 𝑖-th intermediate frequency signal received by SDR 

at the frequency band of 𝑓. Let 𝑀 be the number of full band samples which are collected 

within these 48 hours. 𝑝𝑎𝑣𝑔(𝑓) is the average power spectrum estimated over 𝑀 full band 

samples calculated by 𝑝𝑎𝑣𝑔(𝑓) =∑ 𝑝𝑗(𝑓)
𝑀

𝑗=1
/𝑀, where 𝑗 is the index of the power  
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Figure 2. Average frequency band power in the spectrum. 

 

 

spectrum samples. The average frequency band power in the spectrum ranges from 

24MHz to 1760MHz, within these 48 hours as shown in Figure 2. 

Frequency bands with peak average power in the spectrum are selected as active 

bands. Frequency bands with valley average power in the spectrum are selected as 

inactive bands. AMPD algorithm [17] is then used to automatically detect the peaks and 

valleys in the spectrum. Active and inactive bands are selected according to the detection 

results. Cell network bands are then excluded from the active bands and inactive bands to 

form active bands excluding cell network bands and inactive bands excluding cell 

network bands. Random bands consist of 128 randomly selected bands from full band. 
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Table 3. Experimental scenario design 

Name Bands Location Time 

ActH Active Band Home - 

ActHNCell Active Band Excluding Cell Network Band  Home - 

InH Inactive Band  Home  

InHNCell Inactive Band Excluding Cell Network Band  Home - 

RndH Random Band  Home - 

RndO Random Band  Office - 

SelHO Selective Band  Home & Office - 

SelH Selective Band  Home - 

SelO Selective Band  Office - 

ActHT1 Active Band  Home 6AM to 12PM 

ActHT2 Active Band  Home 12PM to 6PM 

ActHT3 Active Band  Home 6PM to 12AM 

 

 

3.4.3 Experimental scenarios design 

A total number of 12 experimental scenarios are designed and listed in Table 3. 

These scenarios cover HOD, accuracy and sensitivity tests against band selection, 

location diversity, and time difference. The scenarios are then categorized into 3 groups 

as listed in Table 4, band, location and time. These band sensitivity tests consist of 6 

scenarios listed under the Band category. ActH is designed to train and test the CNN 

model with 76 active frequency bands RF raw data collected at home. Scenario 

ActHNCell is designed to train and tests the CNN model with 53 active frequency band 
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Table 4. Number of bands used in different scenarios. 

 Category Experimental Scenarios # of Band 

Band ActH 76 

Band ActHNCell 53 

Band InH 137 

Band InHNCell 94 

Band RndH 128 

Band RndO 128 

Location SelHO 197 

Location SelH 197 

Location SelO 197 

Time ActHT1 76 

Time ActHT2 76 

Time ActHT3 76 

 

 

excluding cell network band data collected at home. Scenario InH is designed to train and 

test CNN model with 137 inactive frequency bands RF raw data collected at home. 

Scenario InHNCell is designed to train and test CNN model with 94 inactive frequency 

bands data excluding cell network bands data collected at home. Scenario RndH uses 

randomly selected 128 band RF raw data collected at home to train and test CNN model. 

Scenario RndO uses the same 128 frequency band to extract RF raw data collected at  
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Table 5. Convolutional neural network dataset. 

Scenarios # of Training Samples # of Validation Samples # of Test Samples 

ActH 2400 600 170 

ActHNCell 2400 600 170 

InH 2400 600 170 

InHNCell 2400 600 170 

RndH 2400 600 170 

RndO 1200 300 92 

SelHO 12480 3120 820 

SelH 4560 1140 300 

SelO 7920 1980 520 

ActHT1 2512 327 86 

ActHT2 2512 327 86 

ActHT3 2512 327 86 

 

 

office. Location sensitivity test consists 3 scenarios listed under Location category. The 

197 selected bands RF raw data collected at home and office are used to train and test 

CNN model. SelHO consists raw data of home and office, SelH only uses data of home 

and SelO only uses data of office. Time sensitivity test consists 3 scenarios listed under 

Time category. 76 active band RF raw data collected at home is used to train CNN 

Model. ActHT1 uses RF raw collected from 6am to 12pm to test CNN model, ActHT2 
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uses data from 12pm to 6pm for testing and ActHT3 uses data from 6pm to 12am for 

testing. 

3.4.4 Training Data 

The RF raw data is split into training dataset, validation dataset, and test dataset. 

The number of training, validation and test samples of each scenario is listed below in 

Table 5. 

3.4.5 CNN Architecture and training 

The CNN consists of one 2D input layer, four 2D convolutional layers, one flatten 

layer, one fully connected layer and one output layer. The same CNN structure is used 

across all experimental scenarios except for the input layer row number. The input 

matrix consists 𝐾 rows, which corresponds to frequency band number listed on Table 2, 

and 4800 columns, which is the sample number per frequency per one collection 

duration. The value of input matrix is RF raw data collected by SDR. 

1D vector kernel is used to extract features from the frequency band raw data. The 

same 1D kernel shape [1 4 8 8] is then used across these four convolutional layers 

along with the same stride step [1 1 1 1]. ReLU activation function 𝑓(𝑥) =

max⁡(0, 𝑥) is used across all these four convolutional layer and fully connected layer. 

After the convolutional layers is the flatten layer. Connected to the flatten layer is the 

fully connected layer. The output layer has two perceptron which represents the human 

occupancy status. The values of the two binary numbers, indicate if human occupancy is 

detected or not. Other CNN architectures have been designed, trained and tested as well. 

But they did not achieve better performance than the one described above.  
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The CNN model is trained and evaluated for each experimental scenario listed in 

Table 3. The trained CNN model is used to process RF raw test data and detects the 

human occupancy in the enclosed space. 

3.5 Experiment Results 

The expected overall experiment result of the initial phase is that CNN can 

distinguish human occupancy in an enclosed space by collected passive RF signals. In 

order to determine if this is the case, an F1 Score needs to be calculated in order to 

quantify the overall accuracy of the neural network, measuring the precision and recall of 

the results. The actual performance is evaluated by a confusion matrix with the equations 

below. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝐹+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
        (3.1) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                 (3.2) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                 (3.3) 

𝐹1 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                                                (3.4) 

The overall experimental accuracy is shown in Figure 3. Both accuracy and F1 

score from 10 experiments out of 12 is more than 90%. The accuracy and F1 score 

corresponding to the scenarios of ActH, ActHNCell, SelO and ActHT1 are higher than 

95%. The band sensitivity test results are shown in Figure 4. The experiments compare 

scenarios without cell network band data vs with cell network band data. Both scenarios 

achieve relatively close performances. For example, both accuracy and F1 score 

differences between ActH and ActHNCell is 1.2%. However further research is required 
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to determine why the inactive band scenarios InH and InHNCell achieve similar 

performance as the active band scenarios ActH and ActHNCell.  

The location sensitivity test result is shown in Figure 5. It can be seen the 

performance of SelH is slightly lower than the other two scenarios. The performance 

difference among locational test scenarios is less than 6%, which means the system is not 

very sensitive to location difference. The time sensitivity test result is shown in Figure 6. 

The performance is the best in the 6am to 12pm time period and the worst in the 6pm to 

12am time period. The cause of the difference is not clear at the moment. It might be due 

to the small test sample size or the variation of noise level with time. Further 

investigation is needed to improve the robustness over time. 

 

 

Figure 3. Overall accuracy. 
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Figure 4. Band sensitivity. 

 

 

Figure 5. Location sensitivity. 

 

 

Figure 6. Time sensitivity. 
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3.6 Summary 

The results of this experiment indicate that human occupancy can be detected by 

passive RF wireless signals via deep learning neural network in an enclosed space. 

Robustness is verified by testing against different frequency bands, locations and time 

periods. However, this system can only work in a fixed location and must use the 

spectrum of a large number of frequency bands. To make the system more robust and 

efficient, further research is conducted in phase two.  
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CHAPTER FOUR 

OCCUPANCY DETECTION VIA COGNITIVE RADIO 

 

 

4.1 Introduction 

Human occupancy in an enclosed space was successfully detected via deep 

learning of passive RF data in phase one. The initial experimental results indicated that 

the variation of the baseline environment spectrum caused by human occupancy can be 

detected by CNN. To the best of our knowledge, it was unknown how human occupancy 

changes the spectrum sensed by CR before our study. To attack this problem, ML is 

utilized in the second phase. ML has been widely used on RF data analysis due to it 

intrinsic capability of learning. ML can automatically learn the pattern by observing the 

labeled RF data and obtain the desired knowledge. The well-trained ML model can make 

good decision to detect occupancy based on the RF samples provided and it has been 

examined in phase one.  

The frequency band in a normal environment is widely distributed from 500KHz 

to 8.4GHz. It is not economic or feasible to use full band data for HOD. Passive wireless 

signals cannot be controlled as the spectrum changes over the time and is different from 

location to location. Per spectrum observation recorded with and without human 

occupancy, certain frequency bands are sensitive for human detection. These sensitive 

frequency bands should be identified in different environments and automatically 

determined to eliminate human effort. CR is an adaptive intelligent radio technology 

which enables the radio to automatically sense the surrounding wireless spectrum and 

reconfigure its parameters to improve its operating behaviors. CR is the ideal candidate to 
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accomplish dynamical frequency band selection per its reconfigurable characteristic and 

to proactively adapt to different environments. 

Due to the constantly changing wireless environment, a feedback loop control 

mechanism is needed to maintain optimal detection performance. To design the control 

loop, an online training approach is depicted as the following. A trained ML model which 

can detect human occupancy in an environment is established as the base model. Online 

training is applied on this base model by retraining it with newly collected and dynamic 

selected RF band data at a regular basis depending on the fluctuate level and changing 

frequency of the wireless signals. The model is updated over time to maintain its 

detection accuracy.  

4.2 Advantages 

Feature selection algorithms are applied to dynamically select frequency bands 

which are sensitive to HOD and reconfigure the CR without scanning the whole spectrum 

in its working range. Only the selected frequency bands data is used to train ML 

classifiers for HOD. There are several advantages offered by this dynamic bands 

selection strategy: (1) a reconfigurable CR significantly reduces power consumption; (2) 

the system can maintain a robust performance in different locations and time by adaptive 

spectrum sensing; (3) the system shortens the time needed for system deployment as the  
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Figure 7. Cognitive radio based occupancy detection system. 

 

 

bands are selected automatically without human interaction; (4) it is data efficient and 

interpretable using classic ML models instead of deep learning neural network. 

4.3 Technical Approach 

The improved the efficiency of the HOD system and reduce the data needed to 

train the ML model, CRhodora is developed in this phase. The proposed CRhodora 

system includes a receiving antenna, an SDR, and a software module that detects human 

subject and reconfigures SDR for optimal performance. The system diagram is depicted 

in Figure 7. The RF signals are collected from enclosed spaces. In the initial stage, the 

SDR is configured by SDR control to scan the whole spectrum in its frequency range and 

the collected data is labeled. The labels associate the collected RF signal with the 

corresponding human occupancy status. Frequency bands which are sensitive to human 

occupancy are selected after enough samples of the whole spectrum are collected. The 

SDR is reconfigured by the SDR control module to scan the selected frequency bands 
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only. Next, the classifier is trained with the selected frequency bands samples to detect 

human occupancy. The detector uses the trained classifier and the passive RF signals to 

continuously monitor human occupancy. The frequency bands selection and classifier are 

updated periodically in a user specified time interval so that the system can adapt to the 

spectrum varying with time and locations. Finally, the detector is updated with the 

adaptively trained classifier and uses the selected frequency bands for detection. Rhodora 

approach is explained further in the following subsections as RF signal acquisition, RF 

signal pre-processing, adaptive spectrum sensing and classifier training. 

4.3.1 RF signal acquisition 

The data collection is similar to the data collection in phase one described in 

Table 1 except following two changes: (1) RF raw data is collected at three separate 

locations including a study room in a single family house, a bedroom in an apartment and 

a car parked in open space; (2) only full band is scanned and the spectrum is continuously 

scanned by the SDR with even step size of 1.2MHz from the lowest frequency 24MHz to 

the highest frequency 1760MHz. The data collected through a full band scan is referred 

as a full band sample. One full band sample contains the raw data of 1447 frequency 

bands.  

At each experiment location, the antenna is placed at a fixed position with fixed 

directions. A human subject can occupy different positions in the enclose space. Figure 8 

illustrates the data collection environments and antenna setup. The antenna is placed at 

the corner of the study room and the bedroom, and at the front passenger seat in the car.  
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Figure 8. Data collection setup. 

 

 

A human subject stays at a position without walking and other significant motions during 

data collection. In the study room, the distance between Position 1 and the antenna is 

around 0.5 meter and the distance between Position 2 and the antenna is 3.9 meters. For 

distances in other experiments, please refer to Figure. 150 full band samples are collected 

without human subjects at each location and total 450 full band samples are collected at 

these three different locations. 150 full band samples are collected when a human subject 
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presents at a position in that enclose space and without other human subject present at the 

same time at that location. The same data collection is performed for each position of 

each location. 300 full band samples are collected in the study room, 300 full band 

samples are collected in the bedroom and 450 full band samples are collected in the car 

with human presents. To eliminate the impact of spectrum variation among different 

timeframes in the day, the RF data collection with and without a human subject 

occupying the space is performed in the similar time period of the day at each location. 

For example, the data collection in the car only conducted in the afternoon time from 1 

PM to 6 PM. It takes a few days to collect data for each location. Two identical SDRs are 

used to collect data to reduce data collection time and eliminate the device dependency. 

In order to verify how well the system works at different locations and different 

environments, experiments were carried out at several locations. They are Position1 in 

the study room (StRmP1), Position2 in the study room (StRmP2), Postion1 in the 

bedroom (BdRmP1), Position2 in the bedroom (BdRmP2), Driver seat in the car (CrP1), 

Left rear seat in the car(CrP2), and Right rear seat in the car (CrP3). The system detects 

human occupancy but does not estimate the subject’s location or the exact number of 

human subjects. 

4.3.2 RF signal pre-processing 

To estimate the power spectrum, the average power per frequency band is calculated. 

𝑝(𝑓) is the average power of frequency band centered at 𝑓 and is calculated using the 

same equation (2.1). Let 𝑀 be the number of full band samples, which is 150 in our 
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Figure 9. Average power spectrum. 

 

 

experiment. 𝑝𝑎𝑣𝑔(𝑓) is the average power spectrum estimated over 𝑀 full band samples 

calculated by 𝑝𝑎𝑣𝑔(𝑓) =∑ 𝑝𝑗(𝑓)
𝑀

𝑗=1
/𝑀, where 𝑗 is the index of the power spectrum 

samples.  

Snapshots of the power spectrum at different locations are shown in Figure 9. The 

red line is for occupied situation, while the blue line is for unoccupied situation. There 

are noticeable differences between the spectrums of occupied and unoccupied scenarios 

at each location. The degree of variation between the two scenarios is location dependent. 

For example, the spectrum variation is larger inside the car than that of study room. The 

results are probably affected by factors such as body mass of the human subject, the 

materials inside of the enclose space, the spectrum or other unknown factors. For 

example, the metal material in the car may cause the large variation. The cause and the 

environmental variation shall be further investigated in the future research. 



38 

4.3.3 Adaptive spectrum sensing 

The power spectrum measured by SDR varies with time and location. The devices 

which transmit signals can be added or removed and it is difficult to predict the precise 

transmission usages. For example, more wireless channels are used during daytime when 

there are more human activities, while less signals are transmitted during the night. Many 

radio stations only transmit at certain hours every day. The spectrum also varies by 

location as the RF signals tend to be sparser in rural areas than in crowded cities. The Wi-

Fi is stronger in places where more people tend to visit more frequently. Even in the same 

location, the environment setup such as building materials, furniture in a room, the 

electronic devices used and so on can add further variation to the spectrum. The spectrum 

sensing must be adaptive to these changes to guarantee robust performance. On the other 

hand, it is inefficient to use the whole power spectrum for occupancy detection. The 

prolonged scanning time per cycle leads to lower time resolution and waste power. For 

these two reasons, adaptive spectrum sensing is desired to improve the robustness and 

efficiency of the system. 

Opportunistic spectrum access through reconfigurable CR has been well studied 

by many researchers [52]–[54] to adapt the constantly changing wireless environment in 

the real time manner, improve system performance and reduce the power consumption. In 

our study, adaptive sensing is realized by dynamically selecting the frequency bands that 

are sensitive to HOD at various locations and time. The baseline power spectrum is 

adjusted accordingly. 

It is well known that good feature selection can help improve classification 

performance [55]–[57] The frequency band selection process aims to remove the bands 
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that are not sensitive to human occupancy and only keep those sensitive ones. Average 

power of each frequency band 𝑝𝑎𝑣𝑔(𝑓) is calculated during data pre-processing. Our 

observation of the measured power spectrum finds that the power of many frequency 

bands does not have noticeable change between the occupied and unoccupied scenarios. 

This suggests that optimal frequency band selection can result in significant dimension 

reduction of data. An automatic process is desired to for dynamic frequency band 

selection. Supervised feature selection requires labeled data while unsupervised feature 

selection can work with unlabeled data. For evaluation purposes, a PCA based 

unsupervised selection algorithm and an RFE-LR supervised selection algorithm are 

implemented to compare their frequency band selection results. 

4.3.3.1 PCA based frequency band selection 

Classic PCA is an algorithm which can reduce dimensionality of a dataset and 

increase the interpretability of data while minimizing information loss. It has been widely 

applied in data analysis, data processing and dimensionality reduction. However, 

classical PCA methods are not associated with a probability density and cannot be 

extended to a mixture of probabilistic models, which is usually the case of unsupervised 

learning and feature selection. To overcome this limit, a number of approaches have been 

attempted to formulate mixture models. Most of these approaches are two-stage 

procedures with the first step partitioning the data space followed by estimation of the 

principal subspace within each partition, i.e. local PCA. Tipping and Bishop proposed a 

probabilistic PCA (PPCA) model, which can be naturally extended to a mixture of local 

PCA models [58]. The PPCA method estimates the probabilistic model by the 

maximization of a pseudo-likelihood function and avoids an explicit two-stage algorithm. 
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In this research, we apply the PPCA algorithm with 𝑝(𝑓) as the input features to extract 

principal components from the power spectrums of different locations. 

As each principal component is a linear combination of all the original frequency 

bands, if the system directly uses the extracted principal components as features, the 

interpretation of the results and subsequent spectrum sensing still has to involve all of the 

bands even if only a few components are kept. So we select frequency bands according to 

their loadings in the extracted components [59]. Once principal components are extracted, 

they are ranked from high to low by importance according to the variance they can 

explain, and the first three components are kept. Finally, 𝑘 (𝑘 ∈ [10, 150]) frequency 

bands with the highest absolute coefficients in the first three components are selected. 

4.3.3.2 RFE-LR based frequency band selection 

RFE recursively removes the weakest feature and considers smaller and smaller 

sets of features until the specified number of features is reached by fitting an estimator 

which assigns weights to features. RFE is computationally less complex using the feature 

weight coefficients or feature importance comparing to sequential backward selection 

(SBS) which eliminates features based on user-defined classifier or regression 

performance metric. RFE was applied to select features used to measure the transient 

stability in the power system [60]. Most significant features were chosen by SBS to 

analyze the auditory evoked potential parameters in the presence of radiofrequency fields 

[61]. RFE is applied in our study to reduce the computation cost in the real time system. 

Logistic regression (LR) with L2 regularization and the variation of limited-memory 

Broyden Fletcher Goldfarb Shanno (L-BFGS) optimization [62] is chosen as the 

estimator when applies RFE in our research. Initially, the values of 𝑝(𝑓) of these 1447 
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frequency bands and corresponding 1477 labels which values are 1 or 0 are fed to LR 

estimator. The coefficients are obtained by training LR estimator. A certain number of 

frequency bands with the smallest coefficients are removed and the rest are kept. Then 

the first round of least significant frequency bands elimination finishes. The 𝑝(𝑓) of 

remaining frequency bands and corresponding labels are used in the next round feature 

elimination. The same process is repeated till 𝑘 (𝑘 ∈ [10, 150]) frequency bands are kept. 

The ranking numbers are assigned during recursive elimination process and the frequency 

bands are ranked from high to low by importance. 

4.3.4 Classifier training 

Four traditional supervised classifiers are trained with the data of selected 

frequency bands, including SVM, KNN, DT, and linear SVM with SGD training. A total 

of 300 full band samples collected from each experimental scenario with and without 

human occupancy are randomly divided into training data set and testing data set. The 

training data is fed to each individual classifier and used to train the model accordingly. 

The input of each classifier is the list of average power of selected frequency bands and 

the list of the associated labels. Then these four models are trained individually for each  

 

 

Table 6. Training setup for all scenarios and classifiers. 

 

Scenario # of Full Band Samples # of Bands Selected Classifier 

StRmP1, … CrP3 [10, 20, … 60] [10, 20, … 150] SGD, SVM, KNN, DT 
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scenario based on each band selection result which are listed in Table 6. For example, for 

scenario StRmP1, 10 full band samples are randomly selected out of 150 full band 

samples of the occupied group and 10 full band samples are randomly selected out of 150 

full band samples of the unoccupied group. The 10 most sensitive frequency bands are 

selected using these 20 full band samples. The average power of these selected 10 

frequency bands of 90 occupied and 90 unoccupied samples is used to train all the 

classifiers. The same process is repeated for different number of full band samples and 

different number of selected bands as indicated in Table 6 to find the optimal setup. For 

each scenario, a total of 90 experimental runs are conducted for a classifier. Different 

percentage of training samples over total samples is also surveyed to identify the efficient 

training strategy. 

4.4 Experimental Results 

In order to quantify the overall accuracy of the occupancy detection result, the 

actual performance is evaluated by a confusion matrix with the same equations from (3.1) 

to (3.4). The F1 score is used this subsection to quantize the system performance unless 

otherwise specified. 

4.4.1 Frequency bands selected 

To find the optimal setup of the system, different numbers of full band samples 

and different numbers of selected frequency bands are tested. For the number of full band 

samples, from 10 to 150 samples with a step of 10 samples are tested. When each number 

of full band samples is tested, frequency bands from 10 to 60 bands with a step of 10 

bands are selected and used for human detection. The same process is applied in all seven 

scenarios. PCA and RFE-LR are used for band selection individually and the 
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corresponding selected features are used to train classifiers and detect occupancy. Figure 

10 displays the results of bands selection of 2 different scenarios by the two different 

feature selection algorithms. The two scenarios are StRmP2 and CrP3. The subfigures in 

the left column display the rank of each frequency calculated by PCA and RFE-LR based 

band selection algorithms.  

While the subfigures in the right column display the power spectrum marked with 

30 selected frequency bands. The figures from Figure 10.a1 to b2 are for scenario 

StRmP2 and figures from Figure 10.c1 to d2 are for scenario CrP3. For example, Figure 

10.a1 and b1 depict the rank of frequency bands evaluated by PCA and RFE-LR for the 

same scenario StRmP2 using 60 full band samples. The results in Figure 10 show that 

PCA and RFE-LR based algorithms produce similar ranking results. Figure 10.a2 and b2 

are the band selection results of scenario StRmP2. The dark dots in these two figures 

represent the frequency bands selected. For better visualization, the zoomed in version of 

certain frequencies are displayed to compare the results of two band selection algorithms. 

The results show that sensitive frequency bands can be picked by both unsupervised and 

supervised algorithms. The frequency bands selected by the two algorithms are slightly 

different but have very similar clusters around 600MHz and 1100MHz. The ranking 

results and band selection results depend on locations and the spectrum variance caused 

by human body. Both band selection algorithms select the frequency bands where 

significant variation exists between the occupied and unoccupied spectrum. The results 

demonstrate that the developed adaptive sensing techniques can work as long as human 

subject has RF signatures in the SDR’s frequency range. 
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The cluster effect in the selected frequency bands can be detected in Figure 10 in 

different scenarios. Examples of selected frequency bands across all seven scenarios by 

PCA and RFE-LR are listed in Table 7. In these two examples, 10 frequency bands are 

picked by each algorithm from randomly selected 40 full band samples for 7 scenarios in 

the order from most significant to least significant in corresponding scenario with and 

without human occupancy 20 each class. The results show that there is at least one 

enclose cluster in each location. For example, in scenario StRmP1 and StRmP2 where 

data is collected in the study room, there are a few bands selected around 600MHz. The 

same can be observed in the bedroom and car locations. The cluster effect is shown in the 

results of both band selection methods. Another example, scenario CrP1, the frequency 

band selected are between 514.8MHz and 638.4MHz in both Table 7.a and b. Multiple 

frequency bands around 1100MHz are picked by PCA and RFE-LR in scenario StRmP2. 

Similar patterns are shown in other scenarios. The cluster effect could be related to the 

surrounding environment and antenna’s direction and setup. The cluster effect can be 

used to establish a baseline of dynamic band selection because the selected frequency 

bands across all the three locations have common frequencies from 500MHz to 700MHz. 

Thus, less power will be required band selection time can be shortened. This cluster 

effect may also be useful for the study of human RF signature prediction. 

Electromagnetic and biological experiments can be designed to further investigate the 

cluster phenomenon. 

The power of dynamically selected frequency bands data is used for HOD. In 

order to improve the system efficiency, the number of frequency band needed for 



45 

 

 

 

Figure 10. Examples of band ranking and selection results. 
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Table 7. The example of bands selection result. 

(a) PCA 

StRmP1 

(MHz) 

StRmP2 

(MHz) 

BdRmP1 

(MHz) 

BdRmP2 

(MHz) 

CrP1 

(MHz) 

CrP2 

(MHz) 

CrP3 

(MHz) 

180.0 206.4 1755.6 1755.6 637.2 517.2 531.6 

930.0 1101.6 1758.0 1756.8 636.0 513.6 532.8 

178.8 583.2 1756.8 1758.0 514.8 625.2 542.4 

614.4 1102.8 1759.2 1759.2 537.6 626.4 646.8 

603.6 1104.0 1754.4 621.6 516.0 624.0 645.6 

612.0 1105.2 583.2 626.4 634.8 742.8 648.0 

604.8 1100.4 582.0 625.2 538.8 741.6 534.0 

602.4 1099.2 584.4 1754.4 638.4 740.4 537.6 

177.6 654.0 580.8 622.8 584.4 692.4 649.2 

176.4 614.4 452.4 624.0 633.6 693.6 636.0 

 

 

(b) RFE-LR 

StRmP1 

(MHz) 

StRmP2 

(MHz) 

BdRmP1 

(MHz) 

BdRmP2 

(MHz) 

CrP1 

(MHz) 

CrP2 

(MHz) 

CrP3 

(MHz) 

102.0 132.0 103.2 516.0 540.0 463.2 531.6 

206.4 583.2 109.2 517.2 541.2 464.4 532.8 

216.0 654.0 486.0 552.0 542.4 583.2 645.6 

396.0 660.0 488.4 553.2 580.8 597.6 649.2 

505.2 1098.0 544.8 554.4 582.0 618.0 658.8 

513.6 1099.2 595.2 649.2 583.2 764.4 660.0 

649.2 1100.4 624.0 650.4 634.8 768.0 661.2 

650.4 1101.6 633.6 655.2 636.0 770.4 662.4 

1335.6 1285.2 798.0 660.0 637.2 798.0 1755.6 

1336.8 1286.4 858.0 661.2 638.4 960.0 1756.8 
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Figure 11. Accuracy vs the number of bands used. 

 

 

detection is evaluated. The average occupancy detection accuracy of each classifier by 

using frequency band selected by each band selection method is depicted in Figure 11. In 

the figure, average accuracy is calculated by corresponding F1 score recorded during 

each experimental run. Let 𝑀 be the number of steps of full band samples and 𝑎 which is 

the F1 score of each experimental run, the average accuracy of each scenario is calculated 

by 𝑑𝑠𝑎𝑣𝑔 = (∑ 𝑑𝑖
𝑀
𝑖=1 )/𝑀. The average accuracy of each classifier of each band selection 

algorithm is calculated by 𝑑𝑐𝑎𝑣𝑔 = (∑ 𝑑𝑠𝑎𝑣𝑔
𝐿

𝑖=1
)/𝐿, where 𝐿 is the number of scenarios. 

The experiment results displayed in Figure 11 indicate that optimal feature selection 
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policy could improve the system efficiency. The detection accuracy increases with the 

number of selected bands initially, then maintains at the same level or drops slightly after 

certain number of bands selection. For example, by using band selection algorithm PCA, 

the classification accuracy of model SGD increases from 86% to 98% when the number 

of frequency bands increases from 10 to 40. There is very limited improvement when 

more frequency bands are used. So, 40 can be regarded as a cutoff number in band 

selection by SGD. DT shows a similar trend but performs slightly worse after 70 

frequency bands. The SVM works the best using only 10 bands and the performance 

drops continually afterwards. KNN shows improvements from 10 to 40 bands and slowly 

deteriorates after that. Similar trends are shown in the results of RFE-LR, but the cutoff 

number can be different. SGD reaches the best performance at 20 bands. DT learning 

does not have significant improvement after 40 bands. The performance of KNN and 

SVM continually drops after 10 bands. When only 10 frequency bands are scanned by the 

SDR, nearly 97.2% energy and time can be saved comparing to using the 1447 full bands 

data. 

We have also investigated how the number of full band samples affects band 

selection and the classifiers’ accuracy. The results are shown in Figure 12. F1 score is 

used to calculate the average accuracy with similar process above. Let N be the number 

of bands selected.⁡𝑑 is the F1 score obtained in each experiment. The average accuracy of 

each scenario is calculated by 𝑑𝑠𝑎𝑣𝑔 = (∑ 𝑑𝑖
𝑁
𝑖=1 )/𝑁. The average accuracy of each  
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Figure 12. Accuracy vs number of samples for bands selection. 

 

 

classifier of each band selection algorithm is calculated by 𝑑𝑐𝑎𝑣𝑔 = (∑ 𝑑𝑠𝑎𝑣𝑔
𝐿

𝑖=1
)/𝐿, 

where 𝐿 is the number of scenarios. In Figure 12.a, the overall trend shows that the 

performance increases when the number of frequency band samples used for band 

selection increases from 10 to 20 bands and the accuracy of all four classifiers saturates 

after the cutoff number of 20 by PCA based band selection. However, in Figure 12.b, 

which is through RFE-LR based band selection method, classifiers SGD and SVM reach 

the best performance at 30 samples and KNN shows continuous improvement till 60 

samples. DT is not very sensitive to the number of samples for band selection. The  



50 

Figure 13. Accuracy vs. number of samples for classifier training. 

 

 

overall trend in these Figure 6 indicates that a very large number of full band samples 

used for band selection does not help in most situation and building an online training 

system is feasible with as little as 20 to 30 full band samples. 

The number of samples to train the classifiers is studied and the results are shown 

in Figure 13. In this study, 60 full bands samples including 30 in occupied group and 30 

in unoccupied group are used for band selection. 20 frequency bands are selected by PCA 

and REF-LR based algorithms from the same frequency data samples in each scenario. 

The number of samples used to train the classifiers varies from 30 to 240. The F1 score is 
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used to calculate the average accuracy. Let 𝐿 be the number of scenarios and𝑎be the F1 

score of each experiment. The average accuracy of each classifier is calculated by 

𝑑𝑠𝑎𝑣𝑔 = (∑ 𝑑𝑖
𝐿
𝑖=1 )/𝐿. Each classifier shows a similar trend where classifier’s 

performance improves with the increase of training samples except DT with PCA based 

band selection method. In that case, the number of training samples does not have a 

significant impact to the classifier’s performance. For classifiers SGD, DT and SVM, 

these are not significant improvement of accuracy or it gets a little worse after cutoff 

number 90. KNN requires 180 training samples to achieve the best performance. 

4.4.2 Performance in different locations 

We compare the classifier’s performance in different locations in this subsection. 

Table 8 lists the precision, recall, F1 score and accuracy of SGD in different locations. In 

this example, 20 frequency bands are selected by PCA or RFE-LR from 60 full band 

samples, 30 in each occupancy status, in each perspective scenario. Classifier SDG is 

trained to detect human occupancy. RFE-LR based band selection achieves better overall 

system performance. The detection results from the other three classifiers also indicate 

that RFE-LR based band selection can lead to better detection performance. 

An example of all the classifiers’ performance at different locations is presented 

in Table 9. In this example, 30 frequency bands are selected by PCA or RFE-LR based 

algorithms from 80 full band samples, with 40 in each occupancy status, in each 

perspective scenario. 60% of the collected samples are used to training and the rest are 

used for testing. Other experiments with different number of frequency band selected and 

different number of full band samples used for band selection yield similar results. 
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Table 8. The performance of stochastic gradient descent model. 

(a) PCA 

Scenario Precision Recall F1 Accuracy 

StRmP1 98.33% 98.33% 98.33% 98.33% 

StRmP2 100.00% 100.00% 100.00% 100.00% 

BdRmP1 91.67% 91.67% 91.67% 91.67% 

BdRmP2 100.00% 100.00% 100.00% 100.00% 

CrP1 100.00% 100.00% 100.00% 100.00% 

CrP2 96.61% 95.00% 95.80% 95.83% 

CrP3 100.00% 100.00% 100.00% 100.00% 

 

 

(b) RFE-LR 

Scenario Precision Recall F1 Accuracy 

StRmP1 100.00% 100.00% 100.00% 100.00% 

StRmP2 100.00% 96.67% 98.31% 98.33% 

BdRmP1 100.00% 96.67% 98.31% 98.33% 

BdRmP2 100.00% 100.00% 100.00% 100.00% 

CrP1 100.00% 100.00% 100.00% 100.00% 

CrP2 100.00% 98.33% 99.16% 99.17% 

CrP3 100.00% 100.00% 100.00% 100.00% 
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Table 9. The classifiers’ performance at different locations. 

(a) PCA 

Scenario SGD DT KNN SVM 

StRmP1 90.48% 95.65% 90.09% 100.00% 

StRmP2 100.00% 100.00% 99.16% 100.00% 

BdRmP1 93.75% 96.67% 87.80% 92.31% 

BdRmP2 100.00% 100.00% 100.00% 100.00% 

CrP1 100.00% 100.00% 100.00% 94.49% 

CrP2 96.67% 98.31% 92.86% 95.24% 

CrP3 100.00% 100.00% 100.00% 97.56% 

 

 

(b) RFE-LR 

Scenario SGD DT KNN SVM 

StRmP1 99.17% 92.56% 91.89% 98.36% 

StRmP2 100.00% 99.16% 100.00% 100.00% 

BdRmP1 100.00% 97.52% 100.00% 100.00% 

BdRmP2 100.00% 100.00% 100.00% 100.00% 

CrP1 98.31% 100.00% 100.00% 96.77% 

CrP2 100.00% 91.89% 97.44% 96.00% 

CrP3 100.00% 100.00% 100.00% 96.77% 
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Figure 14. Receiver operating characteristic curve. 

 

 

4.4.3 Performance by different band selection algorithms 

We evaluated how band selection algorithm affects the classifiers’ accuracy. The 

detection rate and false alarm rate are measured during the experiment. The receiver 

operating characteristic (ROC) curves of all four classifiers are displayed in Figure 14 

correspond to PCA and RFE, separately, to select 40 frequency bands from 40 full bands 

samples in scenario StRmP1. The area under the curve (AUC) in these two figures 

indicated that classifiers perform better using REF selected frequency bands except KNN 

shows slightly lower performance. 

F1 score is used to calculate the average accuracy at different locations which is 

shown in Figure 15. Let N be the number of experiments executed for each scenario 

which value is 90.⁡𝑎 is the F1 score obtained in each experiment run. The average 

accuracy of each scenario of each band selection algorithm in Figure 15.a and Figure 15.b 

is calculated by 𝑑𝑠𝑎𝑣𝑔 = (∑ 𝑑𝑖
𝑁
𝑖=1 )/𝑁. The average accuracy of each classifier of each 
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Figure 15. Average accuracy of human detection. 
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band selection algorithm in Figure 15.c and Figure 15.d is calculated by 𝑑𝑐𝑎𝑣𝑔 =

(∑ 𝑑𝑠𝑎𝑣𝑔
𝐿

𝑖=1
)/𝐿, where 𝐿 is the number of scenarios. The average detection accuracy in 

each scenario in Figure 15.a and Figure 15.b shows similar results studied in subsection 

4.2.2. Using the frequency bands selected by RFE-LR, the detection accuracy of each 

classifier achieves better result in most scenarios. More clear results are directed in 

Figure 15.c and Figure 15.d. With the help of RFE-LR the average accuracy of KNN is 

improved by 3.4% from 94.8% to 98.2% and rest three classifiers also show increments.  

RFE-LR band selection algorithm helps all four classifiers to achieve better 

results which is also higher than the accuracy of 95% obtained by CNN in our research in 

phase one. The highest performance is obtained by SGD using frequency bands picked by 

RFE-LR. The system performance can be improved by smartly choosing the dynamic 

band selection algorithm, the classifier and other parameters such as the number of band 

selected, number full band samples used for band selection and the number of samples 

used to train the model. Figure 8 summarizes all the studies presented in the thesis for 

passive RF HOD. 

4.4.4 Storage and processing evaluation 

The system's storage and processing needs are also evaluated as the final goal of 

this research work is to implement all the functions on an embedded system. In the case 

of selecting 30 frequency bands from 60 full band samples, and processing data on a 

single core of central processing unit (CPU) ‘AMD Ryzen Threadripper 2950X 16-Core 

Processor’, 70.5M bytes of memory are used, and 2.74% processor is utilized by PAC; 

Using RFE consumes 65.2M bytes memory and the processor utilization rate is 2.89% 
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with the same case and on the same processor. So, we believe the system’s storage and 

processing needs can be fulfilled by a well-designed embedded system. 

4.5 Summary 

A new efficient, low cost and environment friendly solution is proposed to detect 

human occupancy in enclosed spaces via passive CR. The solution is based on 

reconfigurable software defined radio system and adaptive spectrum sensing technology. 

The experiment results show that CRhodora system is capable of accurately detecting 

human occupancy not only in residential rooms but also in commercial vehicles under 

different settings such as various distances between the human subject and the antenna. 

Frequency bands sensitive to human occupancy can be determined by both unsupervised 

and supervised dynamic feature selection algorithms. The supervised RFE-LR based 

algorithm shows an improvement in performance over to the unsupervised PCA based 

algorithm. The accuracy of occupancy status estimated by traditional classifiers trained 

on selected significant features surpass the CNN on this task through the help of adaptive 

spectrum sensing technology. By dynamically configuring CR and adaptively sensing the 

spectrum at the location of interests, the overall speed and power consumption is 

improved by 97.2%. 

This investigation reveals some interesting phenomenon, such as the clustering of 

frequency bands sensitive to human body around 600MHz, which requires a more 

thorough study. We are particularly interested in synthesizing human RF signatures for a 

given baseline spectrum. Such a capability to predict human RF signatures can be very 

useful in both security and smart building applications. GAN is widely used for 

synthesizing related signatures and is explored in phase three.   
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CHAPTER FIVE 

SYNTHESIS OF HUMAN RADIO FREQUENCY SIGNATURES 

 

 

5.1 Introduction 

Adversaries can easily jam a wireless environment by emitting interference RF 

signals or simply replaying the recorded data. A passive RF signals-based security 

monitoring system should have the awareness of the RF environment to maintain its 

reliability and robustness. RF environments vary with locations. Thus, the system should 

easily adapt to a new environment with minimum user effort through synthesis of human 

RF signatures after measuring the baseline spectrum of the new environment. The 

knowledge of spectrum variation caused by human occupancy and synthesizing human 

RF signatures are critical aspects of building a more efficient, robust, and secure real-

time indoor monitoring system. An open question this thesis addresses is whether this 

variation can be synthesized. GAN are powerful tools which can learn from labeled 

samples and generate features based on the knowledge gained. A HSGAN model 

synthesizes passive RF signals with human occupancy via the baseline spectrum without 

human occupancy collected in the enclosed space is developed in phase three. 

5.2 Advantages 

We propose a HSGAN model which generates the RF signals from the baseline 

spectrum at the location of interest. There are several advantages offered by the HSGAN 

approach: (1) through proactively predicting the wireless environment at the location of 

interest, the passive RF based HOD system is capable of recognizing the spoofing or 

jamming signals which are used to disturb ambient spectrum from the real human RF 
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signatures; (2) the passive RF based HOD system can fit a new spectrum circumstance 

easier without retaining the classifier. It enhances flexibility of the system and the 

maintenance coast is reduced; (3) through bands selection strategy, only the signals 

containing important information are synthesized from which the efficiency of the system 

is increased. 

5.3 Technical Approach 

The human RF signatures synthesis system is built in our experiment and is 

depicted in Figure 16. The system includes a receiving antenna, an SDR, a data 

reprocessing module, a band selection module, and a HSGAN module. The RF signals 

are collected from enclosed spaces. In the initial stage, the SDR is configured to scan the 

whole spectrum in its frequency range (24-1760 MHz). Meanwhile, the collected data is  

 

 

 

Figure 16. Signature synthesis system. 
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automatically labeled, and the collected RF signals corresponding to the human 

occupancy status are associated to the labels. After enough whole spectrum samples are 

collected, the frequency bands which are sensitive to HOD are selected. Then, only the 

selected frequency bands are scanned by the reconfigured SDR. The HSGAN including a 

generator and a discriminator are trained with the baseline spectrum and the human RF 

signatures in the selected frequency bands. The generator synthesizes the RF human 

signals to simulate the spectrum when the enclosed space is occupied. Lastly, a CNN 

model and a KNN model are trained with the real signals in the selected frequency bands 

with and without human occupancy at the location of interest. The performance of human 

RF signatures synthesis system is evaluated by the classification results of the trained 

CNN and KNN models taking the inputs of the real baseline spectrum and the 

synthesized RF data. The signal acquisition and pre-processing are introduced in 

subsection 5.1.1 and 5.1.2. Subsection 5.1.3 illustrates the frequency bands selection 

algorithm. Finally, the structure of HSGAN, the training process and evaluation methods 

are presented in Subsections 5.1.4, 5.1.5, and 5.1.6. 

5.3.1 RF signal Acquisition 

The data collection is the similar to the data collection in phase one described in 

Table 1 at each experiment location, the study room and the office except that only full 

band is scanned. A full band sample refers the frequency data collected through a scan 

from the lowest frequency to the highest frequency. One full band sample has 1447 

frequency bands’ raw data. A total number of 1296 full band samples with human 

occupancy and an equal number of samples without human occupancy were randomly 

collected in the study room from 6 am to 10 pm across 3 months to eliminate the impact 
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of spectrum variation among different timeframes in the day. 879 full band samples with 

human occupancy and equal number of samples without human occupancy were 

collected in the office with the same strategy.  

𝑝(𝑓) is the average power of frequency band centered at 𝑓 and is used throughout 

the experiment. It is calculated using the same equation (2.1).  

5.3.2 Frequency Band Selection 

The 𝑝(𝑓) in the power spectrum is used to select the bands sensitive to HOD. In 

this research work, the PCA algorithm with 1447 𝑝(𝑓) as the input features is applied to 

extract the principal components. Frequency bands according to their values in the 

extracted components are selected. It is not suggested to directly use the extracted 

principal components as the features because subsequent spectrum sensing still has to 

involve all of the frequency bands, since each principal component is a linear 

combination of all the original frequency bands [63]. According to the measurement 

variance, the principal components are ranked from high to low by the importance after 

they are extracted. Then, the first three components are kept. Lastly, 𝑘 (𝑘 = 784) 

frequency bands are selected which have the highest absolute coefficients in the first 

three components. 

5.3.3 Human Signature Generative Adversarial Networks 

A GAN is a framework proposed by Goodfellow et al. [64] which estimates the 

generative mode via an adversarial process. During the GAN process, two models 

including a discriminator 𝐷 and a generator 𝐺 are trained simultaneously. The data 

distribution under estimation is captured by the generator 𝐺. The generative model 𝐺 

generates fake samples through its captured distribution. The fake samples and real 
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training data are fed to the discriminator 𝐷⁡which classifies if the input samples come 

from the training data rather than generated by⁡𝐺. The training process is a two players’ 

game. The goal of 𝐺 is to maximize the probability of 𝐷⁡to make the mistakes and the 

goal of 𝐷 aims to minimize its chances to be fooled by 𝐺. In HSGAN, the human RF 

signatures are synthesized via the baseline spectrum. The discriminator loss ℒ𝐷 and the 

generator loss ℒ𝐺  are defined as follows: 

ℒ𝐷 = 𝐸𝑝(𝑓𝑜𝑘)⁡~𝑃𝑑𝑎𝑡𝑎(𝑝(𝑓𝑜𝑘))⌊𝑙𝑜𝑔 𝐷(𝑝(𝑓𝑜𝑘))⌋ +⁡⁡⁡⁡𝐸𝑝(𝑓𝑢𝑘)~𝑃𝑝(𝑓𝑢𝑘)
⌈𝑙𝑜𝑔 (1 − 𝐷 (𝐺(𝑝(𝑓𝑢𝑘))))⌉           (5.1) 

ℒ𝐺 = 𝐸𝑝(𝑓𝑢𝑘)~𝑃𝑝(𝑓𝑢𝑘)(𝑝(𝑓𝑢𝑘))
⌈𝑙𝑜𝑔 (𝐷 (𝐺(𝑝(𝑓𝑢𝑘))))⌉                                        (5.2) 

The number of 𝑘 average powers with and without human occupancy are 

extracted from the selected 𝑘 frequency bands are denoted by 𝑝(𝑓𝑜𝑘) and 𝑝(𝑓𝑢𝑘) 

respectively. 𝑃𝑑𝑎𝑡𝑎(𝑝(𝑓𝑜𝑘)) is the probability distribution over 𝑝(𝑓𝑜𝑘) and 

𝑃𝑝(𝑓𝑢𝑘)(𝑝(𝑓𝑢𝑘)) is the probability distribution over 𝑝(𝑓𝑢𝑘). 𝐺 estimates the human RF 

signatures probability distribution over the input of 𝑝(𝑓𝑢𝑘). The training is defined as: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑚𝑎𝑥
𝐷

𝑚𝑖𝑛
𝐺

𝐶(𝐺; 𝐷) = ℒ𝐷                                                     (5.3) 

The generated data 𝐺(𝑝(𝑓𝑢𝑘)) from 𝐺 and real sample 𝑝(𝑓𝑜𝑘) are fed to⁡𝐷. 𝐷 estimates 

the probability of its input is 𝐺(𝑝(𝑓𝑢𝑘)) rather than 𝑝(𝑓𝑜𝑘). The cost function 𝐶(𝐺;𝐷) 

depends on both the generator 𝐺 and the discriminator 𝐷. The calculated loss ℒ𝐷 is 

propagated back to update both 𝐺 and 𝐷. 𝐺 maximizes ℒ𝐷 and 𝐷 minimizes ℒ𝐷. The 𝐺 is 

optimal when the 𝐷 cannot distinguish 𝐺(𝑝(𝑓𝑢𝑘)) from 𝑝(𝑓𝑜𝑘). The 𝐷 is optimal when 

the 𝐷 can recognize 𝑝(𝑓𝑜𝑘) from generated 𝐺(𝑝(𝑓𝑢𝑘)). The process repeats till both 

models are optimized. 
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Figure 17.  Generative model structure. 

 

 

Both mode 𝐺 and 𝐷 are CNNs and their designs are displayed in Figure 17. 𝐺 has 

total 5 layers including one input layer, three convolutional layers and one output layer. 

The number of neurons and activation functions of each layer are displayed in Figure 17. 

Similarly, D has 5 layers including one input layer, two convolutional layers, one dense 

layer and one output layer. The number of neurons and activation functions of each layer 

are also displayed in the figure. 

5.3.4 HSGAN Model Training 

These extracted 𝑝(𝑓𝑜𝑘) and 𝑝(𝑓𝑢𝑘) from the power spectrum collected are 

randomly selected as the training and validation samples. These samples are used for  
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HSGAN model fitting and evaluation. Only the samples of the study room are used to 

train the HSGAN model. The trained HSGAN model generates 𝑘 average powers to 

simulate human RF signatures which is donated as 𝑝(𝑓𝑠𝑜𝑘). Each value in the samples is 

normalized before fitting the model and the normalized data range is from 0 to 1. 

Uniformly distributed noise ranging from -0.0001 to 0.0001 is added to each value in the 

training sample in order to improve the model’s generalization from which the sample is 

fed to 𝐺. The outputs from generator, of 𝑝(𝑓𝑠𝑜𝑘) and 𝑝(𝑓𝑜𝑘) in the training sample, are 

fed to 𝐷 alternately. The Adam optimizer is used during training, the learning is 0.0002, 

beta1 is 0.5, beta2 is 0.999 and epsilon is 1e-8. Batch size is 4 and total 90 epochs is 

trained till both Gand D are optimized. 

5.3.5 HSGAN Model Evaluation 

In order to evaluate the performance of HSGAN model, two classifiers including 

a CNN and a KNN are built to take the input of generated 𝑝(𝑓𝑠𝑜𝑘) and 𝑝(𝑓𝑢𝑘) to estimate 

occupancy status. To build these two classifiers, CNN and KNN models are trained with 

the real data, 𝑝(𝑓𝑢𝑘) and 𝑝(𝑓𝑜𝑘) of the study room and corresponding labels, where the 

number of training samples are 70% of the number of collected samples of each 

occupancy status, which is 907 out of 1296. The rest 389 samples of each occupancy 

status are used for testing which are unseen during the training of CNN and KNN. The 

number of 1296 samples of 𝑝(𝑓𝑠𝑜𝑘) are synthesized by 𝐺 taking the input of 𝑝(𝑓𝑢𝑘) of the 

study room which is added by uniformly distributed noises ranging from -0.0001 to 

0.0001 before being fed to 𝐺. Then, the generated 1296 samples of 𝑝(𝑓𝑠𝑜𝑘), including the 

389 samples of 𝑝(𝑓𝑢𝑘)⁡and corresponding labels, are fed to trained CNN and KNN 

models for classification. Similarly, the number of 879 𝑝(𝑓𝑠𝑜𝑘) are synthesized using the 
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data 𝑝(𝑓𝑢𝑘) of the office scene are evaluated by CNN and KNN models. These two 

trained classifiers should be able to accurately distinguish the occupancy status, and the 

classification results indicate the performance of our proposed HSGAN. Apart from these 

two classifiers, the correlation between generated data and real data is also calculated for 

evaluation. 

5.4 Experimental Results 

In order to quantify the overall accuracy of the occupancy detection result, the 

actual performance is evaluated by a confusion matrix with the same equations from (3.1) 

to (3.4). The F1 score is used this subsection to quantize the system performance unless 

otherwise specified. 

5.4.1 Synthesized human RF signatures 

Figure 18 depicts examples of synthesized human RF signatures and baseline spectrum at 

the location of study room. Figure 18(a) presents an example of the average powers in the 

selected 784 frequency bands generated by HSGAN model using baseline spectrum when 

the study room is unoccupied and Figure 18(b) is a real sample of human signatures 

collected when the study room is occupied. The overall trends of these two samples are 

similar and the peaks appear at similar frequency bands such as 0.1 GHz, 0.2 GHz, 0.37 

GHz, 0.48 GHz, 0.69 GHz, and so on. The two samples have valleys at similar 

frequencies as well.  

A total number of 1296 samples of human RF signatures are generated from 1296 

samples of baseline spectrums. To better examine the synthesized signals, the average  
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Figure 18. Synthesized human signature. 
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Figure 19. Correlation of synthesized data and real data. 

 

 

signals with human occupancy, the blue line is the baseline spectrum and the gray line is 

synthesized. The red line and gray line are closer in the gaps in most frequency bands, 

especially the bands from 0.48 GHz to 1.3 GHz. However, in the lower frequency bands 

below 0.48 GHz, an opposite relationship is obtained. The synthesized signals are slightly 

above the real signal with human occupancy in the frequency bands higher than 0.17 

GHz but almost overlap in the bands lower than 0.17 GHz. Further investigation is 

needed to study the reasons so that model enhancement can be made. 

The correlation between the generated RF data and the real signals with human 

occupancy, and the correlation between the real signals with human occupancy and 

without human occupancy are shown in Figure 19. The correlation is calculated using the  
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1296 generated samples collected with and without human occupancy in the study room. 

The real occupied signals have a closer relationship with the generated signals as 

determined by the correlation between the real occupied signals and real unoccupied 

signals which is consistent with the visual observation. 

5.4.2 Evaluation via detection results 

Besides visually surveying the generated signals and calculating the correlation 

between the generate data and the real data evaluates the HSGAN. The CNN and KNN 

classifiers are trained with the real collected data with and without human occupancy in 

the study room. Then, these two trained models take the inputs of synthesized data and 

baseline spectrum of study room or office, respectively. The detection results of each 

model at each location are listed in Table 10. Both models and locations achieve very 

encouraging detection performance. The proposed HSGAN not only predicts the human 

RF signatures at the location of the RF signals in the study room, but also can generate 

the human RF signatures for a different location using the baseline spectrum at the new 

location, e.g., the office specifically, as a form of transform learning or domain 

adaptation. 

5.5 Summary 

Phase three presents a human RF signatures synthesis system using a GAN. The 

generated RF data by the system simulates the wireless signals in the enclosed space  

where is occupied by the human subject using the baseline spectrums without human 

occupancy. The system is based on the GAN model and reconfigurable software defined 

radio technology. The experimental results show that the proposed HSGAN model is not 

only capable of predicting the human RF signatures using the baseline spectrum at the 
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trained location but also it can produce human RF signatures using the baseline signals at 

a new location without training. The synthesized RF data is evaluated quantitatively by 

CNN and KNN classifiers which are trained using the measured spectrum with and 

without human occupancy in the enclosed space. When fed with synthesized data and 

measured baseline spectrum, both classifiers produce HOD accuracy above 98 percent. 

 

 

Table 10. Detection results of synthesized human RF signatures. 

Location Model Precision Recall F1 Accuracy 

Study Room CNN 

RNN 

100% 

98.33% 

99.92% 

100% 

99.96% 

99.16% 

99.94% 

98.69% Study Room 

Office CNN 

RNN 

99.77% 

98.98% 

99.43% 

99.66% 

99.60% 

99.32% 

99.39% 

98.95% 
Office 
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CHAPTER SIX 

SUMMARY 

 

 

6.1 Conclusion 

This thesis provides a complete, low-cost and green human occupancy detection 

(HOD) solution via passive radio frequency (RF) data through cognitive radio (CR) in the 

enclosed spaces. The throughout studies are conducted. 

First, we survey the feasibility of HOD via passive RF data using convolutional 

neural network (CNN) in the residential study room and an office in the six-story 

building. Human occupancy is detected by passive RF wireless signals via deep learning 

neural network successfully. Testing against different frequency bands, locations and 

time periods indicates the robustness of this approach.  

Second, in order to improve the efficient and reduce the energy consumption, an 

advanced CR HOD over RF analysis (CRhodora) system is set up and the adaptive 

spectrum sensing technology is utilized. Furthermore, the experimental scope is extended 

to include commercial vehicles in the enclosed spaces. Both unsupervised and supervised 

dynamic feature selection algorithms are capable of determining frequency bands 

sensitive to human occupancy. With the help of adaptive spectrum sensing technology, 

the accuracy of occupancy status estimated by traditional classifiers trained on selected 

significant features surpass the CNN on this task. By dynamically configuring passive 

CR and adaptively sensing the spectrum at the location of interests, the overall speed and 

power consumption is improved by 97.2%. 
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Third, to answer the question of whether the passive RF signals variation caused 

by human occupancy in the enclosed spaces can be synthesized, a human signature 

generative adversarial networks (HSGAN) model is proposed to synthesize passive RF 

data via the baseline spectrum without human occupancy collected in the enclosed 

spaces. The experimental results show that the proposed HSGAN model is not only 

capable of predicting the human RF signatures using the baseline spectrum at the trained 

location but also it can produce human RF signatures using the baseline signals at a new 

location without training. The synthesized RF data is evaluated quantitatively by CNN 

and k-nearest neighbors (KNN) classifiers which are trained using the measured spectrum 

with and without human occupancy in the enclosed space. When fed with synthesized 

data and measured baseline spectrum, both classifiers produce HOD accuracy above 98 

percent. 

6.2 Future Work 

Our system shares some common characteristics of passive radar system and both 

systems are used for surveillance through object detection. No dedicated transmitters are 

required by these two systems since passive RF signals emitted by third parties are the 

sources. Without sending out signals, either system is difficult to be detected or tracked. 

Other benefits also come with this property of only receiver being required, for instance, 

the device size is smaller, and it is easier to deploy. Passive radar was invented in 1930s 

and revived in the 1980s with the rising of inexpensive computation power and receiver. 

Deep learning is also adopted by some research works in the field of passive radar recent 

years, but it has not been applied for HOD per our current literature study. Till now, 

HOD via passive RF data without depending on specific types of wireless signals is still a 



72 

new research area and the publications are limited. To the best of our knowledge, other 

HOD via passive RF signal solution which does not relay on the specific types of RF 

signals has not be published. There are many research fields can be covered in the future.  

First of all, different features of the RF signals such as the phase, amplitude, 

Doppler and received signal strength (RSS) instead of raw data can be utilized to estimate 

the human occupancy status in the enclosed spaces. Experiments using phase and 

amplitude have been carried out in our research work phase one and achieved similar 

accuracy comparing to using raw data. Features of Doppler and RSS have not been 

verified and they could be explored as well in the near feature. 

The speed and position of the target is the essential part of a human monitoring 

system. The features of RF data mentioned above can not only potentially achieve the 

goal of occupancy detection but also shall be capable of estimating the speed and the 

position. The examination of measuring the distances of the human subject via passive 

wireless signals indoors is being implemented in our lab and the study results will be 

released soon. The measurement of speed via passive RF data without using specific type 

of wireless signals has not been conducted or the work has not been issued. So, the 

investigation into it would be worth of time.  

While the question of whether the number of human subjects in the enclosed 

space can be counted accurately using this method has not been answered. This is also an 

import aspect of the surveillance system which can draw attention of researchers. Being 

aware of the quantity of targets, a smarter judgment can be made comparing to such 

information being absent. 
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Furthermore, the study of HOD in the open space employing the same 

methodology illustrated in this research has not been announced by the time when this 

thesis is issued. It has broad applications such as rescuing lives in the darkness or sight is 

block by the obstacles during the disasters. The scope of passive RF human HOD system 

will be extended if the feasibility in the open space is verified. 

The intrinsic properties of human body, for example the mass and the size, have 

not been investigated for HOD yet. These characteristics potentially can be utilized for 

target differentiation and it will be an extremely attractive feature of such monitoring 

system. With the ability of discerning the monitoring objects, the defense system would 

be able to make more responsive decision thus a more intelligent system could be 

established. 
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