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ABSTRACT

3D SHAPE ANALYSIS: CONSTRUCTION, CLASSIFICATION AND MATCHING

SHAOJUN LIU

Chair: Jia Li, Ph.D.

Surface construction is a widely studied topic in computer graphics and vi-

sion. Polygonal meshes generated by surface construction process are extensively

used in various graphic areas, such as scene rendering and texture mapping. March-

ing Cubes (MC) method is the most popular method in surface construction. Exist-

ing MC methods require sample values at cell vertices to be non-zero after thresh-

olding or modify them otherwise. The modification may introduce problems to a

constructed surface, such as topological changes, representation error, and preference

to positive or negative values. This dissertation presents a generalized MC algorithm

for surface construction. It constructs surface patches by exploring cycles in cells

without changing sample values at vertices, thus allows cell vertices with zero sam-

ple values to lie on the constructed surface. The simulation results show that the

proposed Zero-Crossing MC (ZMC) method better preserves topologies of implicit

surfaces that pass through cell vertices and represents the surfaces more accurately.

Its efficiency is comparable to existing MC methods in constructing surfaces.

As available 3D models on the Internet increase dramatically, efficiently search-

ing relevant shape models is requested by many applications such as computer ani-

mation, computer aided design (CAD) and protein matching. Shape-based retrieval

of 3D data has been an active research area in disciplines such as computer vision,

mechanical engineering and chemistry. The performance of 3D shape search engine,

however, is far behind that of text, such as Google search engine. A new method for
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three dimensional (3D) genus-zero shape classification is proposed. It conformally

maps a 3D mesh onto a unit sphere and uses normal vectors to generate a spherical

normal image (SNI). Unlike Extended Gaussian Image (EGI) which has an ambigu-

ity problem, SNI is unique for each shape. Spherical harmonics coefficients of SNIs

are used as feature vectors and self-organizing map is adopted to explore the struc-

ture of a shape model database. Since the method compares only SNIs of different

objects, it is computationally more efficient than methods that compare multiple

2D views of 3D objects. The experimental results show that the proposed method

can discriminate collected 3D shapes very well, and is robust to mesh resolution and

pose difference.

For general shape classification and matching, rotation invariant methods

based on concentric spheres model (CSM) cut 3D objects along radii. As a result,

components with internal rotation yield the same shape descriptor. To solve this

ambiguity, we proposed a new shape descriptor using 4D hyperspherical harmonics

(HSH). It maps a 3D object onto a 4D unit hypersphere without cutting the ob-

ject. We adopt support vector machine (SVM) in shape classification process and

integrate classification predictions into distance weights to improve shape matching

performance. Experiments show that the proposed 4D HSH shape desciptor has bet-

ter shape classification and matching performance over CSM descriptors at the same

vector length.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

With the increasing computing power of modern computers, 3D graphics

technologies find more and more applications in various fields. For example, 3D ani-

mation techniques can produce spectacular movie scenes that are difficult if not im-

possible by traditional techniques. Virtual reality graphics can help to train pilots

for planes or space shuttles. In computer aided diagnose, surface construction meth-

ods can render a 3D view of specific organs based on a series of CT scans to help

physicians evaluate the symptoms intuitively. The shape of physical objects can be

digitalized by laser scans into shape database, from which engineers design various

components using computer aided design (CAD) software.

3D graphics research covers broad areas including surface construction, shape

modeling, scene rendering, animation, user interaction, shape classification and match-

ing. 3D graphics technologies are popular topics in many subjects such as computer

graphics and vision, computational geometry and image processing.

3D shape analysis is the basis for many 3D graphics technologies. For exam-

ple, only with correct 3D shape model can one render a real sensed scene. This dis-

sertation focuses on 3D surface construction, shape classification and matching in

shape analysis. We will also discuss involved supporting technologies such as image

segmentation, conformal mapping and pattern recognition.
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1.1.1 Surface Construction

Surface construction refers to the process in which an implicit surface is con-

structed from 3D volumetric data. It is an inevitable step for 3D data, such as seg-

mentation results on 3D image, to be evaluated intuitively by human eyes. Surface

construction is a widely studied topic in computer graphics and computer vision.

Polygonal meshes representing constructed surfaces are widely used in various ar-

eas, such as scene rendering and texture mapping. After surface construction we can

derive many geometric features, such as genus, curvature, surface area and volume,

which are basis for shape analysis.

An ideal surface construction should meet many requirements due to its im-

portance. First, the original topology of an implicit surface should be preserved. In

other words, the connectivity of surface parts should not be changed. Secondly, no

ambiguous surface should be generated, i.e. one and only one surface can be deter-

mined from a set of volumetric data. Thirdly, the generated surface is desired to be

adaptive to surface details. In other words, relative flat surface is represented by a

small number of big polygons while cute or detail rich surface is constructed by more

small polygons. Finally, surface construction method should be highly efficient for

large volumetric data.

Many surface construction methods have been proposed, but none meets all

the above requirements. Among them, marching cubes (MC) method, proposed by

Lorensen and Cline in 1987, is the most popular due to its efficiency in constructing

high resolution surfaces and simplicity in implementation [1]. But it also has defects,

such as topological ambiguities and representation inaccuracy. Surface construction

methods are being improved to meet its requirements.

1.1.2 Shape Classification and Matching

We can get 3D models through surface construction or through digitalization

of physical objects by laser scan techniques. The generated 3D models are widely
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used in many fields of computer graphics, such as objects in animation scenes, com-

ponents in computer aided design (CAD), or protein chain in matching database. As

available 3D models on the Internet increase dramatically, efficiently searching rele-

vant shape models is desired by many applications.

Ideal shape classification and matching method should meet following require-

ments. Firstly, the method should find as many as possible 3D models similar to in-

put shape and exclude dissimilar ones. Secondly, it should eliminate variance from

pose difference of 3D models, such as shift, scale and rotation. Thirdly, retrieval re-

sults should be insensitive to noise, disturbance, and mesh resolutions of 3D models.

Finally, a hierarchical approach is desired for 3D models in multiple resolutions. In

other words, the method adopts coarse classification and matching for models in low

resolution, while fine classification and matching for those in high resolution.

Shape-based retrieval of 3D data has been an active research area in disci-

plines such as computer vision, mechanical engineering and chemistry. The perfor-

mance of 3D shape search engine, however, is far behind that of text, such as Google

search engine.

1.2 Related Work

1.2.1 Surface Construction

Among many existing surface construction methods, we only review those rel-

evant in our research in Marching Cubes (MC) methods. In the original MC method,

proposed by Lorensen in 1987, Nielson and Hamann reported an ambiguous case on

a cube face with two diagonally opposite positive vertices and two diagonally oppo-

site negative vertices [1][9]. They proposed an asymptotic decider to solve the am-

biguity. Chernyaev and Natarajan independently found an internal ambiguous case

under trilinear interpolation in a cube interior [2][10]. Chernyaev used 33 configura-

tions to discriminate the ambiguous cases, while Natarajan used the value of a body

saddle point to solve the ambiguity. Matveyev also addressed the internal ambigu-
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ity by analyzing the types of surface intersections with a cube diagonal [11]. Nielson

made a comprehensive analysis of trilinear interpolation of isosurfaces, in which 56

ambiguous cases were characterized and classified into three levels [12]. And 9 cases

contain triangles entirely on a cell face, which may lead to non-manifold surfaces. In

the context of this dissertation, the term surface and isosurface are exchangeable to

each other.

To improve representation accuracy, Lopes and Brodlie added a small number

of key points in a cell interior [13]. These critical points help to represent different

surface topologies including tunnels inside a cell. Theisel used cubic Bezier patches

to represent exact contours of piecewise trilinear interpolation [14]. The exact con-

tours were then modified to be globally G1 continuous. To reduce representation

error around sharp geometric features, Kobbelt et al. proposed an extended MC

method by using extra information of normals [15]. And the extended MC method

was adopted in adaptive grids by Ju et al. in [16]. The adaptive approaches, such as

octree based methods, use a small step size around sharp geometric features while

reduce the number of polygons overall [17][18][19]. For the same purpose, Montani et

al. proposed a discretized MC method that merges small facets into large coplanar

polygons [20][21]. And Cuno et al. adopted a hierarchical approach based on radial

basis functions [22].

The MC method was originally applicable only to manifold surfaces, which

are locally homomorphic to a two dimensional disk everywhere. A polygonal mesh

representing a manifold surface should satisfy the continuity condition that a poly-

gon edge should be shared by exactly two polygons, or lie in an external face of the

entire volume [23]. Non-manifold surfaces, such as contacting or intersecting sur-

faces, contain edges of degree three, four or more. Bloomenthal and Ferguson pro-

posed to polygonize non-manifold surfaces by decomposing a cell into tetrahedras,

which requires multiple intersections per cell edge [24]. Hubeli and Gross extended

fairing operations on non-manifold models in a multiresolution approach [25]. In the
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context of MC method, Hege et al. used a probability interpolation model to polygo-

nize non-manifold surfaces [26]. Their look-up table was adopted by Yamazaki et al.

in a MC method based on discontinuous distance field for non-manifold surfaces [27].

However, one of the original MC assumptions, in which sample values should

be nonzero after thresholding, has not been addressed by existing MC methods. In

other words, it is assumed cell vertices lie either inside or outside an isosurface, not

on the isosurface. Even in MC methods of non-manifold surfaces that contain mul-

tiple regions, an isosurface is still not assumed to pass through cell vertices. The

assumption was introduced to ensure that the number of cases an isosurface inter-

sects a cell could be easily enumerated. Otherwise, case enumeration in existing MC

methods are incomplete and too many cases need to be added. This assumption,

however, does not hold in some situations. For example, volumetric data generated

by level set method may contain zero sample values, i.e. isosurface of level sets pass

through grids. Integer-valued isosurfaces of integer-valued data sets or synthetic data

may also meet zero sample values. In one of our experiments in the later chapter

of this dissertation, the cases with zero sample values take up to 7% of total cases.

Actually, the assumption to exclude zero sample values is regarded as a technical

problem in [23], and one of the several major artifacts in most existing isocontour

software in [28]. Zero sample values are also discussed in [29], but no specific MC

method was proposed.

To handle the situation with zero samples, many existing MC methods mod-

ify zero sample values. For example, when level sets pass through grids, Han et al.

changed sample values at such grid points from zero to negative [28]. This kind of

modification has defects from following aspects.

First, it may introduce obvious topological changes or representation error

to an isosurface, as shown in Fig. 1.1. Changing zero sample values in the top row

of Fig. 1.1 to negative introduces patches as shown in the bottom row of Fig. 1.1.

Thick lines in the figure represent intersections of isosurfaces and a cell face. Fur-
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Figure 1.1: Topological changes caused by sample value modification. In each sub-
figure, the figure on the top shows original sample values, while the figure at the
bottom shows a possible topological change.

thermore, modification on zero sample values may change surface topology from

non-manifold to manifold. One example is shown in Fig. 1.2(a), in which one edge

is shared by four polygons on two contacting ”V” shape surfaces. The two contact-

ing surfaces are separated after modifying sample values at contact points from zero

to negative.

Finally, constructed isosurface should be neutral to either positive or nega-

tive sample values. In other words, the generated isosurface should not be changed

if we multiply sample values with −1. However, modifying zero sample values in-

troduces preference on positive or negative values and leads to two different topo-

logical results. For example, if the positive sample values in the top row of Fig. 1.1

are negative instead, the same modification in Fig. 1.1 does not introduce any new

patches. In Fig. 1.2(b), the two ”V” shape surfaces contacting from top and bot-

tom are merged into one after the same modification, when the sample values in Fig.

1.2(a) are multiplied with −1.

One might argue that zero sample values might be treated as negative with-

out modification. Nevertheless, it introduces degenerated patches in Fig. 1.1(a) and

1.1(b) where patch vertices or edges converge. Enumerating all the possibilities of

6



0

−

−

+

−

+

+ −

−

−

0

+
− −

−

− −

−

−

+

−

+

+ −

−

−

−

+

(a)

+ −

−

−

+

+

+
+

+

+

+

0

0

−

+
−

+

−
−+

+

+

+
+

−

−

+

−

(b)

Figure 1.2: Topologies inconsistency caused by modifying sample values at contact
points from zero to negative in existing MC method.

degenerated patches in MC cases is also tedious. And it still brings obvious topologic

changes to Fig. 1.1(b), 1.1(c) and 1.1(d).

This dissertation proposes a more general MC method that does not mod-

ify sample values. It constructs isosurfaces by exploring cycles in two dimensions to

avoid enumerating all the cases directly [30]. We adopt bilinear interpolation and in-

troduce zero vertex, zero edge and zero face to solve ambiguous cases. The proposed

method is also applicable to some non-manifold surfaces.

1.2.2 Shape Classification and Matching

The comparison of shape similarity is the basis for shape recognition, classi-

fication and matching. In retrospect, similarity comparison methods have evolved

from 2D to 3D. 2D methods discriminate shapes based on 2D contours obtained at

different viewing angles. Most of them can not be generalized to 3D shape matching

directly. On the other hand, 3D methods extract shape features from 3D models to

match similar models [31]. Many survey papers summarized the development of 3D
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shape comparison techniques [32][31][33]. As a large mount of 3D methods exist and

belong to various classes, we just mention a few related to our research.

Methods based on shape distribution enjoy the benefits of invariant proper-

ties and distinguish models in broad categories well. For example, shape distribution

method, proposed by Osada et al., is robust to translations, rotations, scales, mir-

rors, and tessellations [5]. However, they are not good at discriminating shapes that

have similar gross shape but vastly different detailed shape properties as indicated in

[31].

Spatial map based methods use map representation, which corresponds to

the physical locations of an object, and preserve the relative positions of features in

the object. They are able to capture detailed shape properties and have shown good

retrieval results [31]. For example, Hebert et al. used a deformed spherical mesh,

which was wrapped onto the 3D shape, and compared the shape similarity based

on geometric features on the sphere [34]. The method handles complex curved sur-

faces and supports partial matching. Nevertheless, it uses an expensive registration

step, in which data structures of all possible rotation of samples in the library are

pre-generated and stored. Moreover, shape estimation error was introduced during

reconstruction of original surface.

Among the spatial map based methods, spherical harmonic (SH) represen-

tation has been used in 3D shape modeling and retrieval [35][36]. Kazhdan et al.

used a rotation invariant SH representation based concentric spheres model (CSM)

in shape classification [7]. And Vranić proposed to use multiple radial distances in-

stead of volumetric values to preserve more surface details [37].

Methods based on 2D visual similarity require multiple views of a 3D ob-

ject [38]. Gu et al. proposed a 2D geometry image to represent a 3D mesh [39]. It

cuts the 3D mesh open and maps it onto a unit square. Based on geometry images,

Laga et al. proposed a shape matching method to save comparison of multiple 2D

views [40]. However, similar 3D shape models are not guaranteed to have the same

8



cut since there are multiple choices of cutting paths. As a result their geometry im-

ages may be quite different due to different cutting, adding variance to the similarity

comparison based on geometry images.

Extended Gaussian Images (EGI) uses normal vectors as geometric features

to compare shape similarity [41]. However, EGI is not unique to non-convex objects,

referred as an ambiguity problem, and EGI does not incorporate local spatial maps

either.

We propose a new shape similarity comparison method based on spherical

normal images (SNI). Normal vectors are stored in the conformal map of a 3D mesh

over a unit sphere, which is one to one mapping without cutting the 3D mesh open.

The overall approach follows the sequence of pose alignment, conformal mapping,

feature extraction, and similarity search. We use self-organizing map to classify 3D

models collected from the Internet. The proposed method applies to genus-zero ob-

jects that are sphere-like without holes or handles.

For general shape classification and matching, geometric features or processes

should not be limited to specific classes of shapes. For example, as object volume ap-

plies to only closed shapes, methods involving volumes need to convert open shapes

to closed shapes [42].

As for feature extraction processes, graph based methods represent geometric

features using a graph, such as model graphs, reeb graphs and skeletons [43]. As effi-

cient comparison of general 3D shapes using graph metrics is very difficult, they are

not suitable in our context [31].

The rotation invariant shape descriptors based on CSM cut a 3D object along

radii [7]. If internal components of the object rotate around the mass center, which

results a different object, the shape descriptor will not reflect this change. In other

words, the CSM shape descriptor is ambiguous to objects that differ in internal com-

ponents rotation. To solve this problem, we propose a new shape descriptor based

on 4D hyperspherical harmonics (HSH). It maps a 3D object directly onto a unit hy-
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persphere without cut. The shape and matching processes using 4D HSH descriptor

involve voxelization, conversion from Cartesian coordinates to Polar coordinates, fea-

ture extraction, classification and matching.

1.3 Contributions

In this dissertation we proposed a new generalized marching cubes method

for isosurface construction.

• It allows zero values to prevail cell vertices after thresholding. Therefore the

proposed method best preserves the original topology and improves represen-

tation accuracy of isosurfaces that pass cell vertices, since it does not modify

sample values.

• By constructing isosurfaces with cycles in cells, it avoids enumerating a large

number of cases introduced by zero cell vertices.

• And the efficiency of the proposed ZMC method is comparable to that of exist-

ing MC methods in constructing isosurfaces.

We also proposed a new approach for 3D shape classification based on spheri-

cal normal images (SNI).

• The SNI incorporates local features by conformal mapping over a unit sphere

and is unique to each shape without ambiguity.

• The proposed method using SNI can discriminate collected shapes very well

and performs better than that using spherical curvature images or spherical

geometry images.

• The SNI based method is also robust to mesh resolution and pose variance.

• And we used the SVD method to compute SH offline to shorten the response

time of online retrieval.
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For general shape classification and matching, we proposed a rotation invari-

ant shape descriptor based on 4D hyperspherical harmonics (HSH).

• The 4D HSH shape descriptor maps a 3D object onto a 4D unit hypersphere

without cut along radii, thus avoid the ambiguity introduced by components

with internal rotation.

• At the same vector length, the proposed 4D HSH descriptor performs better

than those based on concentric spheres model (CSM) in shape classification

and matching.

• We adopted support vector machine (SVM) in shape classification and inte-

grate classification predictions into shape distance weights in similarity com-

parison. Experiments show the distance weights improved shape matching per-

formance.

• We also used the SVD method to compute HSH offline to facilitate online re-

trieval response.

1.4 Organization of Dissertation

This dissertation is organized as follows. In Chapter 2, we briefly introduce

background information of marching cubes (MC), propose a new isosurface construc-

tion method, zero-crossing marching cubes (ZMC) and solve its ambiguous cases.

We also discuss non-manifold surfaces in this chapter. Then we verify ZMC cases

by experiments. Synthetic data is used in a series experiments to demonstrate the

correctness of ZMC method. Chapter 3 presents an application of ZMC method

on measured data, 3D image segmentation results. And we also compare its perfor-

mance with existing MC methods.

In Chapter 4 we discuss shape classification methods. The background of

pose alignment and spherical conformal mapping of a 3D meshes are briefly described

in Chapter 4. Then we propose a new feature, spherical normal image (SNI), for

11



shape classification. Spherical harmonic representation (SH) of SNI and self-organizing

map (SOM) is used in the proposed approach, which are discussed in following sec-

tions of Chapter 4. We also present experimental results and analysis.

Chapter 5 discusses general shape classification and matching. We briefly re-

view some popular shape classification and matching methods. Then we propose a

new shape descriptor based on 4D hyperspherical harmonics (HSH). We use support

vector machine (SVM) as the classifier and present experimental results and analysis

on classification and matching.

Chapter 6 concludes the proposed methods for surface construction, shape

classification and matching. We also discuss directions of future work related to this

research.
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CHAPTER 2

SURFACE CONSTRUCTION

2.1 Introduction

Surface construction is a crucial step to analyze volumetric data. Even 3D

models represented by voxels in volume graphics needs surface construction to be

appreciated by human eyes.

The object of surface construction is to generate a mesh representing an iso-

surface. A mesh M is a pair (K, V ), where K is a simplicial complex representing

the connectivity of the vertices, edges and faces, thus determining the topological

type of the mesh, and V = {v1, . . . , vm}, vi ∈ ℜ3 is a set of vertex coordinates defin-

ing the shape of the mesh in ℜ3.

The input of surface construction is volumetric data, which has a sample

value associated with each grid point. Eight adjacent data samples enclose a cubi-

cal region, called a cell or unit cube. Cell corners are called cell vertices or grid

points. Samples at cell vertices are thresholded before surface construction. Here-

after sample value is referred as that minus a threshold. And we call a cell vertex

with positive/negative/zero sample value a positive/negative/zero cell vertex, which

lies outside/inside/on the implicit surface respectively.

In this chapter we discuss methods to construct a surface, the basis for shape

analysis in the later part of this dissertation. We begin with the most popular sur-

face construction method, Marching Cubes (MC), and elaborate our improvement on

MC methods. Various ambiguous cases and non-manifold surfaces are discussed.
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2.1.1 Marching Cubes

If sample values are either positive or negative, the isosurface is limited to

intersect a cell in 28 = 256 ways since each of the eight cell vertices can lie either

inside or outside the isosurface. Under this assumption, zero sample values are either

avoided by carefully selected threshold or modified into small positive or negative

values.

By exploiting the symmetries in the 256 ways, Lorensen et al. summarized

the cases into 15 patterns, as shown in Fig. 2.1, in the original Marching Cubes

(MC) method [1]. Each case is encoded and stored in a lookup table. For a given

cell, it is classified into one of these 15 patterns based on its sample values. And a

piece of isosurface is generated from the lookup table. The whole isosurface is con-

structed piecewise after processing all the cells.

Figure 2.1: 15 cases in original marching cubes where dots represent cell vertices
with different sign, figure from [1].
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2.1.2 Ambiguous Cases

Nielson et. al reported that a surface hole may be generated between two ad-

jacent cells as shown in Fig. 2.2 [9]. The hole is due to different connections of ver-

tices on the common cell face in the two adjacent cells. The cell face with two diag-

onal positive vertices and two diagonal negative vertices has ambiguous connections.

They proposed an asymptotic decider to solve this ambiguity.

Figure 2.2: A hole between two adjacent cells. The figure is from [2].

Let φ00, φ01, φ10 and φ11 represent sample values at the four corners of a

cell face. Value at a logical coordinate (u, v) is obtained by bilinear interpolation,

φ(u, v) = φ00(1 − u)(1 − v) + φ01(1 − u)v

+φ10u(1 − v) + φ11uv
. (2.1)

−

+

+

−

(a)

−

+

+

−

(b)

Figure 2.3: Two cases of a cell face with diagonal positive vertices and diagonal
negative vertices.

15



From (2.1) it is easy to get that curve φ(u, v) = 0 is a hyperbola on a cell face

with diagonal positive vertices and diagonal negative vertices, as shown in Fig. 2.3.

We then compute the interpolation value at the intersection point of the hyperbola

asymptotes,

φ(u0, v0) =
φ00φ01 − φ10φ11

φ00 + φ01 − φ10 − φ11
. (2.2)

If φ(u0, v0) > 0 then positive cell vertices are connected as Fig. 2.3(a); Otherwise

they are separated as Fig. 2.3(b). As a result, 29 ambiguous cases are found and

solved with equation (2.2) in case 3, 6, 7 12 and 13 of Fig. 2.1 [9].

Chernyaev found that, if a cell interior is estimated by trilinear interpolation,

internal ambiguity, i.e. tunnel connection, may exist as shown in Fig. 2.4 [2].

Figure 2.4: Possible tunnel connection within a cell. The figure is from [2].

A squared inequality was proposed to detect whether tunnel connection exists or

not. And Chernyaev found 23 internal ambiguous cases in case 3, 4, 6, 7, 10, 12 and

13 of Fig. 2.1 [2].

2.2 Zero-Crossing Marching Cubes (ZMC)
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2.2.1 Background

If sample value at a cell vertex is allowed to be zero, then each of the eight

cell vertices has three instead of two possible positions relative to an isosurface, i.e.

inside, outside or on the isosurface. Thus the isosurface intersects a cell in a total of

38 = 6561 ways. To enumerate all these cases and reduce their symmetries manu-

ally, as what has been done in [1], are extremely tedious and error-prone to human.

Without modifying sample values we are going to eliminate the original assumption

of excluding zero vertices, which is used by existing MC methods. To avoid enumer-

ating all the 6561 cases directly, we go back to check two dimensional cases instead.

We name the proposed method zero-crossing MC method (ZMC).

A vertex in the mesh of an isosurface is the intersection point of the isosur-

face and a cell edge. The vertex position is obtained by linearly interpolating sample

values of adjacent cell vertices so that the constructed isosurface is close to the de-

sired object boundary. Vertices at two ends of a cell edge are adjacent. ZMC method

starts from two basic assumptions as following.

Separation Assumption If two adjacent cell vertices are positive and negative re-

spectively, an isosurface passes between them once. The two cell vertices are sepa-

rated.

Connection Assumption If two adjacent cell vertices are both positive or nega-

tive, an isosurface does not pass between them. The two cell vertices are connected.

Theoretically, an isosurface can pass through two adjacent cell vertices with

opposite sign in odd number of times. We introduce the above two assumptions to

ensure smoothness of the isosurface. As for a zero cell vertex, the isosurface may or

may not pass through it. An isolated zero cell vertex can be regarded as a degener-

ated isosurface. We will discuss zero cell vertices later.
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For convenience of discussion, we define some terms that will be used fre-

quently in the discussion. A patch is the close intersection of an isosurface and a

cell, a polygon formed by connecting adjacent surface mesh vertices. A patch edge is

the intersection of an isosurface with a cell face, whose end points are two adjacent

surface mesh vertices on the cell edge. And a vertex degree is the number of patch

edges incident on the surface vertex within one cell. Note the vertex degree here is

different from typical definitions of the vertex degree, which is the total number of

patch edges incident on the vertex. The vertex degree here only counts patch edges

in one cell.

The definition of topology can be found in [44]. In this paper we use topology

to abstract inherent connectivity of objects depicted by their boundaries or isosur-

faces. Modifying zero sample values or regarding them as positive or negative ones,

as shown in Fig. 1.1 and 1.2, may change this connectivity property.

2.2.2 ZMC Procedure

(1) (2) (3)

(4) (5) (6)

Figure 2.5: An example of one possible way to find 2 patches in a cell by exploring
cycles.
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As mentioned in Section 2.2.1, a cell may hold patches in 6561 different ways

if taking zero cell vertices into consideration without excluding symmetric cases. In-

stead of enumerating all these cases, we go back to two dimensions to examine all

the possible cases of how an isosurface may intersect a cell face, i.e. how a patch

edge may be created. As a patch is enclosed by patch edges, the enclosure forms a

graph cycle that uses each graph edge exactly once. This suggests patches in a cell

can be found by exploiting cycles in the cell. The basic idea of ZMC method is fol-

lowing. We start from any of the surface vertices, find another coface surface vertex

if possible, draw a patch edge between them, and continue with the found vertex un-

til we return to the original vertex. After one cycle, or a patch, is completed, repeat

the process until all the patch vertices in the cell have been visited. Then we find

all the patches in the cell. An example of one possible way to find 2 patches is illus-

trated in Fig. 2.5.

However the procedure brings two questions. The first one is, how to guar-

antee the procedure will return to the origin vertex? In other words, how to avoid

dangling edges? The second question is, how many ways there are to define patch

edges on a cell face and how to make our choice? As more than two surface vertices

may lie on a cell face, there are multiple ways to define the patch edges, in which the

constructed patches in the cell would be completely different.

2.3 ZMC Ambiguous Cases

To answer the first question, we check the cycles that form patches in a cell.

The cycles are separated without sharing common cell vertices since patches do not

intersect with each other in the cell. Obviously the cycles are a simple kind of Eule-

rian circuits. According to the Eulerian circuit condition, a graph has Eulerian cir-

cuits if and only if it has no graph vertices of odd degree. In other words, to ensure

that patches found by ZMC method are complete, the degree of surface vertex in

the cell should be even. We prove later that ZMC method generates even number of
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Figure 2.6: 13 cases of squares with zero cell vertices.

patch edges incident on each surface vertex in one cell. For the second question, we

use the result by Banks et al. in counting cases to produce substitopes in MC meth-

ods [29]. They enumerated 13 distinct cases in two dimensions with zero cell vertices

as shown in Fig 2.6, in which symmetries between positive and negative cell vertices

have been eliminated. Hereafter, we refer case number to that in Fig. 2.6, unless the

case number is explicitly stated otherwise. Many of these cases, however, allow am-

biguous ways to connect patch edges. We will discuss these ambiguous cases in the

following sections. Below is a summary of our algorithm.

1. Use bilinear interpolation on a cell face to determine patch edges for 9 of 13

cases in Fig. 2.6.

2. Define zero edge in the rest 4 cases, i.e. case 4, 8, 11 and 12 in Fig. 2.6. And

solve ambiguity using two cell faces incident on the zero edge.

(a) Enumerate all the combinations of case 4, 8 and 11 for the two cell faces,

and determine patch edges based on the assumptions of separation and

connection.

(b) For case 12, use symmetry to reduce the number of configurations to 13,

and solve them using previous results and the two assumptions.
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3. Define zero face and determine when to insert a zero face for cases involving

case 11 and 12.

2.3.1 Bilinear Cases

If the underlying functions of an isosurface are known, we can easily deter-

mine the correct topology of the isosurface and the corresponding patch edges. In

case that sampled data is obtained through physical measurements, it is often im-

possible to know its true topology. And various methods have been proposed to

solve the ambiguity of the topology.

We first adopt bilinear interpolation as in (2.1) to solve the ambiguity [9]. It

satisfies the separation and connection assumptions and solves most cases in Fig.

2.6, as shown in Fig. 2.7(a). The choice between ambiguous sub-cases 13.a and 13.b

can be made according to (2.2) by the asymptotic decider method proposed in [9].

Hereafter sub-case of a case is indexed by an alphabetic letter attached to the case

number.

(2)
++

+ +

++

+ 0

+

+

(3)
+

−

0+

0 −

(9)
0+

0 +

(7) (10)
0+

+−

(13.a)
−+

− +

++

0 −

(5)
++

− −

(6)

(13.b)
−+

− +

(1)

(a) 10 successful cases.

+

0

(11)
0+

− 0 0

(12)
00+

0 0

(4)
0+

0 0

(8)

(b) 4 unsuccessful cases.

Figure 2.7: Bilinear interpolation results of 13 cases in Fig. 2.6
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(0) (1) (2) (3)

(4) (5) (6) (7)

(8) (9) (10) (11)

(12) (13) (14)

Figure 2.8: 15 cases in original MC method can be solved by ZMC correctly.

Case 1, 3, 6, 13.a and 13.b of Fig. 2.7(a) correspond to all the 15 cases in the

original MC method [1]. To show that the proposed method covers all the cases of

the original MC method, we use the 15 cases in the original MC method as input of

ZMC method and get the same patches in Fig. 2.8 as those in Fig. 2.1 , though the

triangulation is different. ZMC method also generates the same results for all the

possible configurations with ambiguous faces as those in [9]. Due to page limit, we

do not list the result here.

Note that the proposed method uses bilinear interpolation to determine ver-

tices connections by patch edges on a cell face. It finds patches by cycles without

specifying underline functions inside a cell and constructs isosurfaces piecewise. ZMC
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method does not use trilinear interpolation, by which an internal ambiguity might

exist with a tunnel connection inside a cell [2].

With the bilinear interpolation of cell faces, we have the following case rule

for cases with zero cell vertices.

Case Rule of Bilinear Interpolation Using Fig. 2.7(a), we can determine the

patch edges of case 1,2,3,5,6,7,9,10 and 13.

2.3.2 Zero Edge Cases

However, ambiguities in case 4, 8, 11 and 12 are not solved well by the bilin-

ear interpolation, as shown in Fig. 2.7(b). In case 11, one patch edge intersects an-

other between its endpoints, resulting in a discontinuous isosurface. And patch edges

between two adjacent zero cell vertices, which are called zero edges, are not ensured

to lie on the boundary of two regions with different signs.

To avoid separating two regions with the same sign, both cell faces incident

on a possible zero edge should be checked. For example, to connect a zero edge α on

a cell face A, as shown in Fig. 2.9, we need to check both the cell face A and B in-

cident on α. The zero edge in case 11 is converted to either an edge β or γ to avoid

self-intersection, where β or γ separates a positive or negative cell vertex from the

rest of a cell face. To restate the problem, let SF (e) represents the set of face con-

figurations, in which a cell face F contains a patch edge e. We need to solve SA(α),

SA(β) and SA(γ) for case 4, 8, 11 and 12.

According to the definitions of α, β, and γ, we have the following properties.

Property 1 SA(α) = SB(α).

Property 2 SA(α)∩SA(β) = Ø, SA(α)∩SA(γ) = Ø, and SA(β)∩SA(γ) = Ø.

Property 3 SA(β) ∩ SB(γ) = Ø and SA(γ) ∩ SB(β) = Ø.

Property 1 indicates criteria to draw a zero edge α is equivalent in the adjacent cell

faces A and B incident on α. According to Property 2, α, β and γ are repulsive to
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Figure 2.9: Solving zero edges. Four cell faces are unfolded with possible zero edges
on a cell face A.

each other, i.e. at most one of them appears on a cell face. If A and B are of case

11, as shown in Property 3, they both separate positive cell vertices or negative cell

vertices.

If we regard cell vertices at the two sides of a zero edge adjacent, we can de-

cide patch edges based on the separation and connection assumptions in Section

2.2.1. We only need to check the combinations of adjacent cell faces of case 4, 8, 11,

and 12 incident on α.

2.3.2.1 Case 4, 8 and 11

The results for the combinations of case 4, 8, and 11 are shown in Fig. 2.10,

with symmetries between positive and negative vertices eliminated. Only the two

cell faces incident on a zero edge among the six cell faces are used in solving zero

edges. For simplicity, we unfold the two cell faces incident on the zero edge and enu-

merate their cases in 2D. For example, case 4 has five sub-cases from 4.a to 4.e with

regard to cell faces incident on a possible zero edge. Note a case with two different

ambiguous faces are indexed by two labels accordingly. For example, the second sub-

figure in Fig. 2.10 contains cell faces of case 4 and case 8, which is indexed by 4.b or

8.a respectively. As each of the sub-cases of case 8 has two potential zero edges, we

need to check two combinations of the adjacent cell faces incident on the two poten-

tial zero edges respectively.
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For ambiguous sub-cases 11.c.1, 11.c.2, 11.e.1 and 11.e.2, we want positive

vertices to be connected if positive sample values take dominance. Therefore, if the

absolute product of positive sample values is no less than that of negative ones, we

choose 11.c.1 and 11.e.1, otherwise 11.c.2 and 11.e.2.
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Figure 2.10: Solving ambiguities in case 4, 8 and 11 of Fig. 2.6. Two cell faces inci-
dent on the zero edge are unfolded, in which solid line stands for patch edge while
dotted line for undecided patch edge.

2.3.2.2 Case 12

The results for the combinations with case 12 are shown in Fig. 2.11. Due

to symmetry, the other eight cell vertices in the cell consist of 13 distinct configura-

tions as shown in Fig. 2.6, we only need to solve these 13 configurations and illus-

trate them directly in 3D. Fig. 2.11 shows patch edges for the twelve sub-cases of

case 12 in 3D. Note sub-case 12.a represents the configurations in which the other
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eight vertices in the cell are of the case 1, 2, 4, 7, 8 or 12 in Fig. 2.6. To select be-

tween ambiguous sub-cases, we want positive vertices to be connected or take more

space if positive sample values take dominance. Therefore, if the absolute product of

positive sample values is no less than that of negative ones, we choose 12.d.1, 12.e.1,

12.g.1 or 12.h.1, otherwise 12.d.2, 12.e.2 or 12.g.2 or 12.h.2.
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Figure 2.11: Solving ambiguities in case 12 of Fig. 2.6. Solid and dotted lines stand
for patch edge.

The procedure to get the results in Fig. 2.10 and 2.11 is presented in Ap-

pendix A. We get the following case rule.

Case Rule of Zero Edge Case 4, 8, 11 and 12 with zero edges can be solved ac-

cording to Fig. 2.10 and 2.11.

For previous example in section 1.2.1, Fig. 1.1(a) corresponds to case 7 in

Fig. 2.7(a) and case 4.a in Fig. 2.10. Fig. 1.1(b) corresponds to case 7 in Fig. 2.7(a),
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case 8.a and 8.f in Fig. 2.10. Fig. 1.1(c) corresponds to case 8.f in Fig. 2.10. Fig.

1.1(d) corresponds to 12.a in Fig. 2.11. They generate no patches within the cell.

By solving all the 13 cases of Fig. 2.6 according to the case rules of bilin-

ear interpolation and zero edge, we can decide patch edges for all the 6561 cases in

3D. This answers the second question. To ensure that ZMC method can find all the

patches by exploiting the cycles in the cell, we have the following theorem.

Theorem If patch edges are determined by the case rules of bilinear interpolation

and zero edge, the degree of a surface vertex is either zero or two.

The proof is shown in Appendix B. Since a vertex degree is at most two, ZMC pro-

cedure visits a vertex at most once. In other words, midway vertices besides an ori-

gin vertex do not form any loops. So we can stop searching when all the surface ver-

tices in a cell have been visited. The surface vertex of zero degree is regarded as iso-

lated and simply ignored. This can answer the first question.

2.3.3 Zero Face Cases

In the case rules of bilinear interpolation and zero edge, an isosurface inter-

sects a cell face with zero cell vertices, or zero edges. Nevertheless, the intersection

may be a face, i.e. an entire patch lies on the cell face, which is called zero face.

Zero faces happen on cell faces of case 12, or cell faces of case 11 with different patch

edges in two adjacent cells. Similar to zero edges, to ensure a zero face is on the

boundary of two regions with different signs, two adjacent cells incident on the zero

face need to be checked. If we treat cell vertices in the two cells incident on a zero

face adjacent, we can derive the following case rule from the separation and connec-

tion assumptions in Section 2.2.1.

Case Rule of Zero Face
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1. If a zero face of case 12 separates two regions of different signs, a patch is in-

serted between the two adjacent cells as illustrated by Fig. 2.12(a); Otherwise,

no patch is inserted.

2. If a cell face of case 11 results in a different patch edge in two adjacent cells, a

patch is inserted as shown in Fig. 2.12(b).

In Fig. 2.12(a), if the right cell contains all zero vertices, the zero face is not solved

in two cells. In such an extreme case with regions of zero vertices, we ”shift” the left

cell to right until the zero face can be solved. By inserting a zero face between two

adjacent cells, we avoid the duplication from generating a zero face in each cell. And

the zero face inserted between adjacent cells does not affect the theorem of vertex

degree in Section 2.3.2.
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(b) Case 11

Figure 2.12: Insert a zero face between two adjacent cells represented by the shaded
region.

The orientation of patch vertices is adjusted to keep the patch normal point-

ing outward the isosurface consistently. Once all the patches are found, we complete

the whole front isosurface. As triangular meshes are extensively used in graphics ap-

plications, we triangulate patches by converting polygons to triangles. To avoid self-

intersections between patches within one cell [23], we add a new vertex, the average
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of patch vertices, as a common triangle vertex for a polygon with more than three

edges.

Banks and Linton also counted cases with zero cell vertices in three dimen-

sions in MC methods by numerical algorithms [29]. They found 147 cases in total

with the symmetries between positive and negative vertices eliminated. However, it

is unrealistic to manually verify this result by comparing the 147 found cases with

the 6561 original cases. And they did not specify how to generate meshes for the

147 cases or their ambiguous cases. Hege et al. found 58 different topological cases

if a cell vertex belongs to three different types that are symmetric to each other

[26]. Nevertheless, zero vertex is not symmetric to positive or negative vertex. Their

enumeration does not cover cases with zero vertices as Banks and Linton do. And

Hege’s method does not include ambiguous cases either. The advantage of ZMC

method is to generate meshes by exploring cycles without enumerating all the 6561

cases. In Fig. 2.7(b), Fig. 2.10 ∼ Fig. 2.12, ZMC has 39 cases including ambiguous

cases, much less than the 147 cases by Banks and Linton.

2.4 Non-manifold Surface

Isosurfaces constructed by existing MC methods typically separate regions

with positive vertices from those with negative vertices. In other words, it is a bi-

nary space partition that generates only manifold surfaces. By modifying zero sam-

ple values into positive or negative values, existing MC methods convert a possible

non-manifold surface into a manifold surface. As shown in Fig. 1.2, contacting im-

plicit surfaces are either separated or merged if constructed by existing MC methods.

ZMC method is able to depict this type of non-manifold surfaces correctly

by preserving zero cell vertices. One example of volume and surface is shown in Fig.

2.13(a). At intersection A, the space is partitioned into four parts. ZMC method

depicts the intersecting sphere and square without separating or merging the two

surfaces.
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A +−+
0 0

− + −

(a) A sphere and a square of four space partitions.

A
++

+ +
0 0−

(b) A sphere and a square of three space partitions.

Figure 2.13: An example of volume and surface.

In the case rule of zero face, we insert no zero face between two adjacent cells

when cell vertices at two sides of a zero face are of the same sign. Consequently two

contacting surfaces with a common surface are merged into one. Nevertheless, the

merging effect may be not desirable in some applications. For example, when two

individual parts are assembled together, it would be better to keep their common

mating face in the mesh representation. This requires partitioning a space into three

regions. ZMC method can easily realize the partition by modifying the case rule of

zero face a little bit. We insert a zero face between two adjacent cells incident on a

zero face of case 12, regardless of the signs of cell vertices at two sides of the zero

face. To illustrate, we still use the sphere and square example in Fig. 2.13(b), in

which the square is viewed as a mating face of two parts. At the intersection A, the

space is partitioned into three parts. And the sphere in Fig. 2.13(b) is connected in-

stead of being separated by the square in the middle in Fig. 2.13(a).
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Figure 2.14: Case 10 initially has 8 possible ways to connect patch edges.

The limit of ZMC method in constructing non-manifold surfaces is inherited

from the separation and connection assumptions in Section 2.2.1. For example, case

10 initially allows 8 ambiguous ways to connect patch edges as shown in Fig. 2.14.

Way 1, 3 and 4 disobey the separation assumption, and way 5, 6 and 8 disobey the

connection assumption. Using bilinear interpolation, ZMC method only validates

way 2. Like most of existing MC methods, ZMC method prohibits edges from in-

tersecting inside cell face and solves ambiguous cases by manifold surface patches.

While existing MC methods modify zero sample values to convert non-manifold sur-

faces into manifold ones, ZMC depicts the original non-manifold topology correctly

using zero vertices, zero edges and zero faces. Due to the connectivity of volumetric

data, with zero vertices only ZMC method supports at most 2 contacting surfaces in-

cident on a zero vertex, such as Fig. 2.17(a). With both zero vertices and zero edges,

ZMC supports partitioning a space into at most 4 parts incident on a zero edge, such

as Fig. 1.2. And with zero vertices, zero edges and zero faces, ZMC can partition

a space into at most 8 parts with 12 zero faces incident a zero vertex, such as Fig.

2.19(d).

ZMC method supports less non-manifold surfaces than MC methods for non-

manifold surfaces [24][26]. Nevertheless, ZMC method keeps zero vertices to repre-

sent an isosurface more accurately than existing MC methods when the isosurface
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passes through cell vertices. And ZMC method preserves the non-manifold topology

when surfaces intersect or contact at cell vertices.

2.5 Experiments and Discussions

In previous sections we presented the zero-crossing marching cubes (ZMC)

method, and discussed various ambiguous cases and non-manifold surfaces. We proved

in theory that ZMC method can solve all the ambiguous cases of cells with positive,

negative and zero vertices. In this section, we use simulations to test all the ambigu-

ous cases and prove the correctness of ZMC method in a series of experiments on

synthetic data. We will present experiments on measured data at next chapter.

2.5.1 Case Verification

The theorem of vertex degree in Section 2.3.2 guarantees that we can find

patch edges for all 6561 cases with zero vertices by exploiting cycles in one cell. In

the experiments we verify the result of ZMC method on the 6561 cases. Each case is

indexed by P =
7
∑

i=0
3i · pi, where pi = 0, 1, 2 (i = 0, 1, ..., 7) corresponds to zero,

positive and negative sample values respectively. The generated mesh for case P ,

ranging from 0 to 6560, is then rendered by Matlab and saved as pictures in JPEG

files, which are available online [45]. Although generating meshes for the 6561 cases

is very tedious for human, checking the pictures by hand is still doable. In each case,

the generated mesh satisfies the separation and connection assumptions without dan-

gling edges. ZMC method generates patches for the 6561 cases correctly.

To show the advantage of the proposed ZMC method, we compare it with an

existing MC method implemented by Lewiner et al. [46]. Lewiner’s implementation

is based on Chernyaev’s technique to solve the ambiguity problem on the cell face

[2]. It modifies zero sample values at cell vertices to small positive values, which con-

verts a case with zero vertices into one of the 256 original cases. The complete map-

ping relationship between the 256 original cases and the 6561 cases with zero vertices

is presented in [45], in which the original 256 cases are indexed in the way similar to
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P . Let qi = 0, 1 (i = 0, 1, ..., 7) corresponds to negative and positive sample values

respectively. The 256 original cases are indexed by Q =
7
∑

i=0
2i · qi. For example,

case Q = 227 may be converted from 31 cases with zero cell vertices, 7 of which are

shown in Fig. 2.15 along with the original case Q = 227. The mesh presentation of

the case Q = 227 changes obviously after the modification on zero sample values. It

illustrates representation error of existing MC methods on implicit manifold surfaces

that pass cell vertices.

(a) Q = 227

−

0

0

0

−

0

0

−

(b) P = 234 (c) P = 235 (d) P = 2422

(e) P = 2424 (f) P = 481 (g) P = 2664 (h) P = 1206

Figure 2.15: One original case Q = 227 and its corresponding cases with zero ver-
tices.

We also check ZMC method over ambiguous cases that are solved by compar-

ing the product of positive and negative sample values in case 11, 12 or 13. Based

on the comparison result, we choose from two possible results of an ambiguous face.

Let ri = 0, 1 (i = 0, 1, ..., 5) represents the two results of an ambiguous face i. The

index number R =
5
∑

i=0
2i · ri ranges from 0 to 63. For example, case P = 2422 in

Fig. 2.15(d) has two ambiguous faces of case 11 and 13. To enumerate its ambiguous

cases, let the two positive sample values be D1, D2 or D3, and the three negative

sample values be −D1, −D2 or −D3, where D3 > D2 > D1 > 0. With 32+3 = 243
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enumerations, we find 2 ambiguous cases for case P = 2422. For the 6561 cases with

zero vertices, we find total 8447 ambiguous cases, which are indexed by P and R

[45].

−
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−

−

−

−

−
− −

0

+ +

++

+ +

++

0

0 0

(a) (b) (c) (d)

Figure 2.16: Topologies comparison on case 12 in Fig. 2.6: (a) Original topology (b)
ZMC (c) Modified ZMC (d) Lewiner’s implementation.

For the case rule of zero face, we test ZMC method by enumerating all the

different combinations of two adjacent cells incident on the cell face of case 11 or

case 12 in Fig. 2.6. ZMC method works correctly on all these enumerations with re-

sults in [45]. On example of two cells incident on a cell face of case 12, is shown in

Fig. 2.16. ZMC method gives no zero face since the zero face are not on the bound-

ary of two regions with different signs. For the modified case rule of zero face in Sec-

tion 2.4, ZMC generates one zero face. ZMC method gives consistent results when

the cell vertices besides the zero face in the two adjacent cells are positive or nega-

tive. In comparison, Lewiner’s MC implementation outputs two planes for the top

case of Fig. 2.16. But it generates no plane when the sample values are multiplied

by −1 in the bottom case of Fig. 2.16. It shows preference to positive values since it

changes zero sample values to positive ones.
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2.5.2 Non-manifold Surface

We compare Lewiner’s implementation and ZMC method over the cases in

Fig. 2.17. For the case shown in top row of Fig. 2.17, Lewiner’s method reports

eight times of case 2 of Fig. 2.8 and generates 16 triangles. When the sample values

are multiplied by −1 as shown in the bottom case of Fig. 2.17, Lewiner’s method

reports eight times of case 1 of Fig. 2.8 and generates 8 triangles. To illustrate, we

enlarge its small positive value to 0.05 and get the result in Fig. 2.17(c). Note this

enlargement does not change the topologies of constructed meshes or the number of

generated triangles. The proposed ZMC method consistently preserves the original

topology as shown in Fig. 2.17(b).
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− −

− −

−−

−

0

+

0

+
−

−

+ +

+

+

+

(a) Original Topology (b) ZMC (c) Existing MC

Figure 2.17: Topologies comparison between ZMC and the Lewiner’s MC implemen-
tation on cases 2 in Fig. 2.7(a).

The example of non-manifold surfaces in Fig. 2.13, volume and square, are

constructed by Lewiner’s implementation in Fig. 2.18. Comparing with Fig. 2.13(a),

the sphere is converted into a bowl and a half sphere in Fig. 2.13(a). And the square

in Fig. 2.13(b) is removed in Fig. 2.18(b). Note the enlargement causes coarse sphere
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surfaces but does not change the topologies of the surfaces constructed by Lewiner’s

implementation. In contrast, ZMC method preserves the sphere with two contacting

half spheres In Fig. 2.13(a). And it correctly depicts a whole sphere and square in

Fig. 2.13(b).

+
−A

+− −

+

(a) A sphere is converted into a bowl and a half sphere.

++

+ +
−

(b) The square is removed.

Figure 2.18: Depicting non-manifold surfaces by existing MC methods.

2.5.3 Synthetic Data

To illustrate that ZMC can construct isosurfaces correctly, we synthesize vol-

ume data with known underlying functions and use them as input. The results are

accordant with the underlying functions as shown in Fig. 2.19.
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(a) Three torus (b) Four spheres

(c) Drip (d) Case

Figure 2.19: Examples constructed by ZMC.
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CHAPTER 3

VISUALIZING IMAGE SEGMENTATION

In Chapter 2, we presented the ZMC method and verify it on simulated cases

and synthetic data. In this chapter we apply ZMC method on measured data, 3D

image segmentation results. ZMC method was motivated by the need to visualize

3D image segment results from our new level set method. As level sets may pass

through grids, or cell vertices, existing methods modify zero-valued data [28], which

introduces topological changes as discussed in Section 1.2.1. Without changing data

values, ZMC method preserves original topology better and exhibits comparable per-

formance with existing MC methods on large volumetric data set.

In this chapter, we briefly introduce the background of an extensively used

image segmentation method, level set, and our improved 3D level set method. To

visualize 3D segmentation results, we apply ZMC method and conduct a series of

experiments to compare its performance with existing MC methods.

3.1 Level Set Method

Propelled by growing computing power, 3D image processing techniques find

increasing applications in medical domain, such as computer aided diagnose (CAD)

and computer aided surgery. As a key technology, 3D image segmentation became

a popular topic of medical image processing. Accurate 3D geometric information of

organic structures is crucial for early disease diagnose and treatment. However, seg-

mentation of some organic structures, such as lung bronchia and nodules, is a chal-

lenging task due to their complex topologies. We proposes a new automatic 3D im-

age segmentation method for these structures based on level set method.
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Level set method, proposed by Osher and Sethian, has been extensively stud-

ied and widely used in image segmentation [47]. Many variations have been proposed

to improve the level set method. One branch of level set methods, fused the various

regional statistics like intensity distribution, can enhance segmentation capabilities.

For example, Baillard et al. incorporated pixel-classification based on intensity dis-

tribution into the level set speed function [48]. Their automatic method gave impres-

sive segmentation results on brain images. To estimate distribution of incomplete

data, Dempster et al. proposed an expectation-maximization (EM) framework [49],

which has been adopted in many later approaches such as [50]. And a stochastic EM

(SEM) algorithm, was proposed by Masson and Pieczynski to reduce the dependence

on initialization of the EM method [51]. However, both the EM and SEM method

do not guarantee the global optimal estimation and or eliminate the dependency of

estimation results on initialization. The estimation error in intensity distribution can

make segmentation results instable as shown in the later sections of this chapter. We

investigate the effects of the estimation error and propose a new calibrating mecha-

nism to combine gradient information and intensity distribution into segmentation

process. By searching the maximal overlap of image gradient with the boundaries

determined by intensity distribution, the proposed method can locate the boundaries

of interested objects more stably.

The central idea of level set is to represent boundaries of different regions by

a moving front γ(t), which converges to the desired boundaries from its initial po-

sition. The moving front γ(t) is a zero level set of a higher dimensional function

ψ(x, t), x ∈ ℜN , and represents a closed hyper-surface. It is propagated along its

normal direction by updating ψ(x, t) according to some criteria. The ℜN space is

then divided by the moving front, into the region Ω enclosed by γ(t) and the outside

region Ω, which satisfy: ψ(x, t) < 0, x ∈ Ω;ψ(x, t) = 0, x ∈ γ(t);ψ(x, t) > 0, x ∈ Ω.

The evolution equation for ψ(x, t) is given as
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ψt + F |∇ψ| = 0, (3.1)

where F is the speed function of the moving front. A typical speed function is in the

form of:

F = k̂I (FA + FG), (3.2)

where k̂I = 1/(1 + |∇Gσ ∗ I(x)|m) reflects the stopping criteria by image gradient,

FA is an advection term independent of the moving front’s geometry, and FG is a

speed term dependent on the geometry such as local curvature.

The speed function should decrease to zero quickly when the front meets ob-

ject boundaries. It suggests a large m in k̂I if using image gradient as the only stop-

ping criteria. Nevertheless, with a large m the front is likely to stop at regions with

middle gradient, which may be noise or textures, instead of object boundaries in an

image. On the other side, with a small m level set may leak into object boundaries

whose gradient is low.

3.2 Intensity and Gradient Combined Level Set

Using intensity distribution into the level set speed function, instead of image gra-

dient, eliminates the need to adjust m, thus makes segmentation automatic. It can

detect object boundaries with low gradient or reduce noise effect in gradient. How-

ever, an accurate and stable estimation of intensity distribution is difficult to get

from a finite set of 3D image data. The EM or SEM method does not guarantee

convergence, or find the global optimum, whose results depend on the initialization.

Consequently, the segmentation result based on intensity distribution may be insta-

ble. For example, by running the SEM algorithm twice on a 3D lung image of size

80 × 80 × 28, we get two estimation results of its intensity distribution, as shown in

Fig. 3.1(a) and 3.1(c). Note the estimation results around the left peak are differ-
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Figure 3.1: Instable segmentation results in (b) and (d), resulted from Two estima-
tion of intensity distribution of a 3D image in (a) and (c) respectively. The blue line
is the intensity histogram while red line the estimation result.

ent in the two figures. Fig. 3.1(b) and 3.1(d) show the corresponding results of the

level set segmentation on a slice at z = 10. The inside region in Fig. 3.1(d) ”shrinks”

compared with that in Fig. 3.1(b), resulting some structures to break or disappear.

The original image of the slice and its gradient are shown in Fig. 3.2(a) and Fig.

3.2(b) for reference. Checking intensity values of different parts in Fig. 3.1, we find

the left peak corresponds largely to the background, the right two peaks correspond-

ing to lung walls, and the middle flat part corresponding to the organic structures

we are interested on, such as bronchia, vessels and the boundaries of lung walls. As

their intensity values are not distinctive from those of the background, a small dis-

turbance on the estimation result of intensity distribution, will change the segmenta-

tion result of the low intensity structures obviously.

To reduce the ”shrink” or ”expand” effect on segmentation results, we pro-

pose to use gradient information to calibrate the estimation of intensity distribu-

tion in the following. We compute the overlap of image gradient with the boundaries

determined by intensity distribution through introducing a probability offset to in-
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tensity distribution. The maximum overlap indicates the optimal boundaries of the

interested objects.

(a) Original Image (b) Gradient

Figure 3.2: One slice at z = 10 in the 3D image in Fig. 3.1.

To restate the problem without losing generality, here we use a mixed Gaus-

sian distribution model,

P (u) =
n

∑

k=1
πkP (u

∣

∣

∣λk;µk, σk ), (3.3)

where πk is the prior probability of class λk with
n
∑

k=1
πk = 1, and µk, σk are the

mean and variance of the Gaussian distribution of the intensity. We then get the

intensity distribution inside the region Ω,

Pin(u) =
∑

k|λk∈Ω

πkP (u
∣

∣

∣λk;µk, σk) . (3.4)

And the intensity distribution of the outside region Ω, Pout(u), can be obtained in a

similar way. Normally for pixel x on region boundaries with u = I(x), we have

Pout(I(x)) − Pin(I(x)) = 0. (3.5)

The final boundaries, where level set front actually stops, coincident largely with

those predicted by (3.5) in practice. As previously discussed, segmentation result by
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level set methods based on intensity distribution requires an accurate estimation of

intensity distribution, while the global optimum of the estimation is not guaranteed

by existing EM methods.

To evaluate the estimation result of intensity distribution, we introduce a

probability offset w into equation (3.5) and define,

φ(x, w) = Pout(I(x)) − Pin(I(x)) − w, (3.6)

where the boundaries satisfy E(x, w) = {x|φ(x, w) = 0}. The value of w indi-

cates the reliability of segmentation results by intensity distribution. For example,

a negative w causes the segmentation result of inside region Ω to shrink, indicating

the probability of the inside region Ω has been overestimated. Actually, φ(x, w) is a

hyper-surface similar to the definition of ψ(x, t) in level sets, in which φ(x, w) = 0

represents object boundaries like level sets ψ(x, t) = 0 do. Define d(x, w) as the min-

imum distance from x to object boundaries and the according boundary detector is,

Ye(x, w) = e−d
2(x,w), (3.7)

where Ye(x, w) = 1 for x on the boundaries and decreases exponentially with dis-

tance d(x, w). Different from the intensity-based boundary detector in [48], Ye(x, w)

takes the position x into consideration, indicating voxels in the center of an object

are less likely to be boundaries. As we expect the boundaries defined by intensity

distribution to overlap with image gradient as much as possible, define an objective

function as,

S(w) =
∫

x
(∇Gσ ∗ I(x))Ye(x, w)dx. (3.8)

The global overlap between the boundaries defined by the intensity distribution and

gradient is maximized, when
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ŵ = arg maxS(w)
w

. (3.9)

Note that existing intensity distribution models assume ŵ = 0. Furthermore, to

adjust boundaries locally, we define a factor k̂P = 1 − Ye(x, ŵ) in the level set

speed function representing the boundaries defined by intensity distribution. The

final speed factor k̂ combining both k̂I and k̂P can be designed in many ways. Gen-

erally, k̂ is assigned a low value when both k̂I and k̂P are of low values, and a high

value when both k̂I and k̂P are of high values. Otherwise, k̂ is a balanced value be-

tween k̂I and k̂P . To weight k̂I and k̂P automatically, we adopt a fuzzy logic table

similar to that in [52].

(a) The result of Fig.
3.1(a)

(b) The result of Fig.
3.1(c)

Figure 3.3: Final 3D segmentation results by combining gradient information and
intensity distribution on the slice at z = 10.

To find ŵ for equation (3.9), we search scope [−wsc, wsc] in multiple resolu-

tions, and the scope wsc is computed by,

wsc = C ·
∫

u
|P (u)−H(u)

H(u)
|2du (3.10)

where C is an empirical constant and H(u) the normalized histogram at intensity u.

Actually, wsc prevents ŵ converging to the boundaries of neighboring objects inside

or outside the current object.
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The final segmentation results by the proposed method based on the two es-

timation of intensity distribution in Fig. 3.1(a) and 3.1(c) are shown in Fig. 3.3(a)

and 3.3(b) respectively. The difference between the two results is almost indiscernible.

Compared with Fig. 3.1(b) and Fig. 3.1(d), some noise in the gradient is filtered out

and the right side of the lung wall is preserved well where its gradient is low.

Lin et al. proposed to combine the distribution of both image gradient and

intensity [53]. But they did not consider estimation error in intensity and gradient

distributions.

The advantage of our method comes from using gradient information to cal-

ibrate the instable segmentation results, found by level set methods based on insta-

ble estimation of intensity distribution. It is helpful especially when the intensity

distribution is non-Gaussian, such as Rayleigh or Poisson distribution, where using

Gaussian model to estimate the intensity distribution may introduce large estimation

error.

3.3 Experimental Results and Analysis

3.3.1 Visualize Segmentation Results

Figure 3.4: Segmentation results of a 3D lung image data. 3D boundary surface
reconstructed.
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Figure 3.5: Segmentation results: 2D contour on one slice at z = 26 in blue lines.

We test the proposed method on a series of CT lung scans downloaded from

the National Cancer Institute [54]. A narrow band level set method is implemented

to improve speed [47]. Time step is chosen adaptively to satisfy the Courant-Friedrichs-

Levy restriction to make segmentation stable. A user only needs to specify a box

containing the interested organic structures, or the region of interest (ROI). Using a

ROI with 290 × 380 × 62 voxels as the initial front surface, we get the segmentation

result with spacing 0.68, 0.68, and 0.63 mm along X, Y, Z axes.

To visualize the segmentation result, we construct a 3D boundary surface in

Fig. 3.3.1 using ZMC method. The thin structures like bronchia and fine surface

details are well captured. Note that some bronchia are not connected to the major

bronchial tree in this part of lungs. This is not resulted from the segmentation or

reconstruction error.

Another advantage of ZMC method is that 2D contours have already been

generated by patch edges within each patch. By collecting patch edges on every

plane, we can get the 2D contour at specified position, as shown for one slice at

z = 26 in Fig. 3.3.1. Ho et al. also constructed surfaces by finding 2D segments

in their CMS method [55]. But the CMS method does not consider zero cell vertices,

hence it inherits the topological artifacts of existing MC algorithms.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Segmentation results on nodule slices at z = 24 and 33. (a) and (d) are
the segmentation results by intensity distribution; (b) and (e) are the gradient; And
(c) and (f) are the final result by the proposed method in blue lines. The red lines
are the nodule cores manually marked by physicians.

From Fig. 3.3.1 and Fig. 3.3.1, it is easy to detect a nodule with many con-

nections in the left lung. We can re-assign the ROI to segment the nodule core. Fig.

3.6(a) and 3.6(d) show the segmentation results by the intensity distribution on

slices at z = 24 and 33 respectively. The gradient is shown in Fig. 3.6(b) and 3.6(e).

Fig. 3.6(c) and Fig. 3.6(f) show the segmentation results by the proposed method

for comparison. The inside regions of the nodule core were initially underestimated

by the intensity distribution, but calibrated by the gradient in the final results as

shown by the blue line. To compare with ground truth, we overlap the segmentation

results with the manual results by physicians in red contour [54]. From Fig. 3.6(c)

and 3.6(f), the two contours coincide very well. Note that it is difficult to segment

the nodule core by gradient information alone since the gradient around the nodule

core is not distinctive from that around the outline of the nodule.

In the experiments, we find that final segmentation results are decided largely

after the global calibration by ŵ, indicating the role of local adjustment by the fuzzy

logic table is limited. In other words, ŵ causes the boundary defined by intensity
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distribution to shrink or expand globally to overlap with image gradient as much as

possible, which is essential to make final segmentation results stable. Nevertheless,

the proposed method can not ”correct” segmentation results when the SEM method

gives an estimation of intensity distribution that largely deviates from the true dis-

tribution. In practice, we run SEM method several times to select the best estima-

tion with the minimal wsc value.

The estimation of intensity distribution of the ROI with 290× 380× 62 voxels

takes about 29 seconds while the level set segmentation takes 15 minutes. The algo-

rithm has been run automatically over a total of 23 data sets and the results have

been validated by experienced physicians. Quantitative evaluation will be conducted

in the near future for the purpose of nodule classification.

3.3.2 Performance Comparison

As ZMC method processes more cases than existing MC methods, it is slower

than Lewiner’s implementation, which constructs isosurfaces by a pre-computed

lookup table. To speed up the construction process, we store the ZMC results of all

the 8447 ambiguous cases in Section 2.5.1 in a lookup table indexed by P and R.

For a specific case, instead of searching cycles, we compute its index number P and

R and retrieve the patches from the table. The running time depends on the size of

volumetric data, i.e. the number of voxels, and the specific isosurface. We use a se-

ries of volumetric data of different sizes from [54] and compare the running time of

ZMC method with Lewiner’s MC implementation, as shown in Table 3.1. From the

table, ZMC is a fast algorithm, which can generate about one million triangles per

second in the experiments. Its efficiency is comparable to that of Lewiner’s imple-

mentation. Note ZMC method produces around 70% more triangles than Lewiner’s

implementation do. The difference is due to a new common vertex added each patch

with four edges or more during triangulation. An alternative method to reduce the

number of triangles is to use an existing patch vertex as the common triangle vertex.
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For example, the alternative method gives two triangles for a quadrangle instead of

four. Nevertheless, triangles generated by the alternative method depend on which

common vertex to use. And the alternative method may give a triangle on a cell

face, i.e. zero face in one cell, when three of the patch vertices are zero cell vertices.

It causes duplication or discrepancy among adjacent cells incident on the zero face

triangle. Further processing on this case and an adaptive approach in the future can

reduce the number of triangles.

Dimension Voxel
Number
(106)

Triangle
Number
(106)

Time
(s)

MC
210×320×36 2.33

0.31 0.45
ZMC 0.50 0.59
MC

512×512×28 7.05
1.12 1.42

ZMC 1.86 1.73
MC

512×512×62 15.93
1.58 2.78

ZMC 2.62 3.34
MC

512×512×103 26.63
4.36 5.5

ZMC 7.67 7.34
MC

512×512×150 38.91
5.88 7.56

ZMC 10.42 9.88

Table 3.1: Running time of ZMC and Lewiner’s Implementation. Time are in sec-
onds.

To get statistics of the 13 cases, we count their occurrence among the cells

that contain patches. Fig. 3.7 show the percentage of the occurrence of the 13 cases

in the third experiment with integer-valued samples of table 3.1. It indicates the

cases with zero vertices, case 2 and case 5, take 2% and 4%. Actually, the percent-

age of the 13 cases varies dramatically with volumetric data and experimental condi-

tions. All the experiments are carried out on an AMD Anthlon 64bit 3700+ proces-

sor with 2G RAM.
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Figure 3.7: Percentage of the 13 cases in one experiment. The other cases include
case 4 0.18%, case 7 0.02%, case 8 0.01%, case 9 0.08%, case 10 0.28%, case 11
0.06%, case 12 0.0004% and case 13 0.39%.
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CHAPTER 4

SPHERICAL NORMAL IMAGE

In Chapter 2 and 3 we discussed methods to construct surface of a 3D model

from volumetric data. As more and more 3D models are available, it is desired to re-

trieve 3D models with specific shapes efficiently. In a library, books are indexed into

various classes so that people can access a specific book quickly. Similarly, a way

to index 3D models is the key for shape classification and matching. Unfortunately,

3D models do not carry keywords with themselves, like titles, authors or subjects

of books. Geometric features of 3D models are used instead for representation and

classification purpose.

In this chapter, we discuss the shape classification process using a new fea-

ture, spherical normal image (SNI). It applies for sphere-like 3D models without

holes or handles, which are genus-zero objects. The process involves pose alignment,

conformal mapping, feature extraction using surface normals, and classification using

self-organizing map (SOM). The overall approach is shown in Fig. 4.1.

In the feature extraction step, SNIs are generated and used to index 3D mod-

els. We use a spherical harmonic (SH) representation of SNI to facilitate classifica-

tion process. We conduct experiments to test the effectiveness of SNI as a shape de-

scriptor and compare it with other geometric features like curvature and geometry

images. Multi-resolution support and the choice of classifiers are also discussed.

4.1 Pose Alignment

Traditional shape recognition methods that are based on geometric features

follow the strategy of registration and recognition. The registration eliminates the
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Figure 4.1: The procedure of genus-zero shape classification.

variance of feature vectors caused by different poses. Factors to be considered usu-

ally include scaling, translation, and rotation. Translation is usually removed by

shifting the center of a mesh to the origin, and scaling is removed through normal-

ization. As for rotation, different methods have been proposed.

Hebert et al. proposed a pre-processing stage in which data structures of

all possible rotations of samples in a library are generated and stored [34]. This

method saves the time of pose alignment during online retrieval and enables par-

tial comparison of similar surfaces. Nevertheless, it requires an extra large storage

of samples at each possible rotation up to the resolution of a mesh. Kazhdan et al.

used a rotation invariant feature to avoid the rotation process [7]. Vranić compared

the shape comparison methods using principle component analysis (PCA) in pose

alignment and the methods without rotation processing, and concluded that the

PCA based methods have better performance [37].

The PCA method finds a set of orthogonal principle axes, on which projects

of original variables have the maximum variance. Principle axes are eigenvectors of a

covariance matrix of variables:
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Cov =
1

N

N
∑

k=1
(~Vk − E(~Vk)) × (~Vk −E(~Vk))T , (4.1)

where (~V1,
~V2, · · · , ~Vk, · · · , ~VN ) are the original variables and E(~Vk) is the average.

Projects of the variable, or new variables, are generated by rotating the variable

around the average to the principle axes.

PCA method is efficient since it only involves eigenvector operations on the

matrix. However, two problems must be dealt with to apply PCA method in pose

alignment. First, if mesh vertices are used directly to calculate principle axes, the

result is sensitive to tessellation and resolution of the mesh. Second, PCA method

does not distinguish directions of principle axes.

For the first problem, Novotni et al. used mass distribution of the object, a

volumetric property, in the pose alignment [56]. Saupe and Vranić replaced the av-

erage with the gravity center ~C in their continuous PCA method (CPCA) [57]. Orig-

inal point set I is then translated to get a new point set,

I1 = I −−→
C = {−→U |−→U =

−→
V −−→

C ,
−→
V ∈ I}. (4.2)

And the covariance matrix is modified to be,

C =
1

S

∫

I1

~U × ~UT du, (4.3)

where S is the surface area. As for the second problem, the directions of principle

axes are specified by multiplying the rotated result with a diagonal matrix,

F = diag(sign(fx), sign(fy), sign(fz)), (4.4)

where

fx =
1

S

∫

I2
sign(Vx)V 2

x dv, (4.5)
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and fy, fz are obtained in a similar way.

We adopt the CPCA method in our pose alignment process, which works well

with most of the shapes collected from the Internet.

4.2 Conformal Mapping

To analyze geometric features of a 3D object, it is convenient to map the ob-

ject surface onto a region of a plane or sphere first. Surface analysis is then carried

over the plane or sphere domain. For a closed surface, mapping it onto a sphere, if

possible, yields less distortion than onto a plane.

Hebert et al. used a self-defined mapping in which a regular mesh initially

on a sphere is deformed to wrap a 3D object [34] . It captures the outline of the

3D object and supports non-zero genus object with holes or handles. However, it

introduces shape estimation error during surface reconstruction as original mesh is

deserted. Moreover, a regular mesh on sphere does not contain any geometric infor-

mation itself. Only nodes associated with its vertices contain geometric features of

the reconstructed mesh.

In contrast, conformal mapping is one-to-one and angle preserving. A mapped

mesh and the original mesh differ only in scaling factor in terms of the first funda-

mental form. In other words, shape is preserved locally in the sense that distances

and areas are only changed by a scaling factor [58]. Conformal mapping is used in

many applications such as texture mapping, remeshing and visualization. Many al-

gorithms have been proposed to calculate conformal mapping [59] [58]. Eck et al.

computed the conformal map of a 3D mesh by minimizing harmonic energy [59],

Eharm[h] =
1

2

∑

{i,j}∈Edges(D)

ki,j ||h(i) − h(j)||2, (4.6)

where D is the 3D mesh and h is the conformal map. It can be interpreted as the

energy of a configuration of springs with one spring placed along each edge of D.

And the spring constants ki,j is defined as,
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ki,j = −1

2
(cot 6 α + cot 6 β), (4.7)

where α, β are the two angles opposite to an edge {i, j} in the two faces sharing the

edge. Gu and Yau proposed a non-linear algorithm to minimize the harmonic energy

[60]. If h is harmonic, the tangential component of the Laplacian at any point v of a

surface is zero, and constraints are added to make the result unique [61].

We adopt Gu and Yau’s algorithm to compute a conformal map over a sphere,

which is a six dimensional Mobius transformation group [60]. It translates the mass

center of a mesh to the origin to guarantee a unique mapping. For a non-convex

shape in which a vector starting from the origin may intersect a surface more than

once, the conformal mapping can converge to a valid mesh on a sphere without over-

lapping. Thus we avoid the ambiguity problem associated with EGI approaches.

Nevertheless, a conformal map over a sphere is limited to genus-zero shapes only. As

for non-zero genus shapes, they have to be cut open and mapped onto a plane [60].

4.3 Spherical Normal Image

Normal vectors have been used as geometric features in many shape analysis

approaches. They contain rich geometric information of the object. Tasdizen et al.

used normal vectors to smooth and reconstruct the original 3D object [62]. Gaus-

sian map based Extended Gaussian Image (EGI) is another example of using normal

vectors. EGI is translation-independent and has been widely used for classification

[41]. The constraints of EGI, however, lie in its mapping properties of ambiguity and

self-occlusion on non-convex objects. In other words, different non-convex shapes

may be mapped to the same EGI, and part of the surface may not contribute to EGI

mass on the sphere. Fig. 4.2 shows 2D contours of two 3D objects on the left and

right, with their common EGI in the middle.

To solve this problem, distributed EGI and complex EGI have been developed

to include more geometric information into EGI [63].

55



E

A

B

E

D

C

A

C

B

E

D

A

B

D

C

Figure 4.2: A non-convex object maps to the same EGI as a convex object, shown in
2D contour.

In our approach, we take normal vectors ~N = {Nx,Ny,Nz} as the geometric

feature and store them in a conformal map over a unit sphere. SNI is generated by

interpolating grids of longitude and latitude. We use Gnomonic mapping to interpo-

late a grid point P inside a spherical triangle ABC,

P =
uA+ vB + wC

||uA+ vB + wC|| , (4.8)

where 0 ≤ u, v, w ≤ 1 and u + v + w = 1. And P is given the same normal vector as

that of the original triangle ABC. To illustrate, we show {Nx,Ny,Nz} as {R,G,B}

color for shape models in Fig. 4.3.

Compared with geometry image, SNI incurs less distortion by mapping a

closed surface onto a sphere [39]. Without cutting meshes open, it also avoids the

variance resulted from different cutting paths among similar shape models. Com-

pared with the spherical parameterization proposed by Praun and Hoppe, which

minimizes stretch between an original mesh and the mapped mesh on a sphere [64],

SNI is based on a conformal map that preserves angles and local shapes. And SNI

does not need mapping from a sphere to a polyhedron or a unit square in [64], since

further classification on the SNI is carried out directly over the sphere without un-

folding.
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(a) Ball (b) Cube (c) Bunny

Figure 4.3: Original Models and their SNI.

4.4 Spherical Harmonic Representation

In section 4.3 we generated a new feature, spherical normal image (SNI), to

represent a genus-zero shape. It is important that SNI preserves the crucial shape

information of a 3D model, so that we can use it to discriminate various 3D models

and find similar matches. In this section, a spherical harmonic representation of SNI

is used to facilitate classification. And we also discuss multi-resolution support for

coarse-to-fine classification.

Geometric features mapped onto the sphere, such as curvatures and normal

vectors, have been used in similarity comparison of 3D objects in many recognition

algorithms [34] [41]. They require the calculation of a composite distance between

substantial corresponding vertices of objects mapped on sphere.

For shape classification, indexing geometric features on a sphere can facilitate

comparison process. Schudy and Ballard used spherical harmonics (SH) to fit a sur-

face as a function over a sphere [65]. In our approach, the geometric feature stored

in a conformal map over a sphere, is regarded as a radial function f : S2 → ℜ. It

can be expanded as a linear combination of SH:
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f(θ, φ) =
∞
∑

l=0

l
∑

m=−l
Cml Y ml (θ, φ), (4.9)

where Y ml (θ, φ) is the SH and the coefficients Cml are uniquely determined by

Cml =
∫ π

0

∫ 2π

0
Y m∗
l (θ, φ)f(θ, φ) sin θdφdθ. (4.10)

The original spherical function is therefore decomposed by a feature vector of coeffi-

cient Cml . Fig. 4.4 illustrates the amplitudes of SH functions for K = 0, 1, 2, 3 [3].

Figure 4.4: The amplitudes of SH function for K = 0, 1, 2, 3 [3].

We use SH decomposition of SNI to facilitate shape classification process.

The feature vector is constituted by SH coefficients Cml . In practice, we use the am-

plitudes of Cml in the feature vector and exclude those with m < 0 because of sym-

metries between Cml and C−ml . As N2
x+N2

y +N2
z = 1, the SH representation of Nz
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is regarded as a redundancy and omitted. Therefore, the dimension of the feature

vector is (K + 2)(K + 1), where K is the highest order of SH. Feature vectors of a

ball, cube and bunny with K = 1 are shown in Table 4.1.

Ball Cube Bunny

Nx

C0
0 0.00243288 2.62533e-17 0.558153

C0
1 0.00178926 6.59502e-17 0.09185

C1
1 1.24949 0.8149 0.661967

Ny

C0
0 0.000376667 5.03471e-17 0.297591

C0
1 0.000429478 8.03768e-17 0.0311241

C1
1 1.5204 1.19423 1.001

Table 4.1: The feature vectors of a ball, cube and bunny with K = 1

Residual error Err is introduced by the truncation of higher orders of SH in

practice,

Err(K) =
∞
∑

l=K+1

l
∑

m=−l
Cml Y ml (θ, φ), (4.11)

which decreases with the increase of the value of K, the highest degree of SH. Using

finite SH coefficients Cml is equivalent to apply a low pass filtering, whose level is

controlled by the K value.

In computing spherical harmonics, Li and Hero compared methods of singu-

lar value decomposition (SVD) and FFT [35]. SVD methods can be applied to ar-

bitrarily distributed sampling points, while FFT methods require uniform sampling

on latitude θ and longitude φ. Nevertheless, both methods give similar estimation

accuracy on same sampling data sets. Moreover, the complexity of SVD methods is

approximated as O(N3), while that of FFT methods is O(Nlog2N) [66], where N is

the number of sampling points.

However, it is the complexity of online computation of coefficients Cml , not

that of computing spherical harmonics, determines response time of online retrieval.
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We use a SVD method to compute SH offline and only need to compute SH coeffi-

cients Cml for online retrieval to shorten response time. In appendix C we show that

both SVD and FFT methods have same complexity in online computation.

Multi-resolution meshes are desired for a coarse-to-fine classification. Dense

meshes contain highly detailed geometric information, which might be redundant

for coarse classification. They also incur excessive computation in the stage of map-

ping and feature extraction. Coarse meshes with basic geometric features are used

for first level classification; denser meshes with more detailed geometric features for

further classification.

Zhang and Hebert proposed a multi-scale classification approach [67]. It

adopts smoothed discrete curvature as local geometric feature. By varying the level

of surface smoothing, it compares the general shape similarity of two objects. This

method, however, loses many geometric features by smoothing surfaces in low scale.

Without smoothing the original surface, progressive mesh approach proposed by

Hoppe satisfies the need of multi-resolution support better [68]. It uses a simple

mesh M0 to represent an arbitrary mesh M̂ , together with a sequence of edge split

records. To optimize the original mesh, an energy metric is introduced,

E(M) = Edist(M) + Espring(M) + Escalar(M) + Edisc(M), (4.12)

where Edist(M) equals to the sum of squared distances from points X = {x1, · · · , xn}

to the mesh, Espring(M) is the sum of spring energy placed on each edge, Escalar(M)

measures scalar attributes, and Edisc(M) measures geometric accuracy of its discon-

tinuity curves. Then it adopts edge collapse to minimize the energy.

We adopt the progressive mesh in our approach. And the size of feature vec-

tor is scalable to multi-resolution meshes, i.e. a shorter feature vector is used in

coarse classification and longer vector in fine classification. This scalability is achieved

by varying the highest SH order K.

60



4.5 Self Organizing Map

After feature vectors are obtained, we adopt a self-organizing map (SOM)

to classify 3D shape models [4]. Classifier selection is usually determined by sam-

ple data available and the specific application. Our research is focused on feature

extraction that is not limited to specific classifiers. Nevertheless, we have to check

classification performance to improve the design of feature extraction process. We

adopt self-organizing map (SOM) due to following reasons: (1) our shape meshes are

collected from the Internet, which are not pre-classified; (2) the definition of shape

class is subjective or fuzzy, for example, how to classify the sphere, cube, cone, tetra-

hedron and cylinder?

Self-organizing map is an excellent tool in exploratory phase of data min-

ing [4]. It is a two-level approach, of which the first level is a large set of prototypes

– much larger than the expected number of clusters. The prototypes are then com-

bined to form actual clusters as shown in Fig. 4.5 [4].

Figure 4.5: Two abstraction levels of SOM method. The first level is the set of pro-
totype vectors. Using SOM to cluster the first level to get the second level. [4]

Usually the prototypes are arranged in 2D grid and each of them is repre-

sented by a prototype vector
⇀
Mi = [Mi1, · · ·Mid], where d is the input vector di-

mension. At each training step, distance between sample data
⇀
X and all the proto-
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type vectors are computed. The best-matching unit (BMU), b, is the one with proto-

type vector closest to
⇀
X ,

|| ~X −
⇀
Mb|| = min

i
{||
⇀
X −

⇀
Mi||}. (4.13)

And then the BMU and its topological neighbors are moved closer to the in-

put vector in the input space,

⇀
Mi(t+ 1) =

⇀
Mi(t) + α(t)hbi(t)[

⇀
X −

⇀
Mi(t)], (4.14)

where α(t) is an adaptation coefficient and hbi(t) is neighborhood prototypes cen-

tered on the BMU. The hbi(t) is computed as,

hbi(t) = exp(−||~Rb −
⇀
Ri||2

2σ2(t)
), (4.15)

where σ(t) is a coefficient like α(t), and
⇀
Rb and

⇀
Ri are positions of prototype b and

i on the SOM grid.

To visualize SOM result, the most widely used method is distance matrix.

The unified distance matrix, U-matrix, shows distance between prototype vectors

of neighboring map units. It can be visualized by gray shade or color. We adopt U-

matrix in our experiments.

4.6 Experiments and Discussions

We collect 3D models from various sources on the Internet, with acknowledg-

ment to SAMPL in Ohio State University [69], Princeton Shape Benchmark [70],

Vranić’s 3D Model Database [71] and Stanford 3D Scanning Repository [72]. Unfor-

tunately, current 3D model benchmark [70] is not applicable to our approach due to

the limit of genus-zero objects at present.

We extract feature vectors of 214 models with the highest SH order K = 16,

and use a SOM Matlab toolbox [73] to get the result of 12× 6 prototypes in Fig. 4.6.
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Figure 4.6: Shape classification result by SOM.

The left side of Fig. 4.6 is a U-matrix marked by different colors, while the right side

are prototypes with different labels. Blank label means no feature vector presents

in the prototype. As U-matrix displays distance between prototype vectors, feature

vectors with smaller distance means more similarity between the according 3D shape

models. And similar shape models should be clustered into the same or close proto-

types. By checking into prototypes, we find our method picks up similar 3D models

very well as shown in Fig. 4.7.

To compare the results of different feature vectors, we generate spherical cur-

vature images (SCI) and spherical geometry images (SGI) in a way similar to SNI

as shown in Fig. 4.8. Curvature inside a mesh polygon is computed by interpolat-

ing curvature at polygon vertices. And SGI is computed by interpolating normalized

{X, Y, Z} coordinates at polygon vertices. The method using SCIs requires dense

meshes and classifies cubes and balls into one prototype, whose SCIs resemble with

symmetries along X, Y, Z axes and large areas of constant curvature value. In con-
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(a) Models in prototype labeled ’glass1’

(b) Models in prototype labeled ’23’

(c) Models in prototype labeled ’Hex0’

Figure 4.7: The 3D models in the prototypes.

trast, methods using SGIs and SNIs do not depend so much on mesh resolution and

can discriminate cubes and balls correctly. The method using SGIs yields occasional

”bad” classification compared with that using SNI. For example, a glass is found in

the prototype of cubes because its SGI is not distinctive from those of cubes.

The result of pose alignment can affect feature vectors and final classification

results. For example, for cuboids of 1 : 1 : 1 ratio in different initial poses, the PCA

method gives inconsistent rotations as shown in Fig. 4.9(a). Cuboids with 5 : 1 : 1

ratio are given inconsistent rotations along X axes in Fig. 4.9(b). Only those with

different ratio along X, Y, Z axes in Fig. 4.9(c) are registered consistently. The pose

variance of objects after registration decreases with asymmetries along X, Y, Z axes
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(a) Ball (b) Cube (c) Bunny

Figure 4.8: SCI (top) and SGI (bottom).

increase, which is an artifact of registration using PCA methods. Nevertheless, the

effect of rotation on feature vectors is limited as shown in the experiments. The fea-

ture vectors of seven cubes are clustered into the prototypes labeled as ’1’, ’33’, and

’135’, which are very close according to the U-matrix in Fig. 4.6.

(a) 1 : 1 : 1 (b) 5 : 1 : 1 (c) 10 : 5 : 1

Figure 4.9: The pose alignment results of cuboids.
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As for multi-resolution representation, we have generated different resolu-

tion meshes of same objects using Hoppe’s algorithms [68], such as bunnies in Fig.

4.10(a) and 4.10(b). The multi-resolution meshes of same objects are clustered into

same prototypes. It demonstrates that our method is robust to mesh resolution.

The SH representation is also used by Kazhdan et al. in their voxelized model

with 64 × 64 × 64 grids [7]. Fig. 4.10(c) shows the voxelized bunny of 15, 377 cubes

from the bunny of 4, 000 triangles in Fig. 4.10(a). Though using a much larger data

size, Fig. 4.10(c) loses many fine details of Fig. 4.10(a) before SH representation,

which is also addressed in [37]. Based on a surface based model, the proposed method

needs much smaller data size to present at least same level of surface details.

(a) Original Surface (b) High Resolution (c) Voxelized Model

Figure 4.10: Bunnies with different resolutions.
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CHAPTER 5

GENERAL SHAPE ANALYSIS

In Chapter 4 we discussed shape classification by the spherical normal im-

age (SNI) based method. SNI preserves local geometric features using conformal

mapping on unit sphere and is unique to each 3D shape. The proposed SNI based

method discriminates collected shapes well in the experiments. However, due to the

limit of conformal mapping on sphere, SNI only applies to genus-zero objects, which

are sphere-like without holes or handles. To apply the SNI based method to gen-

eral shapes, we need to convert them to genus-zero objects first. Sphere-like mesh

wrapped onto the original object is a possible solution [34]. Nevertheless, shape esti-

mation error is introduced during reconstruction of original surface.

In this chapter, we are going to analyze general 3D shapes. We will review

classification methods for general shapes briefly. A new shape descriptor based on

4D hyperspherical harmonics (HSH) is proposed and compared with existing descrip-

tors. The shape classification process using proposed 4D HSH descriptor involves

voxelization, conversion grids from Cartesian coordinates to Polar coordinates, fea-

ture extraction and classification using support vector machine (SVM), as shown in

Fig. 5.1. We also discuss shape matching and conduct experiments to classify and

retrieve 3D shapes from shape benchmarks.

5.1 Introduction

As discussed in Section 1.2.2, many methods have been proposed for shape

classification and matching. To apply these methods to general shapes, however,

geometric features or processes should not be limited to specific classes of shapes.
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Figure 5.1: The procedure of general shape classification using 4D HSH and SVM.

For example, many spherical parameterization based methods require objects to be

genus-zero, which are closed surfaces without holes or handles [64].

We will briefly introduce popular shape classification and matching methods

for general shapes in the following sections.

5.1.1 Shape Distribution

Shape distribution methods use statistic geometric properties which can ap-

ply to general shapes [5]. For example, distance D2 refers to the distance between

two random points on a 3D object. The D2 histogram is then used as a shape de-

scriptor in discriminating different 3D shapes.

However, shape distribution based methods do not discriminate well objects

with similar gross shape but vastly different detailed shape properties [31]. Fig. 5.2

illustrates shape distribution of two classes of shapes, tanks and cars [5]. As their

gross shapes are similar, their shape distributions are difficult to be discriminated.

Extended Gaussian Image (EGI), which uses the histogram of normal vectors,

is known to be ambiguous to non-convex objects, as shown in Fig. 4.2.
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Figure 5.2: Shape distribution of 5 tanks (gray) and cars (black). The figure is from
[5].

5.1.2 Concentric Spheres Model (CSM)

Kazhdan et al. proposed a concentric sphere model and used rotation invari-

ant SH representation as the geometric feature for shape classification [7] [74]. They

first converted a given surface model into a volume model in 2R × 2R × 2R voxel

grid. A voxel is assigned value one if it intersects with the given surface, otherwise it

is assigned a value zero. Then the volume is intersected with R concentric spheres.

An illustration of the voxelization and intersection procedure is shown in Fig. 5.3 by

Vranić [6].

Recall from equation (4.9), the intersection of the volume with each sphere

can be viewed as a spherical function represented by SH. The amplitudes of SH rep-

resentation are used as the final shape descriptor,

SH(f) = {||f0(θ, φ)||, ||f1(θ, φ)||, ...}, (5.1)

where fl is the frequency component of f ,

fl(θ, φ) =
l

∑

m=−l
Cml Y ml (θ, φ). (5.2)
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Figure 5.3: The voxelization and intersection procedure of concentric spheres model
(CSM). Figure on the left is the original surface based model, while that in the mid-
dle is voxel based model. And the figure on the right is the result after intersection
with concentric spheres model. The figure is from [6].

With the definition in equation (5.1), the shape descriptor is independent of the ori-

entation of the spherical function,

SH(R(f) = SH(f), (5.3)

where R can be any rotation matrix [7]. In other words, we do not need to eliminate

rotation invariance in pose alignment since same objects in different rotation have

same shape descriptors. This rotation invariant property gives concentric spheres

model an advantage over methods requiring rotation elimination.

5.2 4D Spherical Harmonics Model

The concentric spheres model cuts a 3D object along radii into spheres. It

raises a problem that, if inner parts are rotated around the center, the shape descrip-

tor will not change at all. This is because the shape descriptor uses amplitudes of

SH representation which are rotation invariant according to equation (5.3). For ex-

ample, two different shapes in Fig. 5.4 have same shape descriptors [7]. The rotation

invariant property makes concentric spheres model ambiguous to shapes with rota-

tion of internal parts.

As rotation invariant property is desirable, we propose to eliminate this am-

biguity by treating a 3D object as a whole without cut along radii. Instead of using
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Figure 5.4: The right object is obtained by applying a rotation to the inter part of
the plane on the left. The figure is from [7].

concentric spheres model, we map the 3D object to a 4D unit sphere for analysis.

Accordingly we need 4D hyperspherical harmonic (HSH) to decompose the 3D ob-

ject and derive its shape descriptor.

5.2.1 Voxelization

Before we explore mapping relations between 3D and 4D space, let us exam-

ine the voxelization step in Fig. 5.1 first. As most of current available 3D models are

represented by polygonal meshes, which are surface based. The concentric spheres

model (CSM) based shape descriptor and the proposed 4D HSH shape descriptor

both require voxel based models. In other words, analysis is carried out on fixed

number of voxels, not polygons. We need to convert surface based model into voxel

based model, which is called the voxelization process.

The voxelization process is in reversed direction of surface construction pro-

cess we discussed in Chapter 2, in which we construct surface based models from vol-

umetric data. Many voxelization methods have been proposed for various usage [75]

[76]. Schroeder and Lorensen proposed to compute distance function for the genera-

tion of swept surfaces and volumes using implicit modeling [77]. Dachille and Kauf-

man limited the computation to voxels close to triangular meshes [78]. And Noorud-

din and Turk used voxelization techniques to simplify and repair polygonal meshes

[79].
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As we only need to assign value one to voxels intersecting an input surface,

a simplified voxelization method can be adopted. We test each polygon in a sur-

face based 3D model to mark those voxels that have vertices at the both sides of

the polygon. To speed up the process, we only consider voxels that are close to the

polygon, similar to the distance criteria in [78]. Moreover, if the polygonal mesh is

coarse, we need to subdivide the mesh into smaller ones.

In our experiments, we convert surface models into voxel grids with size of

64 × 64 × 64, the same size as the one used in experiments of concentric spheres

models [80]. Fig. 5.5 illustrate the voxelization results of surface based models.

Figure 5.5: Surface based models and voxel based models.

Unlike concentric spheres models (CSM) shown in Fig. 5.3, we do not cut the

object along radii to compute intersections of the objects with spheres.
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5.2.2 Coordinates Conversion

Similar to 3D unit sphere, a 4D unit sphere satisfies r = 1 where r is the dis-

tance to origin in 4D space. To understand 4D objects and space intuitively, Murata

and Hashimoto proposed an interactive environment [81]. In high dimensional space

spherical harmonics, or hyperspherical methods, have been explored to analyze n-

body quantum systems [82] [83]. Matheny et al. adopted 4D spherical harmonics for

time-dependent shape recovery and representation [84]. The 4th dimension in their

approach is time, not the 4th space dimension in our case.

Similar to 3D spherical coordinates, 4D hyperspherical coordinates r, θ0, θ

and φ, are connected to Cartesian coordinates as,

x = r sin θ0 sin θ cosφ y = r sin θ0 sin θ sin φ

z = r sin θ0 cos θ z0 = r cos θ0

(5.4)

where θ0 and z0 are the 4th dimensional coordinates. To compute hyperspherical

coordinates, we have,

r2 = x2 + y2 + z2 + z20 θ0 = ar cos
z0
r

θ = arctan

√

x2+y2

z φ = arctan
y
x

. (5.5)

5.2.3 Feature Exaction using 4D HSH

Similar to spherical functions represented by 3D harmonics in equation (4.9),

a hyperspherical function on 4D unit sphere can be decomposed as,

f(θ, φ, θ0) =
∞
∑

λ=0

λ
∑

l=0

l
∑

m=−l
Cmλ,lY

m
λ,l(θ, φ, θ0), (5.6)

where Y mλ,l(θ, φ, θ0) is the 4D harmonics. It can be computed using 3D harmonics

Y ml (θ, φ) as,
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Y mλ,l(θ, φ, θ0) = Nλ,lC
l+1
λ−l(cos θ0) sinl θ0Y

m
l (θ, φ), (5.7)

where

Nλ,l = (−1)λil(2l)!!

√

√

√

√

2(λ+ 1)(λ− l)!

π(λ+ l + 1)!
, (5.8)

and Gegenbauer polynomial Cαλ (u) is computed as,

Cαλ (u) =

[λ/2]
∑

t=0

(−1)tΓ(λ+ α− t)

t!(λ− 2t)!Γ(α)
(2u)λ−2t, (5.9)

in which Gamma function Γ(n) = (n− 1)! [83][85].

Similarly the shape descriptor is defined as,

HSH(f) = {||f0,0(θ, φ, θ0)||, ||f1,0(θ, φ, θ0)||, ...}, (5.10)

where fλ,l is the frequency component of f ,

fλ,l(θ, φ, θ0) =
l

∑

m=−l
Cmλ,lY

m
λ,l(θ, φ, θ0). (5.11)

Note that rotation in 3D space only involves θ and φ. Therefore the new shape de-

scriptor is still independent of rotation in 3D space as depicted by equation (5.3).

In practice, the highest degree of HSH, K, is not infinite but truncated to

some finite value. Residual error is therefore introduced,

Err(K) =
∞
∑

λ=K+1

λ
∑

l=0

l
∑

m=−l
Cmλ,lY

m
λ,l(θ, φ, θ0), (5.12)

which decreases with the increase of the highest degree of HSH, K. And the length

of 4D HSH shape descriptor is (K + 1)(K + 2)/2.
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To compute 4D HSH coefficients Cmλ,l, we adopt an approach similar to that

in Section 4.4. The process uses singular value decomposition (SVD) to shorten on-

line retrieval response time as presented in Appendix D.

5.3 Support Vector Machine (SVM)

To evaluate the effectiveness of different shape descriptors, we need a classifier

to classify 3D shape samples into classes and then compare the results. In Section

4.5 we used self-organizing map (SOM) as the classifier. The main reason for this se-

lection is that no pre-classified data is available for genus-zero shapes. Fortunately,

several shape benchmarks provide pre-classified samples for general shapes [70] [71]

[86]. Therefore we can select a classifier that takes advantage of the pre-classified

samples. In our experiments, we adopted support vector machine (SVM) as the clas-

sifier.

SVM is a relatively new classification technique introduced by Vapnik et al.

in early 1990s [87] [88]. It has become one of the most popular classifiers due to its

superior performance in many applications. And it is an alternative to polynomial,

radial basis function and multi-layer perception classifiers.

The main idea of SVM is to maximize the margin between the classes with a

boundary. An example of linear classifier on two linearly separable classes is shown

in Fig. 5.6. The boundary in Fig. 5.6(b) is better with a larger margin between the

two classes.

SVM is derived from classical empirical risk minimization approach. Let us

look at a two classes recognition example. The task of a learning process is to con-

struct an appropriate set of decision functions fλ(x): ℜN → {−1, 1}, so as to mini-

mize the expected overall risk,

R(λ) =
∫

|fλ(x) − y|P (x, y)dxdy (5.13)
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(a) (b)

Figure 5.6: (a) A separating hyperplane with a small margin. (b) A separating hy-
perplane with a larger margin. Solid dots and squares represent data in two classes.
Dotted lines stand for the hyperplane boundary [8].

where P (x, y) is the distribution of a feature vector x ∈ ℜN and its class y ∈

{−1, 1}. As distribution P (x, y) is normally unknown, instead we compute an ap-

proximation of R(λ), or empirical risk,

Remp(λ) =
1

l

l
∑

i=1
|fλ(xi) − yi|. (5.14)

where (xi, yi), i = 1, 2, ..., l are a set of known samples.

The validity of the empirical risk minimization approach requires that, when

the empirical risk Remp converges to minimum, the expected overall risk should

converge to minimum. Vapnik and Chervonenkis gave an upper bound of expected

overall risk, which holds with probability 1 − η,

Rλ(λ) ≤ Remp(λ) +

√

√

√

√

h(ln 2l
h + 1) − ln η4

l
, (5.15)

where h is a non-negative integer called Vapnik Chervonenkis (VC) dimension [88].

From the bound, it is clear that to minimize expected overall risk R, besides a small

empirical Remp we also need to select an appropriate value of VC-dimension h.
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The structural risk minimization (SRM) techniques proposed by Vapnik is

to minimize both VC-dimension and empirical risk. Nevertheless SRM is very diffi-

cult to apply directly. One reason is VC-dimension is difficult to compute. Instead

Vapnik associated VC-dimension with the margin of a linear classifier and proposed

SVM algorithm to implement the SRM. Starting from linear classifier on linear sep-

arable problem, the SVM method provides a linear classifier on non-separable prob-

lem and then a non-linear classifier on non-separable problem [88] [8].

Originally the SVM method targets at two classes situation. To apply the

SVM to multiple classes situation, one approach is to select any two classes and use

SVM method to classify a given feature vector. After all the combinations of two

classes have been tested, the feature vector is assigned to the class with highest num-

ber of SVM classification hits.

5.4 Shape Matching

The shape matching process of a query 3D shape model is to retrieve in the

database for similar 3D shapes as the input. Similar to shape classification process

in Fig. 5.1, the matching process differs only in the last step as shown in Fig. 5.7.

The matched shape models are ranked by shape similarity.

Shapes Uisng 4D HSH

Feature extraction

Coordinates
Cartesian−>PolarVoxelization

Hypersphere
4D 

Matched Similarity Comparison

in Shape Database

A Query

Shape

Figure 5.7: The procedure of general shape matching using 4D HSH.
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Shape similarity comparison is based on the distance of 3D shapes. The more

similar two shapes are, the shorter the distance is. For two 3D shapes A, B, aligned

in the same coordination system, the sum of squared distances (SSD) from A to B

is,

SSDAB =
∑

p∈A
dist2m(p, B), (5.16)

where distm(p, B) is the shortest distance from point p to B. SSD from B to A is

defined similarly.

Direct computation of SSD between two 3D shapes involves a complicated in-

tegration over each point on the models. Instead, we compare shape similarity based

on the distance of two shape descriptors. As shape descriptors are multiple dimen-

sional vectors, we compute their L2 difference as the distance,

D̂AB = ||HSH(f)−HSH(g)||2 =
∞
∑

λ=0

λ
∑

l=0
(||fλ,l|| − ||gλ,l||)

2, (5.17)

where f and g are hyperspherical (HSH) functions of model A and B respectively.

Note that the L2 difference between shape descriptors are a low bound of the L2

difference between their HSH functions,

D̂AB ≤
∞
∑

λ=0

λ
∑

l=0

(||fλ,l − gλ,l||)
2 = ||f(θ, φ, θ0) − g(θ, φ, θ0)||2. (5.18)

It is simple to use L2 difference between shape descriptors as distance. How-

ever, it disregards class information of the input shape and shapes in database. To

take advantage of the class information, we propose a weighted distance,

WDAB = WAB · ||HSH(f)−HSH(g)||2, (5.19)
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where weight WAB is assigned a smaller value if A and B belong to same class, or a

larger one otherwise.

5.5 Experiments and Discussions

With more and more 3D models are available online, many 3D shape databases

collected these shapes for various purpose [70] [69] [71] [86]. We use Princeton Shape

Benchmark (PSB) which provides about 1,800 pre-classified shape samples [70]. It

also provides some utilities for presentation and analysis.

5.5.1 Rotation Invariant

(a) Bunny 1 (b) Bunny 2 (c) Bunny 3

Figure 5.8: Bunny in three rotations.

To illustrate 4D HSH shape descriptor is rotation invariant, we generate bunny

in three rotations as shown in Fig. 5.8. Their shape descriptors, HSH1, HSH2 and

HSH3 are presented in three columns in Table 5.1 and 5.2. From the table HSH1,

HSH2 and HSH3 are very close.

5.5.2 Shape Classification

To evaluate the effectiveness of 4D HSH shape descriptors, we select shape

descriptors based on concentric spheres model (CSM) for comparison in the experi-

ments.
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To compare classification performance between different shape descriptors,

it is important to use shape descriptors of the same length. Generally speaking, if

other parameters are the same, the longer a shape descriptor is, the more discrimina-

tive it is.

The length of 4D HSH shape descriptor is L1 = (K1 + 1)(K1 + 2)/2, where

K1 is the highest degree of 4D HSH. The length of CSM based shape descriptor is

L2 = R × (K2 + 1), where K2 is the highest degree of 3D SH and R is the number

of concentric spheres. In our experiments, K1 = 8, and L1 = 45, so we set R =

9 and K2 = 4, or R = 5 and K2 = 8, in order to get L1 = L2. In the shape

classification, we also use random vectors at the length of L1 with elements value

uniformly distributed over [0, 1] for comparison.

We test the proposed 4D HSH shape descriptors on two sets of pre-classified

sample data in Princeton Shape Benchmark [70]. The benchmark provides a train-

ing group of 907 samples and a testing group of 907 samples without overlap. Set 1

classifies samples into two coarse classes, artificial objects and natural objects. Actu-

ally classification in set 1 is not based on shape and we use it for comparison. Set 2

contains seven classes, vehicles, animals, households, buildings, furniture, and plants,

which are shape-based. We generate shape descriptors of training shapes and use

them to train a SVM classifier with a Gaussian kernel. The SVM classifier is imple-

mented using a Matlab toolbox provided by Canu et al [89].

To verify the SVM implementation, we use it to analyze UCI Adult Census

Data [90]. The UCI Adult Census Data is widely used as a benchmark for pattern

classification and data mining tasks. It classifies adults with annual income into two

classes, those with income greater than $50, 000 and those with less income. The

first class takes 24.78% among all the samples while the other class takes 75.22%.

There are 30, 162 samples as the training set and 15, 060 samples as the test set with

14 attributes including age, work class, education and occupation. For a test sample,

if the prediction by the SVM classifier is in accordance with its pre-classified result,
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we take it as a ”correct” classification. The correct classification rate (CCR) is de-

fined as the ratio of correct classified samples among all the test samples. Using 100

training samples to train the SVM classifier with a linear kernel, we get CCR = 82%

for 15, 060 test samples. We also use another SVM implementation SVMlight for

comparison [91] [92] [93]. The CCR is 83% with a similar configuration. The experi-

ment result is also in accordance with that by Li [94].

Figure 5.9: Classification performance on random, concentric spheres model (CSM),
and 4D HSH shape descriptors. Y axis indicates correct classification rate in per-
cents.

In the shape classification experiments, we generate shape descriptor for a

test shape model and use it as input to SVM classifier. The CCR of the random,

concentric spheres model (CSM) and 4D HSH shape descriptors on set 1 and 2 are

illustrated in Fig. 5.9.

Obviously, the CCR decreases with the number of classes increases in the

data set. In Fig. 5.9 the CCR for set 2 with seven classes is lower than that for set

1 with two classes. For set 1, CSM and 4D HSH shape descriptors have similar CCR

as the random descriptor because they do not contain much information to decide

whether objects are natural or artificial. For set 2, the CSM shape descriptor gives

CCR= 34.95%, 55% higher than that of random descriptor. And the 4D HSH de-
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scriptor gives CCR =45.90%, 29% higher than that of CSM descriptor. The 4D HSH

shape descriptor performs better than CSM descriptor at the same length.

5.5.3 Shape Matching

An example of shape matching is illustrated in Fig. 5.10. With an input vehi-

cle model, we retrieve top 11 matched models from the database using the proposed

4D HSH shape descriptor. From Fig. 5.10 the proposed method finds shapes in the

same shape class as the input shape from the database successfully.

Figure 5.10: An input model and its top 11 matched models. The upper left with
green frame is the input model, while the others are retrieved from database. Re-
trieved models with blue frame are in the same class as the input model, while those
with red frame are not.

For an input 3D model in class C, suppose we retrieve M 3D models from

the database which are most similar to the given model. Obviously, if the number

of models retrieved M increases, we are more likely to get 3D models from the class

C, while we might also get 3D models in other classes. To evaluate shape matching

performance, we adopted the precision-recall curved as that in [7] [80]. The curve
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plots ”precision” in y direction, which is the ratio of M models that are in class C,

and ”recall” in x direction, which is the ratio of models in class C that are in the

retrieved M models. For example, (0.2, 1.0) means the top shape match is in the

same class as the input shape to reach precision 1.0, and the recall of 0.2 means the

matched shape takes 20% of shapes in the input shape class. And (0.4, 0.5) indi-

cates that 50% of retrieved shapes are in the same class of input shape while 40% of

shapes in the input shape class are retrieved. An ideal matching result is a horizon-

tal line at y = 1 indicating all the retrieved M models are in class C. Normally, pre-

cision decreases with recall increases. For two curves indicating two shape descrip-

tors, the one at upper right means high precision for the same recall thus indicates

better retrieval performance.
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Figure 5.11: Recall and Precision curve of random, concentric spheres model (CSM),
and 4D HSH shape descriptors for the vehicle class in Set 2. X axis is recall while Y
axis indicates precision.

Using L2 difference of shape descriptors as the distance between 3D shapes,

we compute recall and precision values of each classes and all classes average in Set
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2 for random, CSM and 4D HSH shape descriptors. Fig. 5.11 shows the recall and

precision curve for vehicle class while the average for all classes is presented in Fig.

5.12.
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Figure 5.12: Recall and Precision curve of random, concentric spheres model (CSM),
and 4D HSH shape descriptors for all classes average. X axis is recall while Y axis
indicates precision.

From the recall and precision curve of vehicle classes in Fig. 5.11, 4D HSH

shape descriptor performs better than CSM and random descriptors. At the average

of all classes in figure 5.12, the precision of CSM shape descriptor at recall of 0.1 is

0.29, 45% higher than that of random (0.20). The precision of 4D HSH shape de-

scriptor is 0.27 at the recall of 0.1, which is 93% of that of CSM descriptor.

4D HSH shape descriptor is rotation invariant Like CSM shape descriptor.

However, with limited highest degree of HSH, K, estimation error is introduced. To

improve shape matching performance, we conduct pose alignment to eliminate rota-

tion invariance for a given shape before voxelization. The corresponding recall and

precision curve shows small improvement in Fig. 5.13. For example, at recall of 0.1,
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the precision of 4D HSH descriptor after shape registration is 0.30, 11% higher than

that of 4D HSH descriptor without registration. It also suggests that using pose

alignment to improve shape matching performance of rotation invariant shape de-

scriptors is limited.
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Figure 5.13: Recall and Precision curve of for all classes with improvement by pose
alignment. X axis is recall while Y axis indicates precision.

To improve the matching performance, we integrate classification results into

the distance measurement. And the precision and recall curve favors shorter distance

between shapes in the same class while longer distance between shapes from differ-

ent classes. From equation (5.19), we assign distance weights based on SVM classi-

fier prediction. If two shapes are predicted to be in the same class, we use a smaller

weight to shorten their distance, or a larger weight enlarge their distance otherwise.

The corresponding recall and precision curve shows obvious improvement as in Fig.

5.13. For example, at recall of 0.1, the precision of the weighted distance 4D HSH

descriptor is 0.37, 37% higher than that of 4D HSH descriptor without weight. Fig.

5.15 shows another example of input model and its top 19 matches.
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From the calculation of recall and precision, the recall and precision curve

is directly depend on the definition of class. Different class definition will generate

totally different curve for the same distance measurement. For example, the same

distance measurement in Fig. 5.12 using class definition in Set 1 instead of Set 2 will

generate recall and precision curve in Fig. 5.14.
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Figure 5.14: Recall and Precision curve of random, concentric spheres model (CSM),
and 4D HSH shape descriptors for shapes in Set 1. X axis is recall while Y axis
indicates precision.

Note in our comparison with CSM shape descriptors, we limit its size L to 45,

the same as that of 4D HSH shape descriptors. As L = R × (K + 1), we use either

R = 9, K = 4 or R = 5, K = 8, while in practice L = 512 with R = 32 and

K = 15 [70]. The correct classification rate (CCD) is 43% for CSM shape descriptor

when L = 512 in our experiments. Besides 3D SH representation, we did not use

other optimization method in [7] [70]. As a result, our results including recall and

precision curves are different from those in [70].
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The limit of shape descriptor length for 4D HSH lies in the way we compute

4D HSH. SVD method is used to compute 4D HSH coefficients Cmλ,l as presented

in Appendix D. We need to compute a pseudo inverse matrix Y−1, which is of size

(K+1)(K+2)(2K+3)
6 ×N . The computation complexity grows quickly with (θ, φ, θ0)

grid size and K. For example, for a (θi, φi, θ0i) grid of size 20 × 20 × 20 and K =

8, the size of Y is 8000 × 285. It takes about 31 minutes on a Pentium 4 3.2GHZ

machine with 1G RAM. Though this step can be completed offline once for all, it

still limits the size of (θi, φi, θ0i) grid, K and the length of 4D HSH shape descriptor

L, which is of size
(K+1)(K+2)

2 . To reach L = 512 as used in [70], we need K = 30.

As a result, the size of Y with the same grid size as 20 becomes 8000 × 10416, which

is very expensive to compute using SVD. To generate longer shape descriptor, we

may need new method to compute 4D HSH coefficients Cmλ,l.
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Bunny 1 Bunny 2 Bunny 3
0.076193 0.07879 0.073858
1.30e-15 1.19e-15 5.51e-16
0.018489 0.009033 0.02647
0.124278 0.138426 0.139562
1.41e-16 1.36e-16 3.23e-16
0.082299 0.057327 0.04291
7.91e-16 9.20e-16 9.45e-16
0.022186 0.022135 0.064738
1.92e-16 2.30e-16 2.58e-16
0.058485 0.035637 0.022967
0.043827 0.053012 0.065833
1.23e-16 2.01e-16 1.69e-16
0.176636 0.147784 0.124835
2.48e-16 3.49e-16 2.49e-16
0.053117 0.027294 0.019093
1.03e-16 1.35e-16 7.13e-17
0.062476 0.065215 0.054934
2.70e-16 1.86e-16 4.28e-16
0.097268 0.115669 0.086085
2.48e-16 2.72e-16 2.35e-16
0.060385 0.028561 0.019968
0.036754 0.045865 0.042053
1.11e-16 7.42e-17 4.50e-17
0.105129 0.105256 0.096116
2.45e-16 4.72e-16 2.44e-16
0.093227 0.095061 0.073732
3.22e-16 3.57e-16 3.80e-16
0.053585 0.020531 0.008509
1.68e-17 8.45e-17 2.47e-17
0.041575 0.026067 0.061419
1.33e-16 1.89e-16 3.51e-16
0.164736 0.306086 0.242287
1.86e-16 2.21e-16 2.69e-16
0.147944 0.130425 0.155474

Table 5.1: HSH of bunny in different rotations. The highest degree of HSH K = 8.
(To be continued.)
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Bunny 1 Bunny 2 Bunny 3
3.42e-16 3.08e-16 2.56e-16
0.070811 0.035231 0.024339
0.057386 0.068294 0.079115
4.29e-17 6.61e-17 4.54e-17
0.089229 0.166505 0.13794
1.86e-16 2.76e-16 2.04e-16
0.135417 0.144117 0.114726
2.17e-16 3.59e-16 3.30e-16
0.104316 0.0908 0.068864
3.66e-16 3.63e-16 2.55e-16
0.074985 0.030685 0.013303

Table 5.2: (Continue) HSH of bunny in different rotations. The highest degree of
HSH K = 8.

Figure 5.15: An input model and its top 19 matched models. The upper left with
green frame is the input model, while the others are retrieved from database. Re-
trieved models with blue frame are in the same class as the input model, while those
with red frame are not.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Surface Construction

In this dissertation we proposed a generalized marching cubes method for iso-

surface construction. Existing MC methods do not allow cell vertices whose sample

values equal threshold, or zero cell vertices. Modifying sample values at such ver-

tices may introduce problems including topological changes, representation error and

preference on positive or negative values. The proposed ZMC method allows zero

values to prevail cell vertices after thresholding. It constructs an isosurface by ex-

ploring cycles in cells. Comparing with existing MC methods, the proposed method

has the following advantages. It best preserves the original topology and improves

representation accuracy of isosurfaces that pass cell vertices, since it does not mod-

ify sample values. And it avoids enumerating a large number of cases introduced by

zero cell vertices. The simulation results show that ZMC method preserves topol-

ogy better than existing MC methods on zero cell vertices and some non-manifold

surfaces. And the efficiency of ZMC method is comparable to that of existing MC

methods in constructing isosurfaces. The ZMC program along with the experimental

data is available in [45].

To produce smoother or more accurate isosurfaces, future research includes

interpolating nonplanar polygonal patches or fitting them by spline surfaces. It is

also desirable to make the ZMC algorithm adaptive to geometric features to reduce

the number of triangles and preserve sharp features.
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6.2 Shape Classification and Matching

For 3D shape classification, we proposed a new approach based on spherical

normal images (SNI). SNI incorporates local features by conformal mapping over a

unit sphere and is unique to each shape without ambiguity. We also use spherical

harmonics (SH) to facilitate the shape classification process. And we use the SVD

method to compute SH offline to shorten the response time of online retrieval. Ex-

perimental results show that the proposed method using SNI can discriminate col-

lected shapes very well and performs better than that using spherical curvature im-

ages and spherical geometry images. The SNI based method is also robust to mesh

resolution and pose variance.

The limit of genus-zero shape is determined by the conformal map over sphere.

To apply the SNI method to non-zero genus objects, we need to convert them to

genus-zero objects first. Sphere like mesh wrapped onto the original object is a pos-

sible solution [34].

For shape classification and matching of general shapes, we proposed a new

shape descriptor based on 4D hyperspherical harmonics (HSH). Shape descriptors

based on concentric spheres model (CSM) cut a 3D shape along radii, which are am-

biguous to components with internal rotation. The proposed 4D HSH descriptor

maps a 3D object to a 4D unit sphere without cut. It avoids the ambiguity caused

by internal rotation. And we use SVD to compute HSH offline to shorten online re-

trieval response. Support vector machine (SVM) is used to classify general shapes

in Princeton Shape Benchmark [70]. Experiments show that the 4D HSH shape de-

scriptor performs better than CSM descriptor at the same vector length on the pre-

classified shape set. As for shape matching, the 4D HSH shape descriptor retrieves

similar shapes in the same class as the input shape successfully. And we proposed

weighted distance using classification results. The 4D HSH shape descriptor with

weighted distance demonstrates shape matching improvement by 37%.
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The limit of the proposed 4D HSH method lies in the complexity of our SVD

method to compute 4D HSH. The complexity grows quickly with regard to grid size

and highest order of HSH. Thus it limits the length of shape descriptor, which is im-

portant to improve shape discriminative power.

In the future we would find new method to compute 4D HSH with less com-

plexity so that longer shape descriptors can be used in shape classification and match-

ing. We also want to try new geometric features or combine existing shape descrip-

tors to improve classification and matching performance.
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APPENDIX A

PROCEDURE TO SOLVE ZERO EDGE CASES
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To distinguish case 4, 8, 11 and 12, we define a character function Ti, i =

4, 8, 11 and 12, which gives non-zero value only to the corresponding case respec-

tively. Let x, y be the sample values besides a zero edge,

T4(F ) =















xy · sign(x) xy > 0

0 xy ≤ 0
, (A.1)

T8(F ) =















x+ y xy = 0

0 xy 6= 0
, (A.2)

T11(F ) =















max(x, y)/min(x, y) xy < 0

0 xy ≥ 0
, (A.3)

T12(F ) =















1 |x| + |y| = 0

0 |x| + |y| 6= 0
(A.4)

Case 4, 8 and 11

Consider the combinations of case 4, 8 and 11 first, i.e. T12(A) + T12(B) = 0,

where A, B are incident on a zero edge α. If A is of case 4 or 8, only α may apply

according to Fig. 2.9. We need α to separate positive and negative cell vertices in A,

B when B is of case 4 or 8 with a different sign from A,

SA(α) = {A,B|T4(A)T4(B) < 0}

∪{A,B|T4(A)T8(B) < 0}

∪{A,B|T8(A)T4(B) < 0}

∪{A,B|T8(A)T8(B) < 0}.

(A.5)

If A is of case 11, only β or γ applies according to Fig. 2.9. By definition, β is used

to separate a positive cell vertex from the rest of A when B is of case 4 or 8 with a

negative sign, or of case 11 when the product of positive samples is less than that of

negative ones,
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SA(β) = {A,B|T11(A) 6= 0, T4(B) < 0}

∪{A,B|T11(A) 6= 0, T8(B) < 0}

∪{A,B|0 < T11(A)T11(B) < 1}.

(A.6)

Similarly, γ is used to separate a negative cell vertex from the rest of A when B is

of case 4,8 with a positive sign, or of case 11 when the product of positive samples is

no less than that of negative ones,

SB(γ) = {A,B|T11(A) 6= 0, T4(B) > 0}

∪{A,B|T11(A) 6= 0, T8(B) > 0}

∪{A,B|T11(A)T11(B) ≥ 1}.

(A.7)

To get the results in Fig. 2.10, we enumerate all the combinations of case 4,

8, and 11 and solve SA(α), SA(β) and SA(γ) using equation (A.5), (A.6) and (A.7).

Case 12

Then consider the combinations with case 12, i.e T12(A)+T12(B) 6= 0. If only

B is of case 12, i.e. T12(A) = 0, T12(B) 6= 0, we search along the direction vertical

to α for the next cell face C that is not of case 12. We treat cell vertices besides zero

edges α, δ adjacent, to solve α, β, and γ similar to equation (A.5) ∼ (A.7). If A is

of case 4 or 8, only α or δ may apply according to Fig. 2.9. Either α or δ is chosen

to separate positive and negative cell vertices in A,C when C is of case 4 or 8 with a

different sign from A. Subdividing SA(α) into two parts and replacing B with C, we

have

S∗A(α) = {A,C|T4(A)T4(C) < 0, |T4(A)| < |T4(C)|}

∪{A,C|T8(A)T8(C) < 0, |T8(A)| < |T8(C)|}

∪{A,C|T8(A)T4(C) < 0},

(A.8)
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S∗C (δ) = {A,C|T4(A)T4(C) < 0, |T4(A)| ≥ |T4(C)|}

∪{A,C|T8(A)T8(C) < 0, |T8(A)| ≥ |T8(C)|}

∪{A,C|T4(A)T8(C) < 0},

(A.9)

where we choose α when the absolute value of the product of sample values besides

the zero edge in A is less than that in C, or when A is of case 8 and C is of case 4.

If A is of case 11, S∗A(β) and S∗A(γ) can be directly derived by replacing B with C

in SA(β), SA(γ) of equation (A.6), (A.7) respectively. If A is of case 12, i.e. T12(A) 6=

0, we search in both directions vertical to α for the next two cell faces not of case 12.

Without loosing generality, let T12(B) + T12(D) = 0, SA(α) can be computed based

on Property 1 as SA(α) = SB(α).

To get the result in Fig. 2.11, we enumerate all the configurations with a cell

face of case 12, and solve S∗A(α) and S∗C(δ) using equation (A.6) ∼ (A.9).
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APPENDIX B

PROOF OF THE THEOREM OF VERTEX DEGREE
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Firstly, it is easy to verify the degree of a surface vertex that is not zero cell

vertex is two, since it is shared by two cell faces, in each of which one patch edge is

connected to the vertex. And the degree of surface vertex in Fig. 2.11 is either zero

or two.

Secondly, we show that the degree of surface vertex is at most two for the

cases with zero cell vertices in Fig. 2.7(a) and Fig. 2.10. In Fig. 2.7(a), the only

possibility for the degree of surface vertex to reach three is at zero cell vertices with

three adjacent cell faces. However, if one zero cell vertex connects to three patch

edges like case 5 or 9, it will cause a contradiction in which the cell vertices at two

sides of a patch edge are of the same sign. So the degree of surface vertex is at most

two in cases in Fig. 2.7(a). In Fig. 2.10, we only need to verify the degree of zero

cell vertices that possibly connect more than one patch edge is at most two. Such

zero cell vertices, called multi-edge vertices for convenience, exist in sub-case 4.d,

11.b, 11.c.1, 11.c.2, 8.e, 8.g and 8.h. From cases 2 and 7 in Fig. 2.7(a), a zero cell

vertex connects to no patch edge if its two adjacent cell vertices are of the same sign.

So a multi-edge vertex connects to no patch edge in its third adjacent cell face (not

displayed) in sub-cases 11.c.1, 11.c.2, 8.e or 8.g in Fig. 2.10. Since only two cell ver-

tices are not known in Fig. 2.10, we get the degree of the multi-edge vertex is two by

enumerating nine combinations of the two unknown cell vertices in the sub-cases 4.d,

11.b and 8.h. So the degree of surface vertex is at most two in cases in Fig. 2.10.

Finally we show that the degree of a zero cell vertex is not one. We only need

to check zero cell vertices that connect only one patch edge in Fig. 2.7(a) and Fig.

2.10, connect at least one patch edge in other adjacent cell faces. Such zero cell ver-

tex is called single-edge vertex for convenience. From case 5 and 9 of Fig. 2.7(a), a

zero cell vertex connects to only one patch edge on one cell face if its two adjacent

cell vertices are of different signs. Similarly it connects to at least one patch edge in

its other adjacent cell faces, if its third adjacent cell vertex (not displayed) is positive

or negative. If its third adjacent cell vertex is a zero cell vertex, only two other un-
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known cell vertices (not displayed) that affect its degree are left. We get the degree

of a single-edge vertex is two by enumerating nine combinations of the two unknown

cell vertices. In Fig. 2.10, the degree of a zero cell vertex in sub-cases 4.c, 4.e, 11.e.1,

11.e.2 is two since its two adjacent cell vertices are of different signs. Since only two

unknown vertices (not displayed) are left in Fig. 2.10, by enumerating nine combina-

tions of the two unknown cell vertices, we get the degree of the single-edge vertex is

two in sub-case 4.d, 11.b, 11.d, 8.e, 8.g and 8.h.

In conclusion, the degree of surface vertex in one cell by the case rules of bi-

linear interpolation and zero edge is either zero or two.
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APPENDIX C

COMPLEXITY OF ONLINE COMPUTING FOR SPHERICAL HARMONICS

COEFFICIENTS
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Let sample surface values R = (r(θ1, φ1), · · · , r(θi, φi), · · · , r(θN , φN )), the

coefficients C = (C0
0 , C

−1
1 , C0

1 , C
1
1 , · · · , C

K−1
K ,CKK ) and the matrix of spherical

harmonics,

Y =









































Y 0
0 (θ1, φ1) Y−1

1 (θ1, φ1) · · · Y KK (θ1, φ1)

Y 0
0 (θ2, φ2) Y−1

1 (θ2, φ2) · · · Y KK (θ2, φ2)

. . . . . .
. . . . . .

Y 0
0 (θi, φi) Y−1

1 (θi, φi) . . . Y KK (θi, φi)

. . . . . .
. . . . . .

Y 0
0 (θN , φN ) Y−1

1 (θN , φN ) . . . Y KK (θN , φN )









































. (C.1)

From equation (4.9) we get RT = Y CT , which is,

CT = Y−1RT , (C.2)

where Y−1 is the pseudo inverse matrix of Y .

Once the positions (θi, φi) of the sampling points R are pre-known (i.e. lati-

tude θ and longitude φ are distributed uniformly), and the number of sample points

N and the highest order of spherical harmonics K are fixed (normally N >> (K +

1)2), Y−1 can be computed as an over-determined system by SVD method offline

once for all. The online computation, with regard to R of different 3D shapes, in-

volves only complex matrix multiplication in O(N). Note that R must be sampled

at the fixed (θ1, φ1), · · ·, (θi, φi), · · · , (θN , φN ), instead of arbitrary points. And

the fixed sampling points can be computed in O(N).

On the other hand, FFT method estimates spherical harmonic coefficients

using the sampling theorem [66]:

Let f ∈ L2(S2) have bandwidth B. Then for 0 ≤ |m| ≤ l < B,
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f̂(l,m) =

√
2π

2B

2B−1
∑

j=0

2B−1
∑

k=0
a
(B)
j f(θj, φk)e−imφkPml (cos θj), (C.3)

where Pml is the associate Legendre function, the sample points are chosen from the

equiangular grid: θj = π(2j + 1)/4B, φk = 2πk/2B, and the weights a
(B)
j play a

role analogous to the sin θ factor in the integrals.

In terms of online computation, FFT method involves multiplication and ad-

dition proportional to the number of sampling points N because all except the sam-

ple surface value f(θj, φk) in (C.3) can be computed offline.

In sum, the complexity online computation is approximated as O(N) for both

SVD and FFT methods.
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APPENDIX D

COMPUTING 4D HYERSPHERICAL HARMONICS (HSH) COEFFICIENTS
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The process to compute 4D HSH coefficients Cmλ,l is very similar to that of

coefficients Cml of 3D SH. We just outline the formulas. Let sample voxel values

R = (r(θ1, φ1, θ01), · · · , r(θi, φi, θ0i), · · · , r(θN , φN , θ0N )), the coefficients C =

(C0
0,0, C

0
1,0, C

−1
1,1 , C

0
1,1, C

1
1,1, · · · , C

K−1
K,K ,CKK,K) and the matrix of spherical har-

monics,

Y =









































Y 0
0,0(θ1, φ1, θ01) Y 0

1,0(θ1, φ1, θ01) · · · Y KK,K(θ1, φ1, θ01)

Y 0
0,0(θ2, φ2, θ02) Y 0

1,0(θ2, φ2, θ02) · · · Y KK,K(θ2, φ2, θ02)

. . . . . .
. . . . . .

Y 0
0,0(θi, φi, θ0i) Y 0

1,0(θi, φi, θ0i) · · · Y KK,K(θi, φi, θ0i)

. . . . . .
. . . . . .

Y 0
0,0(θN , φN , θ0N ) Y 0

1,0(θN , φN , θ0N ) · · · Y KK,K(θN , φN , θ0N )









































.

(D.1)

From equation (5.11) we get RT = Y CT , which is,

CT = Y−1RT , (D.2)

where Y−1 is the pseudo inverse matrix of Y .

We sample (θi, φi, θ0i) uniformly over 4D unit sphere, with θi ∈ [0, π], φi ∈

[0, 2π], and θ0i ∈ [0, π]. Another way to sample (θi, φi, θ0i) is to convert voxels from

Cartesian coordinates to Polar coordinates directly using equation (5.5).

We use Mathematica function SphericalHarmonicY to compute 3D spheri-

cal harmonics, and get 4D hyperspherical harmonics using equation (5.7), (5.8) and

(5.9) [95].

For N sample points and the highest degree of HSH K, the size of matrix Y

is N × (K+1)(K+2)(2K+3)
6 . Normally N >>

(K+1)(K+2)(2K+3)
6 , we need to

compute Y−1 by singular value decomposition (SVD). For example, for a (θi, φi, θ0i)

grid of size 20×20×20 and K = 8, the size of Y is 8000×285. This step can be com-
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pleted offline once for all hyperspherical functions, which is sampled at fixed position

(θi, φi, θ0i).
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