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ABSTRACT 
 
 
 

A PROBABILISTIC FRAMEWORK FOR MULTI-SENSOR FUSION BASED 
INDOOR POSITIONING SYSTEM ON MOBILE PLATFORM 

 
 

by 
 

Xiang He 
 
 

Adviser:  Jia Li, Ph.D. 
 
 

Nowadays, smart mobile devices integrate more and more sensors on board, such 

as motion sensors (accelerometer, gyroscope), wireless signal strength indicators (WiFi, 

Bluetooth), and visual sensors (LiDAR, camera). People have developed various indoor 

localization techniques based on these sensors. In this dissertation, a probabilistic 

framework for multi-sensor fusion based indoor localization system is developed and 

partially implemented on a mobile platform.  

The probabilistic fusion of multiple sensors is investigated in a hidden Markov 

model (HMM) framework for mobile device user localization. We propose a graph 

structure to store the model constructed by multiple sensors during offline training phase, 

and a multimodal particle filter to seamlessly fuse the information during online tracking 

phase.  

The multi-sensor information for our data fusion and analysis includes WiFi 

received signal strength (RSS) collected from mobile device’s received signal strength 

indicator (RSSI), motion signals gathered by built in motion sensors including 

accelerometer and gyroscope, and images captured by camera.  
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Based on our algorithms, we performed simulations in MATLAB and analyzed 

the results. We further implemented the indoor localization system on the iOS platform. 

The experiments carried out in typical indoor environment have shown promising results 

of the proposed algorithm and system design. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Problem Statement 

Nowadays, smart mobile devices (smartphone, tablet or wearable device like 

glasses or watch) are playing more and more important role in people’s daily life. In 

some sense, they have become a new organ of human being. The ever-improving 

innovative technology is extending the function of our eyes, ears and mouths. It is 

changing human DNA in a digital way. In this dissertation, we focus on one functionality 

extension for human sense: localization. It is well known that a bat is able to determine 

the distance of objects from the time between expelling and hearing the ultra-sound 

emitted by itself. This is called echolocation. Human doesn’t gain this ability during our 

evolution, but we are smart enough to build machines to improve our sense of location. 

The most famous one is the Global Positioning System (GPS). By receiving location 

information from satellites, a handheld receiver is able to localize the user on earth with 

meter level accuracy. However, GPS may not function in an indoor environment due to 

weak or complete loss of signals.     

In recent years, researchers have developed various approaches for mobile device 

user localization in GPS-denied indoor environment. To name a few, radio frequency 

(RF) fingerprinting techniques, motion sensor based pedestrian dead reckoning (PDR) 

techniques and visual sensor based feature matching techniques are the most popular 

approaches in indoor localization. However, all of them have their own limitation. RF 

fingerprinting techniques based on Bluetooth [1], RFID [2], Zigbee [3] or WiFi [4] [5] 
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[6],) have the problem of signal fluctuation due to the multipath fading effect in an indoor 

environment. The motion sensor based PDR approach [7] [8] suffers from the fact that 

the motion sensors equipped on the mobile device are low cost Micro Electromechanical 

System (MEMS) sensors, which have relatively low accuracy. Thus the integration drift 

will cause the localization deviation to accumulate over time. The visual sensor based 

localization techniques [9] [10] [11] [12] [13] extract visual features like SIFT [14] or 

SURF [15] from captured images and compare them with an image database. The costly 

feature matching algorithm and restricted computation resource on mobile platform limits 

the deployment of such techniques. Moreover, in ASSIST [16], inspired by bat 

echolocation mechanism, acoustic signals emitted from smartphone speakers are adopted 

to locate the user using time differences of arrival (TDoA) multilateration method. 

ASSIST can locate the user within 30 cm. However, this method requires sound receivers 

preinstalled at the ceiling or walls, which adds extra infrastructures to the indoor 

environment. 

To overcome the drawback of each sensor, people have come up with fusion 

approach to combine different sensors to achieve better localization result. However, 

since the sensors are measuring different physical phenomena, it’s not an easy task to 

effectively fuse the information from multiple sensors. The existing sensor fusion 

approaches for localization involve decision level fusion and feature level fusion. The 

decision level fusion usually contains multiple local detectors and a fusion center. The 

local decisions are transmitted to the fusion center where the global decision is derived. 

The optimum decision rule under Neyman-Pearson criteria can be expressed as a function 

of correlation coefficients of local detectors. It has been shown that the performance of 
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such distributed detection system degrades as the degree of correlation increases [17]. 

This approach is easy to implement and computationally efficient. It has been widely 

used in wireless sensor network (WSN) and some other research fields [18]. However, it 

is not practical in the indoor localization system with multiple sensors due to the 

difficulty of determining the correlation coefficients between different sensors. On the 

other hand, feature level fusion [19] is a more delicate fusion approach that extracts 

features from multiple sensor observation, and uses these features to represent the real 

world and help localization. The problem of feature level sensor fusion is the highly 

redundant sensor data in feature extraction. As there are multiple sensors, each sensor 

delivers different data about the surrounding environment, we have to determine an 

effective approach to extract the information and store them in an efficient way so that 

we can access them easily for purpose of localization. Existing fusion algorithms include 

Bayesian filtering techniques, such as Kalman filter [20] [21] and particle filter [22] [23], 

and non-Bayesian filtering technique, for example, conditional random field [24] [25] 

and Dempster-Shafer theory [26] [27]. Originally, Kalman filter and particle filter are 

designed for state estimation in single-sensor measurements. But information fusion 

based on Bayesian filtering theory has been studied and widely applied to multi-sensor 

systems. Generally speaking, there are two types of methods to process the measured 

sensor data. The first one is the centralized filter where all sensor data are transferred to a 

fusion center for processing. The second one is the decentralized filter where the 

information from local estimators can achieve the global optimal or suboptimal state 

estimate according to certain information fusion criterion. 
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1.2 Our Contributions 

In this dissertation, we first adapt Gaussian process modeling of WiFi RF 

fingerprinting and particle filter based localizer to mobile device [28]. Then we introduce 

the motion sensors on board to improve the localization accuracy [29]. The algorithm has 

been implemented on iOS platform and tested in an indoor environment. To further 

improve the localization accuracy, we introduce visual sensors into the system [30]. The 

probabilistic model for multi-sensor fusion is investigated in a hidden Markov Model 

(HMM) framework, where the state transition model is defined as the user motion model, 

and the observation model includes WiFi sensor model, camera sensor model and motion 

sensor model [31]. Researchers have applied HMM successfully in WSN area. Huang et 

al modeled the dynamic quantization and rate allocation in a sensor network with a fusion 

center as a finite state Markov chain, and designed an optimal quantizer using stochastic 

control approach for state estimation in hidden Markov model [32]. Rossi et al developed 

a HMM framework which exploits time-correlation of the unknown binary source under 

observation through a WSN reporting local sensor detection to a fusion center over 

Rayleigh fading channel [33]. To solve the HMM state estimation problem with multiple 

sensors, Blom et al proposed the interacting multiple model (IMM) algorithm, which 

combines state hypotheses from multiple filter models to get a better state estimate of 

targets with changing dynamics [34]. The filter models used to form each state hypothesis 

can be derived to match the targets of interest’s behavior. In this dissertation, we propose 

a multimodal particle filter to seamlessly fuse the data from multiple sensors for HMM 

state estimation.  
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A graph structure ( , )G V E=  is developed to store both the user motion 

information and environmental information effectively. The key idea is to represent the 

indoor environment by graph whose vertices correspond to segments of the indoor 

environment. The segments are predefined in a 3D model built offline. The vertices play 

an important role in the motion model since they relate to movement choices, which are a 

limited amount of positions user can move to next. The edges correspond to connection 

between different segments, which act as constraints of the user movement to reduce the 

computation during the online tracking phase.  

Specifically, we made the following contributions to the field of indoor 

localization. Under the HMM framework, we propose a graph structure to store the 

model constructed by multiple sensors in offline training phase, and a multimodal particle 

filter to fuse the information efficiently during online tracking phase. The particle filter is 

able to handle the motion sensor drift problem during the resampling step. The WiFi 

signal strength fluctuation problem is mitigated using the motion sensor information to 

guide the particle propagation towards the higher likelihood field. We developed an 

indoor localization system on iOS platform. To the best of our knowledge, our iOS 

application is the first one to achieve accurate, robust, and highly integrated indoor 

localization by seamlessly fusing the information from multiple sensors on board.  

1.3 List of Publications 

1.3.1 Journal 

1. X. He, D. N. Aloi, J. Li, “Probabilistic multi-sensor fusion based indoor 

positioning system on a mobile device” in Sensors, December 2015, vol. 15, pp. 31464-

31481. 
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1.3.2 Peer-reviewed Conference Proceedings 

1. X. He, S. Badiei, D. N. Aloi, J. Li, “WiFi iLocate: WiFi based indoor 

localization for smartphone” in Proceedings of Wireless Telecommunication Symposium, 

Washington, DC, USA, August 2014, pp. 1-7. 

2. X. He, D. N. Aloi, J. Li, “WiFi based indoor localization with adaptive motion 

model using smartphone motion sensors” in Proceedings of the International Conference 

on Connected Vehicle and Expo (ICCVE), Vienna, Austria, November 2014, pp. 786-791. 

3. J. Li, X. He, J. Li, “2D LIDAR and camera fusion in 3D modeling of indoor 

environment” in Proceedings of National Aerospace and Electronics Conference 

(NAECON), Dayton, USA, June 2015, pp. 379-383. 

4. X. He, D. N. Aloi, J. Li, “Portable 3D visual sensor based indoor localization 

on mobile device” in Proceedings of the Consumer Communication & Networking 

Conference (CCNC), Las Vegas, USA, January 2016, pp. 1125-1128. 

1.4 Dissertation Outline 

The remainder of this dissertation is organized as follows. In the next chapter, 

various indoor localization systems and related localization algorithms are introduced. In 

Chapter Three, we give an overview of multi-sensor fusion techniques. In Chapter Four, a 

WiFi based localization system applying Gaussian process modeling of the WiFi RSS, 

including the simulation results in MATLAB and real time testing on iOS device are 

described. We improve the localization system performance by fusing motion sensor 

information from the mobile device. The result and analysis are discussed in Chapter Five. 

Then we discuss the application of using visual sensors for indoor localization on mobile 

device in Chapter Six. In Chapter Seven, we introduce a probabilistic framework, which 
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is able to fuse the information from various sensors for indoor localization. The details of 

offline training, HMM modeling and online tracking of our algorithms are described. 

Finally, Chapter Eight summarizes the research with a discussion of future work. 
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CHAPTER TWO 

TECHNIQUES FOR INDOOR LOCALIZATION SYSTEMS 

 

Localization systems, no matter what type of information they are based upon, 

need to obtain data from the surrounding environment with sensors input. Thus, sensing 

is the first step to begin a localization task, which is followed by processing and 

analyzing the obtained data with different kinds of algorithms. In this chapter, we will 

first introduce some wireless signal based localization methods. Then we will take a look 

at the localization system based on motion sensors. After that, we will turn to visual 

sensors to see how they can be applied to localization and tracking tasks. 

2.1 Wireless Signal Based Localization 

Researchers have experimented with various systems using wireless signal to 

locate and track user position. The most widely applied localization systems are based on 

Bluetooth, RFID and WiFi signals.   

2.1.1 Bluetooth and RFID Based Localization 

The Bluetooth technology was originally proposed for short distance data transfer. 

It is also capable of reporting the distance between the transmitter and the receiver.  

The Bluetooth based indoor localization system usually involves two parts: the Bluetooth 

beacons, which are low cost, low energy chips and can last for years, and the mobile 

receivers, which are usually smartphones, like iPhones or Android phones. The 

smartphone receives a signal from these beacons, and calculates the current location 

using triangulation algorithm. There are several companies providing the Bluetooth 
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beacon based indoor localization services. For example, SPREO develops a Bluetooth 

beacon signal based indoor navigation system, and claims an accuracy of 1.5m [35]. 

The Radio Frequency Identification (RFID) based indoor localization method is 

another type. The idea is to use the electromagnetic field to wirelessly transfer data to 

automatically identify and track tags attached to objects. There is a bidirectional 

communication between a sender and a tag. Tags can be active, battery-assisted passive 

or passive. The active tags have built-in batteries and can periodically transmit signals. 

The battery assisted passive tags have a small battery inside but the battery is only 

activated when the tags are in the range of a reader. The passive tags are small and cheap, 

but they require a signal magnitude three times than the normal because they need to use 

the signal energy to transmit the data back to the reader. Comparing to barcodes, RFID 

tags do not necessarily have to be within line of sight of a RFID reader, and may be 

embedded in a tracked object. So it is consider as a potential solution in retail stores for 

product identification. In Chumkamon’s work [36], the RFID tags are embedded into 

stone blocks and put onto a footpath. By continuously detecting and tracking the RFID 

signals with a portable RFID reader, the app can determine the current location by 

decoding the received signals and looking it up in the database.  

Both the Bluetooth and RFID localization methods require modification to the 

environment by attaching beacons or tags in order to function properly. When the area of 

localization service expands, the cost would increase significantly, and therefore limit the 

scalability of these methods. Meanwhile, changing the environment setting would cause 

other issues, such as aesthetic issues or legal issues. In addition, the accuracy of the 
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localization depends heavily on the number of sensors (beacons or tags) mounted, which 

adds to the burden of installation and maintenance of these systems.  

2.1.2 WiFi Based Localization 

Generally speaking, WiFi based indoor localization techniques can be categorized 

in two types, propagation based and location fingerprinting based. Propagation based 

algorithms usually apply mathematical models to a set of triangulation algorithms to 

determine the location of the device. The triangulation approach uses the geometric 

properties of triangles to estimate the target location. Specific techniques use information 

include angle of arrival (AOA), phase of arrival (POA), time of arrival (TOA) and 

roundtrip time of flight (RTOF) to localize the device [37]. The main drawback of the 

propagation based algorithms is the difficulty in getting an accurate propagation model 

for the complicated indoor environment. Due to this difficulty, propagation based 

techniques can only achieve limited accuracy. 

Instead of modeling the propagation of WiFi signal, location fingerprinting based 

algorithms assumes that a WiFi enabled device always receives similar signal strength at 

a certain location, such received signal strength (RSS) and coordinates would serve as a 

unique “fingerprint” of this location. We can collect a “fingerprint” in each location and 

store them in a dataset. Every time user comes to a new location, the WiFi signal strength 

is detected and the location is estimated by measuring the similarity between current and 

stored fingerprints. 

There are many location fingerprinting based methods, such as the K-Nearest 

Neighbor (K-NN), neural networks, support vector machine (SVM) and the probabilistic 

method [37]. The K-NN algorithm compares the online scanned WiFi RSS with the 
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offline built WiFi RSS dataset, searches for K closest matches RSS values in signal space, 

and uses these K known locations to estimate the current location. K-NN is easy to 

implement but it suffers greatly from signal fluctuations as the RSS detected at the same 

location may vary from time to time. Neural Network and SVM both are machine-

learning methods used for classification and regressions. They require huge amount of 

training data and complex training process to achieve high accuracy result, which are not 

applicable in mobile device. By introducing Gaussian process into our system, we are 

able to build an accurate WiFi RSS model without the need of intensive survey data 

collection and sophisticated training process. The Gaussian process modeling will be 

discussed in detail in Chapter Four.  

2.2 Motion Sensor Based Localization 

Motion sensors have been around for decades. Traditionally they have been used 

in aviation and marine industry, where they are used for navigation and control purposes. 

They are able to determine the instantaneous location and orientation of a platform both 

accurately and rapidly. However, these kinds of motion sensors are usually bulky and 

pretty expensive.  

The development of micro machined electromechanical system (MEMS) 

technology has leaded to smaller and cheaper motion sensors. Nowadays motion sensors 

have become more and more ubiquitous. They can be found in cars, gaming consoles and 

in smart mobile device like iPhone or tablet. The functionality of MEMS motion sensors 

is based upon simple mechanical principles. For example, angular velocity can be 

measured by exploiting the Coriolis ffect of a vibrating structure. When a vibrating 

structure is rotated, a secondary vibration is induced from which the angular velocity can 
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be calculated. Acceleration can be measured with a spring suspended mass. When 

subjected to acceleration the mass will be displaced. 

Base on motion sensor measurements, researchers have developed pedestrian 

dead reckoning (PDR) approaches for indoor localization. It is a process of calculating 

one’s current location by using a previous determined location, and advancing that 

location based on estimated speeds over a certain time period. It thus requires the user to 

manually input the initial starting point. According to the place of the installed sensors, 

PDR can be categorized as foot-mounted [38] [39] [[40] [41], waist-mounted [42] [43], 

and handheld [44] [45] [46] types. Foot-mounted and waist-mounted PDR usually require 

a customized sensor to wear on. It can provide accurate step length estimation result, but 

cannot solve the heading problem. Handheld type PDR usually refers to a smartphone 

application. In Li et al’s work [7], they designed reliable algorithms for pedestrian step 

detection, stride estimation and heading inference using motion sensors (accelerometer, 

gyroscope and magnetometer) built in the smartphone, and achieve meter-level accuracy 

in indoor environment.  

The biggest challenge for motion sensor based localization is the internal defect of 

the low cost MEMS sensors. The integration drift will cause the localization deviation to 

accumulate over time. Thus, PDR is better to be used as a supplement to other method 

like WiFi based localization system. We will explain our usage of motion sensor data in 

Chapter Five.  

2.3 Visual Sensor Based Localization 

Naturally, human beings tend to rely on visual information to perceive the 

environment and perform daily tasks. Visual sensor based approaches are drawing more 
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and more attention in both the computer vision community and the robotics community 

to achieve real time and accurate localization system. Depending on how to use the data 

captured by visual sensors, we can classify vision based localization methods to two 

categories: 2D approaches and 3D approaches.  

2.3.1 2D Image Based Localization 

Two-dimensional (2D) image-based approaches directly use original 2D images, 

transformations of input images, or their 2D features, to localize the images. Typically, a 

2D method avoids 3D inference and motion parallax problems for navigating a 3D scene 

by using only 2D image features; and the model of the 3D scene is usually a database of 

images or features, organized with geo-location tags, instead of building and maintaining 

a 3D model. 

The main idea of 2D image-based localization is to first store the scene images, or 

features of these images, into a database, indexed and related with known geographical 

locations. A new input image to be localized is preprocessed with the same kind of 

feature extraction procedure and is retrieved in the database. Since the images in the 

database are geo-located, finding the matched images are equivalent to successfully 

localizing the input image.  

The authors in [47] take advantage of off-the-shelf 2D image features, namely 

color histogram, wavelet decomposition and shape information to achieve room level 

accuracy with over 90% success probability. However, this approach cannot be used to 

determine the absolute position of the camera, nor its orientation. Thus limits its 

application where precise position and orientation are needed.  
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Researchers demonstrate an image based localization system for mobile devices, 

which achieves not only sub-meter localization accuracy but also determines orientation 

in [48]. They use a human operated ambulatory backpack to collect geo-tagged images 

with SIFT features and associated 6 degrees of pose of all images. Then they load all of 

the image database SIFT features into a KD-Tree and perform K-Nearest Neighbor (KNN) 

search to find a database image with most number of matching features to the query 

image. Then they apply the SIFT features match along with mobile device pitch and roll 

to recover the relative pose between the retrieved database image and the query image. 

This results in 6 degree of freedom pose for the query image.  

2.3.2 3D Model Based Localization 

We live in a 3D space. So it is more natural to sense the world with 3D sensors. 

There are quite a few methods to obtain the third dimension data - the depth. Here we 

only discuss two major method types: Structure from Motion (SfM) methods and direct 

3D sensing methods.  

SfM is the process of estimating 3D structure from 2D image sequences, which 

can be describe as the following steps: 1. Record a video that captures every details of the 

environment. The video is served as input to the SfM process. 2. Perform SIFT feature 

extraction and pairwise feature matching among the sequential images from input video. 

3. Reconstruct the 3D model by estimating the 3D position of visually relevant points in 

the scene, as well as the position and orientation of the cameras from where the pictures 

are taken. 4. Refine the 3D structure using nonlinear optimization methods to minimize 

the reprojection error of all the reconstructed 3D points to the 2D image position of the 

original SIFT features in the images. Ruiz et al use the SfM based 3D model combining 
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with WiFi signals and motion sensor data to build a Location based Service (LBS) system 

that achieve real time (0.5 seconds of response time) and high accuracy (average error 

around 15 cm) [49].  

The 3D environment information can also be obtain directly with portable RGB-

Depth sensors, such as Microsoft’s Kinect, Google Tango Tablet or Occipital’s Structure 

Sensor for iPad. These devices are able to register the color images with the depth images. 

Then automatically or manually aligning individual, consecutive local 3D point clouds 

can generate a complete 3D model. As describe in [50], we can perform localization by 

comparing the online captured 3D point cloud with the offline build 3D model to 

determine the actual pose of the mobile device. Since we have the 3D coordinates of the 

key frame image’s feature points, given in its registered depth image, and the 2D 

coordinates of the captured image’s corresponding feature points, specified in the image, 

these N feature points form a classic Perspective-n-Point (PnP) problem. By solving the 

PnP problem, we get the transformation matrix between the captured image and the key 

frame image in the database. Therefore, the initial 6 degree-of-freedom pose can be 

calculated by multiplying the global pose of the key frame image with the transformation 

matrix. Once the initial pose is known, the ongoing pose estimation problem has become 

finding the rigid transform between the online captured 3D point clouds with the offline 

built 3D model, which can be solved with iterative closest point (ICP) algorithm. We will 

further discuss this method in Chapter Six. 
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CHAPTER THREE 

MULTI-SENSOR FUSION TECHNIQUES OVERVIEW 

 

Multi-sensor fusion is a process of association, correlation and combination of 

information collected from various sources into one framework that can help a system to 

make better decision than from single source only. In order to accomplish this task, a 

mathematical framework must be used to combine these multiple sensor readings to a 

single decision output. In this chapter, we will have a review of different kinds of sensor 

fusion techniques.  

3.1 Probabilistic Fusion 

Generally speaking, sensor fusion techniques perform a data mapping from 

multiple inputs to a smaller number of outputs. Sensor inputs usually include raw sensor 

measurements, like pixel values, received signal strengths, or accelerated velocities. 

Outputs can be an estimated state, a recognized objects or a decision. Probabilistic fusion 

methods use probability density function to express sensor data uncertainty. By 

combining prior and observation information, we are able to reach a posterior probability 

for the decision or estimation problem. At the core of these methods lies the Bayes rule, 

which provides a way to infer about an object of interest described by a state x , given an 

observation z .  

3.1.1 Bayesian Inference 

British scientist Thomas Bayes discovered Bayesian Theory in 1763. The well-

known Bayes rule describes the fundamental probability law governing the logical 

inference process. In Bayes theory, the posterior probability depends on a likelihood 
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function and a prior probability. According to Bayes formula, the posterior probability is 

calculated as follows: 

                      p(x | z) = p(z | x)p(x)
p(z)

                                                    (1) 

In the above equation, the prior beliefs about what values of x  might be expected, 

is encoded in the prior probability p(x) . To obtain more information about the state x , 

an observation z  is made. The observations are modeled as a conditional probability 

p(z | x) , which describes the probability of making an observation of z  given a state x . 

The new likelihood associated with the state x  is calculated from the product of the 

original prior information and the information gained by observation. This is encoded in 

the posterior probability p(x | z) . The marginal probability p(z)  serves as a 

normalization term for the posterior.     

The multisensory form of Bayes rule requires conditional independence: 

p(x | Zn ) =Cp(x) p(zi | x)
i=1

n

∏                                             (2) 

where C  is a normalizing constant. zi  means the observation from sensor i . Zn  

represents all observations from n  sensors.  

This states that the posterior probability of x  given observations Zn  is 

proportional to the product of prior probability and individual likelihoods from each 

information source.  

In Bayesian inference, the uncertainties in sensor information are modeled as 

random variables. The inference is performed within the Bayesian framework given all of 

available information. The goal of Bayesian inference is to use prior knowledge and finite 
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observations from sensors to infer the conditional probability. There are usually three 

levels of probabilistic reasoning in Bayesian analysis: (1) Model selection given the data 

and assumed priors; (2) Estimating the parameters to fit the data given the model and 

priors; (3) Updating the parameters. Bayesian inference can be illustrated by a directed 

graph, a Bayesian network, which is a probabilistic graphical model with a set of vertices 

and edges, the probability dependency is described by a directed arrow between two 

nodes that represent two random variables. Hidden Markov model (HMM) is one type of 

Bayesian network and we will have a further discussion of it in Chapter Four. 

3.1.2 Bayesian Filtering 

In order to do state estimation over time, researchers have come up with the 

recursive Bayesian estimation, also known as Bayesian filtering. The recursive form of 

Bayes rule is: 

p(x | Zk ) = p(zk | x)p(x | Z
k−1)

p(zk | Z
k−1)

                                             (3) 

where zk  is an observation at time k . Zk  represents the observations up to time k .  

The advantage of recursive Bayesian formula is that we only need to compute and 

store the posterior probability p(x | Zk−1) , which contains a complete summary of all past 

information. When the next piece of information p(zk | x)  arrives, the previous posterior 

takes on the role of the current prior and the product of the two becomes the new 

posterior after normalization.  

The most popular Bayesian filtering technique is the Kalman filter. It has a 

number of features that make it suitable to deal with complex multi-sensor estimation and 

data fusion problems. The explicit description of process and observations allows a wide 



19 

variety of different sensor models to be incorporated within the basic algorithm. In 

addition, the consistent use of statistical measures of uncertainty makes it possible to 

quantitatively evaluate the role each sensors play in overall system performance. Further, 

the linear recursive nature of the algorithm ensures that its application is simple and 

efficient. For these reasons, the Kalman filter has found wide spread application in many 

different sensor fusion problems [51] [52]. On the other hand, Kalman filter is limited to 

linear models with additive Gaussian noises. 

When dealing with non-linear system dynamics, one usually has to resort to 

approximation techniques. Extended Kalman filter (EKF) [53] and Unscented Kalman 

filter (UKF) [54] are based on first order and second order approximation in Taylor series 

expansion. However, both of the methods can only handle non-linearity to a limited 

extend. Grid-based methods [55] provide an alternative approach for approximating non-

linear probability density functions, although they rapidly become computationally 

intractable in high dimensions. Furthermore, particle filter based on Monte Carlo method 

has been developed in order to represent the posterior probability in terms of random 

samples and associated weights [56]. Particle filter does not require the restrictive 

hypotheses in the Kalman filter. Hence, it can be applied to any non-linear models with 

non-Gaussian errors. Particle filter is used to approximate the posterior probability of the 

system state as a weighted sum of random samples. The random samples are drawn from 

the prior density (state transition model) with their weights updated according to the 

likelihood of the given measurement (sensor observation model). This approach performs 

a resampling step where the current set of particles is replaced by a new set drawn from it 

with probabilities to their weights. This step is called sequential importance resampling 
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(SIR), which is the key part within particle filtering. We will discuss the particle filter in 

detail for our system during the online tracking phase. 

3.2 Evidence Theory 

The theory of evidence was first proposed by Dempster and later on extended by 

Shafer [57]. The theory models uncertainty as belief in one or more propositions or 

ignorance. It is based on two ideas: obtaining degrees of belief for one question from 

subjective probabilities for a related question, and Dempster's rule for combining such 

degrees of belief when they are based on independent items of evidence. In essence, the 

degree of belief in a proposition depends primarily upon the number of answers (to the 

related questions) containing the proposition, and the subjective probability of each 

answer. Also contributing are the rules of combination that reflect general assumptions 

about the data. 

Mathematically speaking, consider a universal set X . In probability theory, a 

degree of belief called belief mass may be placed on any element xi ∈ X  and on any 

subset A ∈ X . In evidence theory, belief mass not only can be placed on elements and 

sets, but also sets of sets. Specifically, while X  represents all possible states of a system, 

the power set 2X  represents the set of all possible subsets of X .  

As an example, consider the mutually exclusive set X = {occupied,empty} . In 

probability theory we might assign a probability to each possible event like this: 

p(occupied) = 0.3 , p(empty) = 0.7 . In evidence theory, we construct the set of all subsets: 

2X = {{occupied,empty},{occupied},{empty},φ} , and belief mass is assigned to all 

elements of this set as m({occupied,empty}) = 0.5 , m({occupied}) = 0.3 , 
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m({empty}) = 0.2 , m(φ) = 0.0 . The interpretation of this is that there is a 30% chance of 

occupied, a 20% chance of empty and a 50% chance of either occupied or empty. In 

effect, the measure placed on the set containing both occupied and empty, is a measure of 

ignorance or inability to distinguish between the two alternatives. Thus, evidence theory 

provides a method of capturing ignorance. In probability theory, this would be dealt with 

in a very different manner by assigning an equal or uniform probability to each 

alternative. Yet, stating that there is a 50% chance of occupancy is clearly not the same as 

saying that it is unknown if it will occupied or not. The use of power set as all possible 

state of the system allows a far richer representation of beliefs. However, this comes at 

the cost of a substantial increase in complexity.  

Garvey et al [58] first applied evidence theory in data fusion problem in 1981. 

Unlike the Bayesian inference, the evidence theory allows each source to contribute 

information in different levels of detail. For example, one sensor can provide information 

to distinguish individual entities, whereas other sensors can provide information to 

distinguish classes of entities. The study by Barrnett [59] first addresses the computation 

problems of implementing Dempster’s rule of combination. In his proposed algorithm 

each piece of evidence either confirms or denies a proposition. He realizes linear time 

computations and demonstrates the results in experiments.  
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CHAPTER FOUR 

WIFI BASED INDOOR LOCALIZATION AND TRACKING 

 

In this chapter, we will discuss in detail the WiFi based indoor localization 

techniques. Including the offline training phase, online tracking phase, simulation in 

MATLAB and implementation on iOS platform.  

4.1 Introduction 

Nowadays, WiFi access points (APs) have become ubiquitous, whether in the 

offices, museums, shopping malls or airports. Modern people can hardly survive without 

access to the Internet. Although it’s more like a joke instead of serious theory, people 

argue that WiFi has made its space in Maslow’s hierarchy of basic human needs as 

shown in Figure 1. In the meantime, smartphones are playing more and more important 

roles in people’s daily life.  We often see people with smartphones walking around in the 

public areas. An accurate indoor localization system can help people easily accessing 

navigation in a museum or airport terminal, finding specific merchandise or promotion 

information in a shopping mall, or locating themselves whenever they get lost. Global 

Positioning System (GPS) is commonly used for navigation outdoors. But it lacks enough 

accuracy when functioning indoor. People are trying to develop WiFi based Positioning 

System (WPS) to fulfill the indoor localization task.  

A WiFi based localization system has several advantages: First, WiFi APs are 

becoming a standard configuration in many of the indoor environments. Second, WPS 

only rely on the existing infrastructure, so no modification to the environment is required. 

Third, the WiFi information needed for doing localization include only the received. 
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Figure 1: Maslow’s hierarchy of basic human needs (image from imgur) 

 

 

Third, the WiFi information needed for doing localization include only the received 

signal strength (RSS) and the Basic Service Set Identifier (BSSID). The information is 

easy to collect, simply by sniffing the wireless traffic in the air. Fourth, WiFi signals do 

not require line-of-sight (LOS). It is extremely suitable for the use in indoor environment 

where there are a lot of walls and obstructions.  

Extensive research has been done in developing the WiFi based indoor 

localization systems, such as RADAR [60], Horus [61], Compass [62]. However, most of 

them are developed on laptop platforms equipped with better antennas than on the 

smartphone. Moreover, recent work on developing smartphone indoor localization app 

achieves only room level accuracies, like Shopkick[63]. Therefore, accurate indoor 

localization on smartphone still remains an open problem. Liu et al [64] tried to solve this 
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problem by introducing peer assisted localization approach. But this approach only works 

in public areas with high densities of smartphones present at the same time. Lokesh et al 

[65] described an accurate smartphone based indoor pedestrian localization system using 

WiFi and camera on the phone. But they only demonstrated their results in simulation 

instead of an actual implementation on smartphone. 

Several RSS based localization systems that utilize Gaussian process regression 

have already been developed, and this approach has proved to be well suited in modeling 

the RSS dataset [66]. But none of them is adapted to the smartphone platform. Our 

approach is inspired by their work and tailored for the purpose of smartphone application. 

The two main components of our WiFi based localization and tracking algorithm are a 

WiFi RSS dataset trained by Gaussian process regression and a localizer based on 

particle filter.  

Specifically, we make the following contributions: We build a WiFi based indoor 

localization and tracking system on an iOS platform. It does not require any dedicated 

infrastructure in the indoor area or specialized hardware equipped on the smartphone. 

Moreover, our system does not require any user-specific information, such as user’s 

initial location or AP’s location. It is press-to-go localization. To the best of our 

knowledge, our iOS application WiFi iLocate is the first one to achieve real time, highly 

accurate indoor localization by leveraging Gaussian process WiFi RSS fingerprinting 

modeling along with particle filter based localizer in smartphones.  

The remainder of this chapter is organized as follows: In Section 4.2, we give an 

overview of Gaussian process regression and show how it can be used in modeling WiFi 

RSS fingerprinting. Then we describe a localizer using particle filter to do the location 
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estimation based on this model. In Section 4.3, simulation in MATLAB is conducted to 

prove the feasibility of the proposed localization algorithm, and provide us with more 

insights of the algorithm. The iOS implementation, named WiFi iLocate, and its 

performance in real situation, are presented in Section 4.5. Finally we present some 

concluding remarks in Section 4.5. 

4.2 Localization Algorithm Design 

The probabilistic location fingerprinting method uses Bayesian filtering to 

determine the location under estimation. Let )|( zxp i  denotes the probability that the 

WiFi enabled device is in location ix  given the received signal vector is z . We select a 

location ix  if )|( zxp i  > ( | )jp x z , for i , j  = 1, 2, 3, ... n, i j≠ .  

Also let’s assume that ( )ip x  is the probability that the smartphone is in location 

ix , ( | )ip z x  is the probability that the signal vector z  is received, given that the device is 

located in location ix . The given decision rule is based on posterior probability 

)(
)()|()|(

zp
xpxzpzxp ii

i =                                            (4) 

Here we can assume that ( )p z  is a constant since it is independent of xi , so that 

the formula can be rewritten as 

)()|()|( iii xpxzpzxp ∝                                            (5) 

The estimated location x  is the one obtains the maximum value of the probability 

argmax[ ( | )]
i

i
x

x p x z=                                                 (6) 
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Traditionally, we collect the location fingerprints on the offline training phase and 

create a dataset to store them. During the online localization phase, we calculate the 

likelihood ( | )ip z x  of each location candidate based on the observed signal strength, and 

the estimated location can be decided by the Bayesian decision rule discussed above. 

However, we can only collect fingerprints in discrete location, which makes this 

technique only applicable for discrete location estimation. On the other hand, smartphone 

user can be at any location, and move in a continuous manner. Therefore, we need to 

interpolate through the collected fingerprints. Gaussian process provides us such an 

advanced interpolation method. 

4.2.1 Gaussian Process Regression for WiFi Signal Strength Modeling 

A Gaussian processes essentially estimates a posterior probability distribution 

over functions from training data. The details on GPs can be found in [67]. We will give 

a brief introduction here. 

Let’s first define a function *( )f x  be the posterior distribution that makes 

prediction for an arbitrary input *x . And we have {( , ) | 1,..., }i iD x y i n= = , which is a set 

of training samples consists of n  observations drawing from a noisy process 

( )i iy f x ε= + , where each ix  is an input sample in dℜ  and each iy  is a target value in 

ℜ , ε  is additive Gaussian noise with zero mean and variance 2
nσ . For notational 

convenience, the inputs of the training set are grouped into a d × n  matrix X , and the 

observations iy  are grouped into a vector y . 
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To estimate the posterior distribution over function *( )f x  from training dataset 

D , GPs depend on a covariance function kernel ( , )p qk x x , which specifies how the 

values at different points are correlated to each other. This kernel can be specified as any 

arbitrary covariance function, and we have chosen the widely used squared exponential 

kernel 

)||
2
1exp(),( 2
2

2
qpfqp xx

l
xxk −−=σ                                    (7) 

Here, the hyperparameters 2
fσ  and l  are the signal variance and the length scale 

which determine the strength of the correlation between different points. 

Since we only have access to the noisy observations y  instead of the true function 

value ( )f x , we must add a term to account for observation noise in the covariance 

function: 

pqnqpqp xxkyy δσ 2),(),cov( +=                                       (8) 

Here 2
nσ  is the Gaussian observation noise and pqδ  is one if p q=  and zero 

otherwise. For an entire set of input values X , the covariance over the corresponding 

observations y  can be written as 

cov(y) =K+σ n
2I ,                                                   (9) 

where K  is the n n×  covariance matrix of the input values, defined as K[p,q]= k(xp, xq ) . 

Note that the covariance between the observations is written as a function of the 

inputs, emphasizing the non-parametric nature of Gaussian process regression. 
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Now we can generate the posterior distribution over functions 

p( f (x*) | x*,X, y) ~ N(µx*
,σ x*

2 )  to estimate the function value for any arbitrary points x* , 

given the training data X  and y : 

The estimator’s mean and variance are: 

 µx*
= k*

T (K+σ n
2I)−1y                                                    (10) 

σ x*
2 = k(x*, x*)− k*

T (K+σ n
2I)−1k*                                   (11) 

The hyperparameters 2
fσ , 2

nσ and l  control the smoothness of the functions 

estimated by a GP and can be learned from training data, by maximizing the log marginal 

likelihood of the observations conditioned on the hyperparameters. This learning process 

is completed offline right after the training dataset is built.  

Gaussian processes (GPs) offer many advantages that make them suited for a 

localization system that utilizes WiFi signal strength: 

Firstly, GPs are non-parametric, a mathematic model that can correctly fit the data 

is not required. Because GPs place a prior over the distribution of functions, many highly 

non-linear models can emerge from GP regression. Here we use GPs to approximately fit 

the non-linear WiFi signal propagation model. 

Secondly, GPs do not require a discretized representation of an environment, or 

the collection of calibration data at pre-specified locations. They can predict signal 

strength measurements at arbitrary locations. 

Thirdly, GPs provide uncertainty estimation for predictions at any given locations. 

This uncertainty is measured in variance, which takes into account the training data 

density and the noise of the data. 
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To apply GP in WiFi signal strength modeling, the input values X  correspond to 

locations, and the observations y  correspond to signal strength measurements gathered at 

these locations. The GP posterior is estimated from a collection of signal strength 

measurements corresponded with their locations. Assuming independence between 

different APs, we estimate a GP for each AP separately. After the generation of WiFi 

signal strength model, we can move to discuss the online particle filter based location 

tracking. 

4.2.2 Location Estimation Based on Particle Filter 

After the offline training phase to generate the GP based WiFi signal strength 

model, we are ready to use it in online localization.  

During the online localization phase, we are going to determine the smartphone 

location using Bayesian filtering technique, implemented through a particle filter. Particle 

filter is able to handle any arbitrary probability density function. Previously, it has been 

adopted by several researchers in location estimation problem and has showed its 

advantages [66]. 

As discussed before, the Bayesian filtering is based on formula (4). 

Here ( | )ip z x  and ( )ip x  represent a measurement likelihood model and a motion 

model, respectively. 

The measurement likelihood model can be calculated using the posterior 

distribution of the signal strength at each location determined by the GP 

*

**

2

* 22

( )1( | ) exp( )
22

x

xx

z
p z x

µ

σπσ

−
∝ − ,                                  (12) 
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where 
*x

µ  and 
*

2
xσ  are the posterior mean and variance at an arbitrary location *x . 

Location estimation algorithm using particle filter is performed according to the 

following steps: 

(1) Particle Initialization 

In order to realize location estimation in real-time using a smartphone, the 

computational complexity needs to be restrained. For particle filter, the computational 

complexity depends on the number of particles, N particles takes ( )O N  time. We have 

tested different number of particles in our simulation to see how this number will affect 

the performance. 

The initial location is calculated through weighted K nearest neighbor (W-KNN) 

method. It searches for K closest matches of known locations in signal space from the 

offline-built dataset. By averaging these K location candidates with adopting the 

distances in signal space as weights, the initial estimated location is acquired. This initial 

location estimation is used as the starting point for particles. We assume that the accuracy 

of the initial guess will not affect the localization performance. Larger initial error will 

only cause longer time for particles to converge to the actual location of the smartphone. 

(2) Particle Movement 

Next, the particles’ coordinates are updated as each particle move. We choose not 

to use motion information under the assumption that for our WiFi localization system, 

this information may not be available or too noisy to be used. Therefore, in order to keep 

our location estimation only based on WiFi signals, the motion model is replaced with 



31 

random particle movement. That is, in every time step, the particle cloud is spreading in 

all directions and can reach random distance within a reasonable range.  

(3) Weight updating 

When the particles start moving, the collected WiFi received signal strength (RSS) 

continually changes the likelihood of all particles. For each particle, the predicted signal 

strength mean and variance are calculated from the GP model. They are used to calculate 

the corresponding particle’s likelihood ( | )ip z x . 

In every update, the likelihoods are calculated for each AP. Here we assume that 

the APs are independent of each other, so that we compute the likelihood of a complete 

set of readings from all the APs by multiplying the individual reading likelihoods 

together. This combined likelihood is then treated as the weight for particle. When all the 

particles’ weights have been calculated, normalization is performed so that the sum of all 

the particle weights equals one. 

(4) Resampling and location estimation 

After particle weights are updated, we perform importance resampling to update 

the particles’ location. In resampling, the weight of each particle is treated as a 

probability where this particular particle is chosen to be the estimated location. Those 

particles with higher weights will be picked more frequently than others. This is how the 

resampling is able to eliminate those wrongly moved particles and correctly track the 

smartphone’s location. After the resampling process, the estimated location is calculated 

as the mean of all the resampled particles’ location. 
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4.3 Simulations and Results Analysis 

We have validated the proposed WiFi based localization algorithm through 

simulation. The simulation and result analysis is performed in MATLAB.  

Wireless InSite, an EM solver by REMCOM, has been used to simulate a 40m by 

40 m empty room with 4 APs, as shown in Figure 2. Mesh grid with grid size of 0.2 m is 

used to sample the WiFi RSS. A total of 40000 RSS data points are collected for each AP. 

We pick 400 equally spaced points out of the total as survey points to train the GP model. 

After the offline training process, a random path is generated in the room to see if the 

online localization algorithm could catch the actual path, and estimate the error between 

the true path and the estimated path. 

We import all the WiFi RSS data into MATLAB, and demonstrate the online 

localization in a small animation in MATLAB. As shown in Figure 3, this true path, 

shown in red circle, starts at coordinate (4.5, 4.5) and ends at coordinate (25.5, 10.5). For 

simplicity, the path is on the grid with equal gap between each step. On the right, it shows 

a one-time simulation result. The particle distribution corresponds to different locations 

are shown in blue dots and the estimated path is shown in red stars. We have set the 

particle number to 1000 and use all 4 APs in this simulation.  

To evaluate the accuracy of the localization algorithm, the simulation has been 

performed 100 times and the estimated location is compared to the ground truth location. 

The error is measured as the Euclidean distance between the actual location shown in red 

circle and the estimated location shown in red star. The average error in Figure 3 is 3.8 m. 
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Figure 2: Simulated environment 

 

 

 

Figure 3: Particle filter estimation of a random path 
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Furthermore, we analyze the system performance under various situations. Firstly, 

we explore how the number of AP can affect the location accuracy estimation. We test 

the AP number from 1 to 4, and fix particle number to 1000. The result is shown in Table 

1. 

As can be seen in Table 1, when the number of AP increases, the error drops 

significantly. This is reasonable as more APs provide more information and can achieve 

better location estimation accuracy.  

But the root of this performance deterioration lies in the fact of WiFi RSS 

fluctuation. If we have sparse deployment of AP, it’s highly possible that two faraway 

locations happen to share similar WiFi RSS. Figure 4 illustrates this situation in the 

simulation. As we can see from the figure, there are two places with much higher weight 

than other places, if particle reaches either places, they will survive the resampling 

process, as shown in Figure 5. Thus, large error occurs when we calculate the estimated 

location as the mean of particle distribution. Liu et al [64] also demonstrate this root 

cause of large error for WiFi based localization in real indoor environment. 

 

 

Table 1 

The average error for different number of AP 

Number of AP 1 2 3 4 

Average error 14.8 m 7.4 m 6.5 m 3.8 m 
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Figure 4: The situation when large error occurs 

 

 

 

Figure 5: Particle distribution after resampling. 
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Secondly, we investigate how the initial accuracy will affect the localization 

performance. We test the initial error from 0.5 m to 3 m, with particle number and AP 

number set to 1000 and 4, respectively. The result is shown in Figure 6. 

Figure 6 shows that the algorithm is not sensitive to the accuracy of the 

initialization. Better initial accuracy only gives a better performance in the beginning few 

steps. After 8 steps, the particle filter compensates the difference and gives a similar 

performance onwards. This result verifies our hypothesis in the particle initialization step, 

that particle initialization will not affect the location estimation performance as they will 

finally converge to the ground truth location. 

 

 

 

Figure 6: Localization performance in different initial error. 
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Thirdly, it is desirable to know how many particles are needed for an accurate 

localization. The number of particles from 200 to 2000 is tested, with AP number equals 

4. The result is shown in Table 2. 

As seen from Table 2, by increasing the number of particles, we can improve the 

localization performance. But using more particles means higher computational cost at 

the online localization phase. The benefit of accuracy improvement is very little when the 

particle number reaches a large enough value, as this simulation unveils, around 1000. 

This is a reasonable particle number to obtain good localization accuracy and real time 

response. 

4.4 Implementation on iOS Platform 

We realize the WiFi indoor localization algorithm on the iOS platform and built 

an app called WiFi iLocate. The system performance has been tested on the 3rd floor in 

Oakland University library. 

 

 

Table 2 

The average error for different number of particles 

Number of particles 200 400 1000 2000 

Average Error 4.6 m 4.2 m 3.8 m 3.7 m 
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4.4.1 System Architecture 

Figure 7 presents the workflow of WiFi iLocate. In brief, we first import the floor 

plan into the system. With the floor plan display on the screen, we can set the survey 

points and scan WiFi. The scanned RSS values and corresponding BSSIDs are stored in 

an offline training dataset. After the construction of WiFi RSS dataset and preprocessing, 

we are able to perform the online localization by pressing the “Locate” button. Both the 

offline and online phases are completed on the iOS platform. 

One important issue for WiFi scanning is that APs may be missed in a scanning 

cycle both during the offline surveying and the online localization. To overcome this 

issue, we perform multiple scanning in offline WiFi surveying and apply GP modeling to 

 

 

Import Floor Plan

Set Survey Points

Scan WiFi

Store in Dataset

Preprocess

Offline Phase

Press “Locate”

Initialization

Localization
& Tracking

Online Phase
 

Figure 7: WiFi iLocate workflow. 
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deal with the missing value. During the online localization, interval is set as 4 seconds, 

which means we update our location estimation every 4 seconds. We scan once every 

period, compare the scanned BSSIDs with pre-store BSSIDs in the dataset, and use all the 

detected APs to calculate the current particles’ weights. 

The most computational costly step to generate the posterior of GP lies in the 

inverse of the covariance matrix: (K+σ n
2I)−1 , which takes time 3( )O N , where N  is the 

number of survey points. Fortunately, this computation can be done before the real time 

localization step. After the creation of the training dataset, preprocess is performed and 

this inverse covariance matrix is stored in memory beforehand.  

Right after we press the ‘Locate’ button, the iOS device starts scanning the WiFi 

RSS from all the APs it can detect. Particles are initialized through weighted KNN 

method. The number of particles is set to 1000 according to the simulation result. After 

particles are generated from the initial location, they start to move randomly, every 4 

seconds the particles are resampled, as discussed in Section 4.2. Through particle filtering, 

we can locate the user and track the user movement in real time.   

4.4.2 Experimental Evaluation 

Our test environment is on the 3rd floor of Oakland University library, with seven 

APs installed. In total 18 survey points are collected for training purposes, as shown in 

Figure 8. Localization tests were conducted 10 times on a predefined path. The average 

length of the path is about 85m. During the traverse on the path, we measured the error 

distance between the estimated location and the ground truth location. The ground truth 

location is based on manual annotation of waypoints.  
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Figure 8: Survey points display on screen. 
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Figure 9: Estimated path vs. true path. 
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Comparison between the estimated path and the ground truth path is shown in 

Figure 9. The red line represents the ground truth path, while the blue dot and the thick 

stroke illustrate the estimated path.  

The maximum error distance is about 5 m in the corner when we were making a 

turn. The mean and median error distances are 3.6 m and 2.9 m, respectively.  Table 3 

shows the advantages of our system when compare to pure W-KNN method. This real 

time test result clearly demonstrates the high accuracy of our WiFi based indoor 

localization system. 

4.5 Conclusion 

In this chapter, we have demonstrated an indoor localization system based on 

Gaussian process modeling of WiFi RSS dataset and particle filter localizer. The 

simulation result showed that our algorithm yields promising location estimation. The  

implementation on iOS platform and the test in real world situation proved that WiFi 

iLocate is a reliable, real-time, press-to-go indoor localization system. To the best of our 

 

 

Table 3 

Localization accuracy: WiFi iLocate vs. W-KNN. 

Average error Mean Median Maximum 

WiFi iLocate 3.6 m 2.9 m 5 m 

 W-KNN 6.5 m 6.4 m >10 m 
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knowledge, WiFi iLocate is the first app delivering such accurate, highly integrated 

indoor localization system on smartphone. Based on our system, many location-aware 

applications will be able to function properly indoor, provide more convenient service to 

people’s daily life.  

Although we have applied Gaussian process to reduce the labor work of collecting 

WiFi survey point in the offline training phase, this job remains heavy in a large indoor 

environment. Researchers have tried to overcome this problem using simultaneous 

localization and mapping (SLAM) methods [68]. These techniques can be tailored and 

combined into our system. 

In the next chapter, we will combine motion sensors on the smartphone, in hope 

that multimodality could provide more location-related information and help us develop a 

dynamic motion model to improve the localization performance. 
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CHAPTER FIVE 

WIFI BASED INDOOR LOCALIZATION WITH DYNAMIC MOTION MODEL 
USING SMARTPHONE MOTION SENSORS 

 
 

5.1 Introduction 

Indoor localization is a key component to many location based services, such as 

patient monitoring in hospitals, tour guiding in museums or spot finding in parking lots. 

As GPS lacks the ability to function indoor, people are looking for other solutions to 

solve the indoor localization problem. In recent years, WiFi RSS based location 

fingerprinting technique are attracting more and more interest for indoor localization, as 

they can provide good accuracy with no modification to the infrastructure. But WiFi RSS 

has the problem of signal fluctuation due to the fact of multipath fading in indoor 

environment. To meet the uncertainty of signal fluctuation, many probabilistic methods 

have been proposed. The state-of-the-art is the Bayesian filtering technique, implemented 

as particle filter.  

Particle filter consists of two components: a measurement likelihood model and a 

motion model. In [4], Ferris et al propose an algorithm to construct the measurement 

likelihood model using Gaussian process regression during the offline survey phase. In 

the online localization phase, they apply particle filter to determine the target location. In 

order to not only locate the target in one spot, but also track the target movement, they 

develop a motion model to update the particles’ coordinates on the map. Limited by using 

only WiFi signal, they adopt a naive conditional probabilistic motion model, which does 

not unleash the total power of the particle filter. 
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As the smartphones are equipped with more and more different sensors, the future 

of localization and tracking system will most likely evolve towards systems that are able 

to fuse the information provided by multiple sensors in a mobile device. However, most 

of the existing localization systems nowadays either lack the ability to process the 

multisensory integration problem or rely on data collected from separated MEMS sensors 

and WiFi signals sniffed from a mobile handset [69]. The localization is performed by 

post-processing the data from different sensors on a laptop instead of real-time processing 

on a smartphone.  

In last chapter, we adapt the Gaussian process modeling of WiFi RSS and particle 

filter based localizer to smartphone platform and develop an iOS app called WiFi iLocate. 

In this chapter, we investigate the motion sensors embedded in the smartphone. Currently, 

smartphones are equipped with various low cost motion sensors, such as accelerometer, 

gyroscope and magnetometer. The localization technique based on them is called 

pedestrian dead reckoning (PDR). However, due to the drifting nature of the motion 

sensors, PDR could only achieve limited accuracy and the localization error will 

accumulate in the long run. To overcome the problem, Li et al [70] applied particle filter 

to fuse PDR with indoor map information: In each particle propagation step, the 

algorithm checks whether the particles ended into obstacles or cross the walls. If they did, 

their weights are set to zero and get eliminated in the resampling step. This approach 

greatly improves the PDR based indoor localization performance but requires extra 

infrastructure information and detailed modeling of the indoor map.  

Inspired by the previous study trying to combine the WiFi based indoor 

localization with PDR [71] [72]. We developed an dynamic motion model by fusing the 
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data provided by motion sensors embedded in smartphone. This motion model is 

incorporated with a Gaussian process regression based WiFi RSS model into the particle 

filter framework. 

Specifically, we make the following contributions: By carefully examine the 

information provided by various sensors, we are able to fuse the data effectively, and 

process the multisensory integration problem in real time. To the best of our knowledge, 

our upgraded iOS app WiFi iLocate is the first one to achieve accurate, highly integrated 

indoor localization by seamlessly leveraging information from WiFi and motion sensors 

on smartphone. 

This chapter continues as follows: In Section 5.2, we first give a brief overview of 

our previous work. Then we describe the dynamic motion model and how it can improve 

the particle filter based location estimator. In Section 5.3, simulation is conducted in 

MATLAB to provide with more insights of the algorithm. The upgraded iOS application 

and field tests are presented in Section 5.4. 

5.2 Dynamic Motion Model Design 

In pure WiFi based indoor localization, since we apply a simple random walk 

model to control the particle movement, we need a large amount of particle to reach 

sufficient accuracy, as the location estimation fully relies on the resampling step during 

the online localization. We are hoping that some of the particles will randomly hit the 

right spot and others will be eliminated. If we have enough particles, it is working for 

most of the time. However, there’re cases when particles can be fooled to a wrong place. 

We will demonstrate this in Section 5.3. In order to fully solve the problem, we develop a 

dynamic motion model to better control the particle movement. 
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A motion model enables the prediction of the smartphone user’s movement based 

on his current location. It is usually represented by the conditional probability 1( | )t tp x x+
, 

where tx  is current state of the particle and 1tx +  is the next state. In order to track the user 

in real time, it is important to develop a motion model doing accurate estimation of his 

actual movement. We present three steps dynamic motion models with the help of motion 

sensors embedded in the smartphone.   

(1) Stage transition detection 

We define two stages for particles, standing and walking. Initially, all particles 

stay in the standing stage. We perform stage transition detection based on data collected 

from accelerometer. 

When the user is standing still, it is expected that their mobile device will register 

little acceleration. Therefore, the standard deviation in the magnitude of acceleration σ ||a||  

is selected to detect the stage transition. It tells whether the particle to stay or move. If 

σ ||a|| < 0.01 , it means that the user is standing still in a location, thus the particle’s 

movement will be limited in a small circle with center in the previous location. If 

σ ||a|| ≥ 0.01 , however, it is not sufficient to ascertain that the user is walking. For example, 

user hands’ sudden movement could result in a larger acceleration. Thus, we exploit the 

repetitive nature of walking. 

Figure 10 shows the acceleration data recorded by a smartphone carrying by a 

walking user. We can see that the acceleration data exhibits a highly repetitive pattern. 

This pattern arises due to the fact of rhythmic nature of walking. In order to determine 
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whether the user actually enter the walking state, we calculate the auto-correlation of the 

acceleration signal a  for lag τ  at the thm  sample as follows [73]: 

χ (m,τ ) =
[(a(m+ k)−µ(m,τ ))*(a(m+ k +τ )−µ(m+τ,τ ))]

k=0

k=τ−1
∑

τ *σ (m,τ )*σ (m+τ,τ )
           (13) 

where ( , )kµ τ  and ( , )kσ τ  are the mean and standard deviation of the sequence of 

samples from ( )a k  to ( 1)a k τ+ − . 

If the user is walking, then the auto-correlation will spike the periodicity of the 

walker. We define ψ(m )  as the maximum of the auto-correlation between min 30τ =  

samples and max 60τ =  samples with sampling frequency of 50 Hz. If both aσ ≥0.01 and 

( )mψ ≥  0.8 are satisfied, then we set the state equals walking. 

 

 

 

Figure 10: User acceleration during walking. 
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(2) Step counting and stride estimation 

Once we have determined that state is walking, step counting and stride 

estimation are performed to calculate the walking distance of the user.  

As shown in Figure 11, the step counting is realized by dividing the duration of 

sample when the maximum auto-correlation ( )mψ ≥  0.8 by optτ , and round up to an 

integer value. optτ  is determined by simply finding the most frequently occurred τ  in the 

duration when ( )mψ ≥0.8. 

Because human stride is not constant during walking, the stride size is determined 

by dynamically checking the acceleration sequence. We apply an empirical equation 

based on [74] to estimate the stride size. 

 

 

 

Figure 11: Maximum autocorrelation for step counting. 
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Stride = 0.98*
|ak |

k =1

N

∑
N

3
                                          (14) 

where ka  means the measured acceleration and  N  represents the number of sample in 

one period of walking. 

(3) Heading detection 

The mobile phone’s magnetometer provides heading orientation of the phone 

relative to the magnetic north. There are many researches about how to induce the user 

walking direction from the magnetometer reading with phone placing on different parts 

of the human body [71] [72]. For example, the phone may be placed in pants, bounded on 

arms or hold in hands. In our case, we use the phone to track our location in an indoor 

environment, with our current location and walking path display on the screen. Thus, we 

can simply assume that the phone will only be hold in hand and in portrait direction. This 

is a valid assumption for navigation application on smartphone and it reduces the 

complicated orientation induction problem to simple heading detection. 

The iOS navigation API provides device heading information based on 

magnetometer reading. However, this heading direction is easy to be disturbed indoor. 

Therefore, we only use it as the initial heading. Further heading direction is calculated 

from device yaw attitude, which acquired from gyroscope. Figure 12 shows the device 

yaw attitude changing when user is walking.  
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Figure 12: Device yaw attitude changing during walking. 

 

 

To determine the new location, we first need to calculate the step number and 

stride length, and then estimate the movement as follows: 

( 1) ( ) (( ( ) ( ))*cos( ( ) ( ))x t x t l t l t t tδ θ δθ+ = + + +    (15) 

( 1) ( ) (( ( ) ( ))*sin( ( ) ( ))y t y t l t l t t tδ θ δθ+ = + + +  (16) 

where ( )l t  and ( )tθ  are the estimated step length and heading direction, while ( )l tδ  and 

( )tδθ  are the zero mean Gaussian noises on the length and direction, respectively. 

The motion dynamic model fuses the information provided by different motion 

sensors, and indicates a higher likelihood field in particle filtering. There are four 

scenarios depending on the access of different kinds of motion sensors. When an 
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accelerometer is available, the distance traveled can be estimated, based on step counting 

and stride length estimation. Otherwise, the distance is estimated with an empirical 

maximum speed, for example, 1 m/s. If a gyroscope and a magnetometer are available, 

the user heading is detected, if not, the heading remains unknown. Assuming an open 

space, the calculation of the likelihood field is shown in Figure 13. The grid points denote 

all possible state candidates for the next epoch, and the black dot is a state candidate of 

the current epoch. When only the distance traveled is measured, the likelihood field 

(shaded area) is located within a ring zone around the center, as shown in Figure 13(a). 

The radius and width of the ring are determined, based on the measured distance and its 

uncertainty, respectively. If only the user’s heading is detected, and an empirical 

maximum speed is used to calculate a maximum walking range within a time interval, the 

likelihood field is shown in Figure 13(b). The angle of the shaded zone is determined 

based on the heading and its uncertainty. If both the distance and heading are measured, 

the likelihood field is shown in Figure 13(c). This is the case for our system, which 

greatly reduces the amount of particles needed for precise localization, thus decreasing 

the computational complexity in particle filtering. Finally, if we have no access to any 

motion sensors, assuming a maximum walking range, the likelihood field is located 

within a whole circular area, as shown in Figure 13(d). 



53 

(a) (b)

(c) (d)

higher likelihood

 

Figure 13: Motion dynamic model likelihood field. 

 

 

5.3 Simulation of Performance Deterioration in WiFi Based Localization 

We are interested in how the extra sensors, like accelerometer, gyroscope and 

compass could improve the localization accuracy, as our target devices - smartphones, do 

have these common sensors equipped.  

A dynamic motion model was built based on the information provided by motion 

sensors to constraint the particles’ movement. This motion model guides the particles to 

certain direction range and limits the step length to a reasonable range.  

Figure 14 shows an estimated path with the help of motion model. We can 

observe that the particle distribution is more concentrated around the true path as 

compared to Figure 3. 
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Figure 14: Particle filter location estimation with motion model. 

 

 

Table 4 shows the comparison result of no motion model against with motion 

model under different number of AP. It can be seen that the motion model greatly 

increases the location estimation accuracy. When we don’t have many APs to provide 

enough information of the WiFi signal strength, we will need to use the motion model to 

guide the particle movement. Even with enough AP, the performance still improves by 

about 1 m in location estimation accuracy with the motion model equipped. 

By introducing a dynamic motion model, we are able to control the propagation of 

particles. Figure 15 shows the localization comparison in each time step between no 

motion model and with motion model in sparse AP situation. We can see that the motion 

information successfully helps solving the root cause of large error. 
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Table 4 

Localization accuracy: No motion model vs. with motion model. 

Average error No motion model With motion model 

1 AP 14.8 m 5.5 m 

 4 APs 3.8 m 2.9 m 

 

 

 

Figure 15: Localization error comparison, 1 AP situation 
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5.4 Implementation on iOS Platform 

The dynamic motion model is implemented within the localization and tracking 

system. By introducing the iOS Motion API, we can record device motion data from 

accelerometer, gyroscope and magnetometer embedded in the smartphone in real time. 

These raw data related to the user acceleration, device attitude and heading direction are 

being logged simultaneously during the scanning of WiFi RSS. In each localization 

epoch, the motion information is processed by the dynamic motion model, and controlled 

the particle propagation.   

Figure 16 compares the estimated paths with the ground truth path. The dark red 

line represents the ground truth path, while the blue dot and the orange stroke illustrate 

the estimated path.  

Table 5 compares the localization performance between the pure PDR, previous 

WiFi iLocate system, and the updated one with dynamic motion model.  

By seamlessly fusing the motion information into the system, we not only 

improve the localization performance, but also reduce the computational complexity, thus 

the system response time has decrease, resulting in a more robust, real time localization 

and tracking system. 
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Figure 16: Comparison of the estimated path against the ground truth 

 

Table 5 

Localization accuracy comparison. 

Average error Mean Median Maximum 

Pure PDR 9.5 m 8.8 m >15 m 

WiFi iLocate 3.6 m 2.9 m 5 m 

WiFi iLocate with Motion Model 2.0 m 2.1 m 3.1 m 

 

 



58 

5.5 Conclusion 

In this chapter, we have demonstrated an indoor localization and tracking system 

that is capable of integrating WiFi RSS and motion sensor information on smartphone. 

By introducing a dynamic motion model, we seamlessly fuse the motion information with 

the WiFi based localization technique. To the best of our knowledge, our updated WiFi 

iLocate is the first app delivering such accurate, highly integrated indoor localization 

system on smartphone platform.  

As Google has announced in Project Tango [75], they have developed a prototype 

phone with powerful vision and 3D sensors. We believe the key technology for future 

localization lies in how to effectively fuse the information provided by various sensors. In 

the next chapter, we are looking to combine LiDAR and camera sensors into WiFi 

iLocate. 
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CHAPTER SIX 

PORTABLE 3D VISUAL SENSOR BASED INDOOR LOCALIZATION 

 

6.1 Introduction 

Precise indoor localization is a key component in many location-aware 

applications, such as navigation, interactive gaming, and merchandise advertising. People 

have come up with various approaches for smart mobile device user localization in GPS-

denied indoor environment. To name a few, radio frequency identification devices 

(RFID), wireless fidelity (WiFi) and pedestrian dead reckoning (PDR) are the three 

frequently used ones. However, the RFID based system requires a large amount of tags to 

be installed in the indoor environment before the user can locate his mobile device [1]. 

WiFi based localization techniques have the problem of signal fluctuation due to 

multipath fading effect in indoor environment. The PDR approach suffers from the fact 

that the inertial sensors on the mobile device are low cost micro electromechanical 

system (MEMS) sensors, which has relatively low accuracy. Thus the integration drift 

will cause the localization deviation to accumulate over time, and become unacceptable 

in the long run. Moreover, the above methods provide only location coordinates, and 

therefore have limits in further localization potential, such as obstacle detection, sign 

recognition, and disabled assistance, etc., which are very important features in location-

aware services. 

In order to achieve the above goals simultaneously, computer vision technologies 

are introduced to the localization task. A majority of the existing visual information based 

localization approaches use 2D images to localize the mobile device’s user. The main 
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idea of 2D image-based localization is to first store the scene images, or features of these 

images, into a database, indexed and related to predefined geo-locations. A new query 

image to be localized is preprocessed with feature extraction and matched to the images 

in the database. The top ranking matched image is retrieved from the database. Since the 

retrieved image is geo-tagged, the localization task has become pose recovery between 

the matched images. Liang et al build an image based localization system following the 

above procedure [12]. The complete pipeline of their method from image retrieval 

(20,000 images in the database) to pose recovery takes 10-12 seconds to output a solution 

for a single query image on a 2.3GHz i5 laptop. The high computational cost makes it 

unpractical on mobile platform. Jaramillo et al develop a 6-Degree of Freedom (DoF) 

pose localization system using a monocular camera [76]. The database is constructed of a 

dense 3D point cloud, which can be projected to 2D to form a virtual view using the 

previous localized pose of the mobile device’s camera. The 2D-3D point correspondences 

are obtained between the current captured image’s 2D features and their matches on the 

virtual depth image (projected 3D points). This forms a perspective-n-point (PnP) 

problem, which can be solved for the relative transformation between the current camera 

pose and the virtual view. Their results show that a 2D camera can be localized in a 3D 

model in real time. The most time consuming part of this method is the estimation of 

initial pose, which can take hours if it’s in a large indoor environment. To increase the 

initialization process, Ruiz et al apply multiple sensors to estimate a coarse initial 

location [19]. They divide the indoor 3D model into different sub areas and refine the 

initial estimation with SIFT feature matching. 
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Inspired by previous works, we develop an indoor localization algorithm on 

mobile platform. A portable 3D visual sensor is mounted onboard to do localization in a 

prebuilt 3D point cloud. During the offline training phase, we not only model the indoor 

environment as a 3D point cloud, but also apply Gaussian process (GP) regression to 

model the WiFi received signal strength (RSS) dataset, which will be used in initial pose 

estimation. Once we have the 3D model and GP model of the indoor environment, we are 

ready for online localization. After the coarse estimation of the initial pose using WiFi 

RSS data, the user location is narrowed down within a sub area of the 3D model. We 

further calculate the pose of the mobile device by matching features between online 

captured images with key frame images of the prebuilt 3D model. Then we can 

consecutively estimate the pose of the device by solving the rigid transform between 

online captured 3D point cloud and local 3D model using ICP algorithm [77]. Moreover, 

RANSAC algorithm [78] is applied to improve the 6-DoF pose estimation accuracy. 

Specifically, we make the following contributions: We built an indoor localization 

system on iOS platform based on 3D visual sensor and WiFi RSS. To the best of our 

knowledge, our iOS app is the first application attempting to achieve 6-DoF pose 

estimation in an indoor environment modeled as a 3D point cloud and GP based WiFi 

RSS model. We believe this app will boost various location based services around it. 

The rest of the chapter is organized as follows. Section 6.2 explains the details of 

our indoor localization system, including offline training phase and online localization 

phase. The experimental results in typical indoor environment are presented in Section 

6.3. We conclude our work in Section 6.4 with a discussion of future improvement. 
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6.2 System Setup 

This section describes the design of our proposed indoor localization method. 

Figure 17 presents an overview of the system workflow. During the offline training phase, 

color images, depth images and WiFi RSS are recorded in predefined survey points. By 

manually or automatically aligning the data in each survey point, we are able to generate 

a detailed 3D model of the indoor environment. The scanned WiFi RSS values and 

corresponding BSSIDs of the access points are used to train a GP model. Based on the 

survey point locations, we further divide the indoor environment into different sub areas. 

During the online localization phase, we first determine an initial coarse estimation that 

indicates a sub area where the mobile device user seems to be, using the WiFi RSS 

captured in the air. Next, making use of the image captured by the camera, we perform a 

matching process against the key frame images in the 3D sub model to determine the 6-

DoF pose of the mobile device. Finally, we can continuously update the device pose by 

finding the 3D points correspondences between online captured 3D point cloud and local 

3D model using ICP algorithm. In the following subsections, we will explain the details 

of the offline training phase and online localization phase. 

6.2.1 3D Modeling of Indoor Environment 

First of all, our localization method requires a detailed 3D point cloud with color 

and texture information. The color and texture information are usually captured by 

cameras, while the depth information are usually obtained using range sensors. In order 

to build a color 3D model, we need to fuse the color images with depth images 
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Figure 17: System workflow 
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effectively. There are mainly two methods to achieve this goal. One is to use RGB-D 

device such as Kinect or PrimeSense sensor. The RGB-D device is able to register the 

color images with the depth images. Then we can apply ICP algorithm to automatically 

align individual, consecutive local 3D point cloud to generate a complete 3D model. This 

approach is fast and easy to implement. The drawback for this approach is that the RGB-

D sensor can only provide depth information up to a very limited range (around 5m). And 

its depth estimates are pretty noisy compare to LiDAR. Therefore, we use it to model a 

small indoor room area by placing it in the middle of the room and rotating around itself 

to scan the entire room. An example of a room model is shown in Figure 18. 

 

 

Figure 18: 3D model of a small room 
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In order to model a large indoor area such as corridor, we choose to fuse the data 

from camera and LiDAR. Figure 19 shows the assembly of our LiDAR-camera data 

acquisition system. It includes a 2D line-scan LiDAR, a servo, and a 2D digital camera. 

The LiDAR is installed on the servo and the camera is rigidly mounted on top of the 

LiDAR. The whole system is mounted on a pushcart for stop-and-go scanning.  

Fiducial target-based extrinsic calibration [79] is applied to acquire 

transformation matrices between LiDAR and the camera. Based on the transformation 

matrix, we perform registration to fuse the color images from the camera with the 3D 

point cloud from the LiDAR. 

 

 

 

Figure 19: The LiDAR-camera scanning system 
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As shown in Figure 20, a 3D point in the LiDAR calibration plane is represented 

as [ , , ]TlP x y z=  and its related pixel in the camera image plane is described as 

[ , ,1]TcP X Y= . The 3D point lP  with intensity information is projected to a calibration 

plane under a pinhole camera model. The calibration plane is defined at z f=  and the 

projected point in the calibration plane is shown as [ , ,1]TP u v= . Based on similar 

triangle rules, we have the following relationship: 

;x yu f v f
z z

= =  (17) 

where f  is the focal length of the camera. In order to fuse the information from LiDAR 

and the camera, we need to look for the relationship to match P  and cP . 

 

  

 

Figure 20: Pinhole camera model. 
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Figure 21 gives a workflow of the extrinsic calibration procedure. After projecting 

the 3D points to the calibration plane, we get a 2D point cloud. These 2D points are 

interpolated to generate a LiDAR intensity image. The problem of extrinsic calibration 

has become how to find the geometric constraints between a LiDAR intensity image and 

a camera image using the checkerboard pattern. The transformation of the checkerboard 

pattern from the LiDAR calibration coordinate frame to the camera coordinate frame is 

represented by a rigid 3 x 3 matrix T . 

cP TP=  

 

(18) 

 

 

 

Figure 21: Extrinsic calibration procedure. 
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As shown in Figure 22, to obtain the features of a checkerboard accurately, we 

select a Region of Interest (ROI) from the LiDAR intensity image and the camera 

panorama for the checkerboard pattern. Next, we take advantage of Random Sample 

Consensus (RANSAC) algorithm to find the correspondences between the LiDAR 

intensity images and the camera panorama images. In RANSAC, a pair of points is 

selected as an inlier only when the distance between them falls within the specified 

threshold. The distance metric used in RANSAC is as follows: 

1
min( ( , ( )), )

N

c
i

D d P T P ξ
=

=∑  (19) 

where P  is a point in the LiDAR intensity image, cP  is a point in the camera panorama 

image, ( )T P  is the projection of a point on the intensity image based on the 

transformation matrix T , d  is the distance between a pair of points, ξ  is the threshold, 

and N  is the number of points. 

The algorithm for generating the transformation matrix is summarized below: 

(1) Find the inliers for the corners of checkerboard based on RANSAC algorithm. 

The RANSAC algorithm follows these steps: 

(a) Randomly select three pairs of points from the LiDAR intensity image and 

camera image to estimate a fitting model. 

(b) Calculate the transformation matrix T  from the selected points. 

(c) Change the T  value, if the distance matrix of a new T  is less than the original 

one. 

(2) Choose the transformation matrix T , which has the maximum inliers. 
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(3) Use all inlier point pairs to compute a refined transformation matrix T . 

  

(a) (b) 

Figure 22: (a) Region of Interest (ROI) of LiDAR intensity image; (b) ROI of camera 
panorama. 

 

 

We place a checkerboard in three different locations (left, center, and right) to 

generate camera panoramas and LiDAR intensity images separately. Based on these 

images, we derive the three transformation matrices. As shown in Figure 23, the color 

images are seamlessly fused with the intensity images. After generating the 

transformation matrices, we are able to stitch three camera panoramas together and fuse 

them with one LiDAR intensity image by applying these transformation matrices. The 

results are shown in Figure 24. After the fusion, we find the correspondences and assign 

color value to each LiDAR 2D point. 

Finally, we back-project the textured 2D points to 3D color points cloud, as 

shown in Figure 25. Note that there are dark areas at the border, due to the fact that those 

points with distance from the projection center shorter than the focal length cannot be 

projected to the calibration plane.  
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 (a)  

 

(b) 

 

 (c)  

Figure 23: Transformation matrices derived process: (a) LiDAR intensity images; (b) 
Panoramas; (c) Stitched panoramas with intensity images. 
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(a) 

 

 (b)  

 

 (c)  

Figure 24: Image stitch process: (a) LiDAR intensity image; (b) Panoramas; (c) Stitched 
three panoramas in one intensity image. 
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Figure 25: Color 3D points cloud. 

 

 

The extrinsic calibration result is applied to a large indoor environment. The 

LiDAR-camera scan system is mounted on a pushcart in order to record the data in stop-

and-go mode. By manually aligning the data in each survey point, we can get a detailed 

3D model of the indoor environment. At the same time, the 3D model is partitioned, 

based on the survey point locations. Figure 26 shows a 2D map of a large corridor area 

and survey point locations. The corresponding 3D model is shown in Figure 27. In order 

to construct a 3D model of the corridor, with an area of 630,000 square feet, we have 

collected 1,029,974 data points; each point with a XYZ  and RGB  value. Based on the 

high accuracy of the laser beam, this model is much more accurate than the 3D model 

generated from a RGB-D sensor. Admittedly, it is computational heavy to process the 
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data in the offline training phase to build a detailed 3D color point cloud. However, 

during the online tracking phase, we only need to match the captured image with a local 

model instead of the entire one, which significantly reduces the cost. 

6.2.2 6-DoF Indoor Localization Based on 3D Visual Sensor 

During the initialization step, we scan the surrounding WiFi RSS values and 

corresponding BSSIDs. We compare them with the offline built GP model to coarsely 

determine the user location. This initial estimation tells which partition the user locates in 

the 3D model. We then perform SURF [15] feature matching between online captured 

image with key frame images of the 3D sub model. The result is sorted based on the 

matching distance in feature descriptor space. The nearest neighbor is selected as the 

closest key frame image to the captured image. Since we have the 3D coordinates of 

 

 

 

Figure 26: 2D map of a corridor. 
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Figure 27: 3D model of a corridor. 

 

 

the key frame image’s feature points (given in its registered depth image), and the 2D 

coordinates of the captured image’s corresponding feature points (specified in the image), 

these n feature points form a classic Perspective-n-Point (PnP) problem. By solving the 

PnP problem [80], we get the transformation matrix between the captured image and the 

key frame image. Therefore, we can calculate the initial 6-DoF pose of the user’s mobile 

device 0tPose  by simply multiply the global pose of the key frame image keyframePose  with 

the transformation matrix 0tTForm .  

Once the initial pose of the device is known, we perform pose estimation using 

the portable 3D visual sensor on the device. The procedure runs as follows: At a given 
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time step 0t > , we have an online captured 3D point cloud tOnlinePCloud . Meanwhile, 

a local point cloud 1tLocalPCloud −
 is generated from the previous pose 1tPose − , 

computed at time 1t −  using the prebuild 3D model. Both these point clouds 

tOnlinePCloud  and 1tLocalPCloud −
 have their own color image ( tOnlineColorI ,

1tLocalColorI − ) and depth image ( tOnlineDepthI , 1tLocalDepthI − ). We perform SURF 

feature matching between tOnlineColorI  and 1tLocalColorI − . The matched feature points’ 

3D locations are acquired from the corresponding depth images ( tOnlineDepthI ,

1tLocalDepthI − ). Thus, the pose estimation problem has become finding the rigid 

transform between two sets of 3D points, which can easily be solved with ICP algorithm. 

Figure 28 illustrates the pipeline of this process. Additionally, we employ RANSAC 

algorithm to improve the feature matching process. An example is given in Figure 29. We 

can see the RANSAC algorithm has removed many of the outliers.   

 

 

3D model LocalPCloud t-1
Pose t-1

LocalColorI t-1

LocalDepthI t-1

Feature 
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OnlineColorI tOnlinePCloud t

OnlineDepthI t

Matched 
Local3Dpoints

Matched 
Online3Dpoints

Pose 
estimation

Figure 28: 6DoF pose estimation pipeline 
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Figure 29: SURF feature matching with and without RANSAC 

 

 

6.3 Implementation on iOS Platform 

We realize the proposed indoor localization system on iOS platform and build an 

app to test the system performance. Thanks to Occipital Inc, they have developed a 3D 

structure sensor [81] which can be mounted on iPad (shown in Figure 30) to capture 

depth image and register it with color image captured by the original camera on the iPad, 

and generate 3D point cloud of the environment using their provided Application 

Program Interface (API). The test bed of our experiment includes a large corridor area 

and a small room area. Figure 31 shows a snapshot of our indoor localization app. 

We compare pairwise error between the ground truth pose of the mobile device 

and its estimated pose in the 3D model.  

We measure the error in 30 waypoints, the average error is around 10cm 

(translational) and 8 degree (rotational). However, due to the difficulties in 

implementation, the experiment is carried out by capturing online images from the iPad 

and post-processed in MATLAB.  
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Figure 30: Portable 3D sensor mounted on iPad 

 

 

 

Figure 31: Snapshot of indoor localization app 
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6.4 Conclusion 

In this chapter, we have presented an indoor pose localization system on mobile 

platform using portable 3D visual sensor. We first reduce the time consuming feature 

matching process by using WiFi RSS model to narrow down the search space from the 

whole 3D model to a small partition. Since we have a portable 3D sensor instead of just a 

2D camera, we can bypass the 3D/2D or 2D/3D projection process and directly compare 

the online captured 3D point cloud with the local 3D model to find the pose estimation. 

As far as we know, this is the first attempt to use a portable 3D visual sensor to localize 

the mobile device in a 3D point cloud. The experiment carried out in the indoor 

environment encourages us to keep on working on this system. 

In the future, we are looking to fully implement the system on mobile platform 

and test it in real time. And we will try to combine the system with more features like 

assistive technology to provide various location-based services to people with special 

needs. 
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CHAPTER SEVEN 

PROBABILISTIC FRAMEWORK FOR MULTI-SENSOR FUSION BASED INDOOR 
LOCALIZATION ON MOBILE DEVICE 

 

 

In Chapter Four, Five and Six, we have demonstrated the indoor localization 

methods based on WiFi RSS, motion sensors and visual sensors. Now we want to 

develop a probabilistic framework to fuse the information from different sensors. 

7.1 Graph Structure Construction 

The key idea of constructing a graph structure is to represent the indoor 

environment using a graph G = (V ,E ) , where V  are vertices defined at each survey 

point during 3D modeling of the indoor environment, and E  are edges that connect 

different segments of the 3D model if there is a direct access from one segment to 

another. The corresponded graph structure for a corridor area is shown in Figure 32 on 

the left. For a small room, we scan the entire room by standing in the middle and rotating  

 

 

 

Figure 32: Graph structure construction. 
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the scanning system 360°. Thus, the room will be represented with a single vertex in the 

graph structure. For a large open space, the graph structure is shown in Figure 32 on the 

right. The black dot in the center of each small block corresponds to the survey point 

where we scan the indoor environment for visual features and WiFi RSS. Figure 33 

illustrates the 3D structure on top of a 2D map.  

A vertex iV  encodes the 3D color point cloud 
iV

PT , WiFi received signal strength 

iV
RSS , and location 

iV
POS . These attributes are stored in an object array, 

[ , , ]
i i ii V V VA PT RSS POS= . An edge { , }ij i jE V V=  connects two vertices, iV  and jV . The 

edges act as constraints for the motion choices, since the user in vertex iV  can only 

directly access vertex jV  if there is an edge { , }ij i jE V V=  between them. 

By introducing a graph as the data structure, we are able to restrict the user 

movement and predict the user location at the next moment. Since the user can only 

move around connected vertices, we will only have limited amount of candidate vert 

 

 

 

Figure 33: 3D structure on top of 2D map. 
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vertices for the next move. If the space involved in a vertex is small enough, finding the 

user’s location is approximated as locating the vertex. This is similar to grid-based 

localization. However, the smaller the grid is, the higher the computational cost will be. 

In practice, we choose the grid size as the survey area covered during each 3D scan. 

Thus, locating the vertex gives a coarse estimation of the user’s location. A finer 

localization within the vertex is achieved using particle filtering. The use of the graph 

structure also increases the system’s robustness. In the case of crowded environments, 

where the sensor signal fidelity may not be reliable, the constraints in the graph can help 

detect a sensor failure if the prediction based on the sensor’s measurement violates the 

constraints. 

7.2 Hidden Markov Model 

A general HMM characterizes a physical system with a state space model. In the 

problem of localization, the HMM model represents the temporal correlation of a user’s 

location and orientation. Figure 34 shows a HMM factor graph, the state 

( ) { ( ), ( ), ( ), ( ), ( )}X t x t y t t m t V tθ= , where ( ), ( ), ( )x t y t tθ  represents the user’s location 

and orientation, ( ) ( , )m t walk stop∈ , ( )V t  indicates the current vertex where the user is 

located in the graph structure. The state transition model 1( | )t tp X X −  constructed of 

1 1( , | , )t t t tp x y x y− − , 1( | )t tp θ θ − , 1( | )t tp m m −  and 1( | )t tp V V −  served as the motion model 

in our algorithm. The observation model is based on the WiFi signal strength 

measurement, motion sensor readings, and the captured image during online tracking. 
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Figure 34: HMM model factor graph. 

 

 

1( | )t tp m m −  represents the probability of the motion state being walking or 

stopped given the previous motion state. It is defined as a 2 by 2 matrix, which models 

the preference of staying in the previous state, avoiding too-rapid changes in motion 

states. Moreover, we apply different matrices for different environments. This enables the 

system to model the fact that the user is more likely to stop in a room than in a corridor. 

1( | )t tp θ θ −  represents the probability of the current orientation tθ  given the 

previous orientation 1tθ − . It depends on whether the user is walking or stopped, and 

whether he is in a hallway or an open space. As the choice is limited to two, we use 

binary code to represent the situation. We define Walking = 1, Stopped = 0 for the 

leftmost binary digit, and Hallway = 1, Open space = 0 for the rightmost binary digit in 

the binary representation of the situation. In total we have four situations (00, 01, 10, 11). 

For example, if the user is walking in a hallway, his situation code is 11. If the next 
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motion state has been determined to be stop, the difference tθΔ  is sampled uniformly 

with a constant probability ~ [0,2 ]α π . Otherwise, if the next motion state is to be 

walking, we make a simple assumption that the user prefers to walk in a straight line, so 

that tθΔ  is sampled from a zero mean Gaussian distribution. If the user is in an open 

space, tθΔ  follows a unimodal Gaussian distribution. On the other hand, if the user is in 

a hallway, tθΔ  follows a bimodal Gaussian distribution, since the user has a higher 

chance of choosing from two opposite orientations. 

1 1( , | , )t t t tp x y x y− −  represents the probability of the current location ( , )t tx y  given 

the previous location 1 1( , )t tx y− − . If the previous motion state tm  has been determined as 

stopped, the current location is equal to the previous one. Otherwise, the current location 

is updated by sampling the moving distance td  from a Gaussian 2( , )N µ σ . Based on a 

simple straight motion assumption, the new location is calculated as follows: 

1 *cos( )t t t tx x d θ−= +  (23) 

1 *sin( )t t t ty y d θ−= +  (24) 

1( | )t tp V V −  represents the probability of the current vertex tV  given the previous  

vertex 1tV − . If tV  is in a corridor, we first calculate the walking/stopped probability. If 

tm stopped= , then 1t tV V −= . Otherwise, we calculate the distance that the user has 

travelled. For this distance, we determine whether the movement along the corridor 

results in a transition to another vertex, or remains within the same vertex area. The 

vertex transition is constrained to only two adjacent vertices. If tV  is in an open space, it 
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may have up to nine candidate vertices. We first sample the walking/stopped motion 

transition state and corresponding motion distance. Then, the vertex tV  is determined 

based on a simple straight-line movement. 

The observation model describes the measurement likelihood of making an 

observation at different locations in the indoor environment. Our observation includes 

WiFi received signal strength, motion sensor readings, and captured images. 

The WiFi signal strength measurement likelihood model uses the mean and 

variance of the signal at each location, calculated by Gaussian process regression. 

*

**

2

* 22

( )1( | ) exp( )
22

WiFi
t xWiFi

t
xx

z
p z x

µ

σπσ

−
= −  (25) 

where WiFi
tz  is the received signal strength at time t , 

*x
µ  and 

*

2
xσ  are the mean and 

variance at location *x . 

The camera measurement likelihood model is computed by pairwise pixel 

comparison between the current view and the view of a particle [11]. In the particle filter, 

a given particle’s view of the environment can be projected from the 3D textured model 

*
#pixels in similar color( | )

#total pixels
Camera
tp z x =  (26) 

A predefined threshold determines the maximal color difference for two pixels, 

and a normalized color space is adopted to alleviate the effect of illumination. 

The motion sensor measurement likelihood model compares the motion model 

1( | )t tp X X −  with the motion dynamic model derived from motion sensor readings. 
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2
*

*
| |1( | ) exp( )

22

Motion
Motion t
t

z xp z x
π

−
= −  (27) 

where Motion
tz  is the pose calculated from the motion-sensor-based motion dynamic model, 

*x  is the pose estimated from the motion model defined in HMM. 

7.3 Online Tracking with Particle Filter 

Bayesian filtering is to estimate the posterior state tX  given all sensor 

measurements 0:tZ . Under the Markov assumption, we have the following recursive 

equation, which is updated whenever new sensor data becomes available: 

0: 1 1 0: 1 1( | ) ( | ) ( | ) ( | )t t t t t t t t tp X Z p Z X p X X p X Z dX− − − −∝ ∫                     
(28) 

where 1( | )t tp X X −  represents the motion model, and ( | )t tp Z X  is the observation model. 

We implement Bayesian filtering using particle filter, which represents posterior 

over the state tX  by sets tS  of M  weighted samples: [ ] [ ]{ , | 1,..., }m m
t t tS X w m M= < > = . 

Here each [ ]m
tX  is a sample state, and [ ]m

tw  is an importance weight of the state. Particle 

filter apply the recursive Bayesian filter update to estimate posteriors over the state space. 

Online tracking algorithm using particle filter is performed according to the following 

steps: 

(1) Particle Initialization  

The initial location is calculated through weighted K  nearest neighbor (W-KNN) 

method. It searches for K  closest matches of known locations in WiFi received signal 

space from the offline-built dataset. By averaging these K  location candidates with 

adopting the distances in signal space as weights, the initial estimated location is 

acquired. This initial location estimation is used as the starting point for particles. 
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(2) Particle Propagation 

Next, we apply the state transition model to guide the particle propagation. During 

the state transition process, we observe that the particle propagation plays an important 

role, which represents the state transition probability. The more accurate the particles 

propagate towards the right location, the better the localization performance will be. We 

generate new particles by sampling [ ]m
tX  from the distribution 1( | )t tp X X − . 

(3) Particle Weight Update 

After the particle propagation in each epoch, we weight the sample [ ]m
tX  by the 

probability [ ]( | )mt tp Z X . The weight is calculated as the product of different sensor 

measurement likelihood function. Then the weights [ ]m
tw  of the samples are normalized 

so that they sum up to 1. 

(4) Particle Resampling 

Once the particle weights are updated, we perform importance resampling to 

update the particles’ state by drawing with replacement a random sample [ ]
1
m
tX +  from the 

sample set tS  according to the importance weight [ ]m
tw . In resampling, the weight of 

each particle is treated as a probability where this particular particle is chosen to be the 

estimated location. Those particles with higher weights will be picked more frequently 

than others. This is how the resampling is able to eliminate those wrongly moved 

particles and correctly track the user location.  

(4) Location Estimation 

After the resampling process, the estimated location is calculated as the mean of 

all the resampled particles’ location. To further increase the localization accuracy, we 



87 

perform Direct Linear Transformation (DLT) [83] between camera captured images in 

current location with projected image of the 3D model at the estimated location. The 

DLT parameters can be obtained using least square method. To solve for DLT 

parameters, we need at least 6 correspondences. The correspondences can easily be 

obtained using SIFT or SURF feature matching technique. The matching process 

frequently contains “outliers”, therefore, we apply the well-known RANSAC algorithm 

to filter out the “outliers”. After getting the DLT parameters, the camera location can be 

calculated by solving the projection matrix. This process is able to refine the location 

estimation, but due to its high computational cost, we only invoke it in certain key 

vertices predefined in the graph structure, for example, at the corridor corner. The user 

can also invoke the process at their wish when they require a better localization 

performance. The process will also wake up after a time period T  to correct the 

estimation error. Table 6 gives a pseudo-code of the particle filter algorithm.     

7.4 Implementation on iOS Platform & Experimental Analysis 

We realize the indoor localization algorithm on the iOS platform and build an app 

to test the system performance. The system workflow is shown in Figure 35. During the 

offline training phase, WiFi received signal strength, color images, point cloud, and 

motion signals, including user acceleration, device attitude, and rotation rate, are 

recorded along the entire scenario. A detailed 3D model of the indoor environment is 

generated by fusing color images from the camera and point cloud from LiDAR. Then,  
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Table 6 

Pseudo-code of particle filter. 

  

[ ] [ ]{ } [ ] [ ]{ }1 11 1
, , ,

M Mm m m m
t t t t tm m
X w PF X w Z− −

= =

⎡ ⎤=
⎢ ⎥⎣ ⎦

 

 Initialization [ ] [ ]{ }0 0 1
,

Mm m
t t m
X w= =

=

⎡ ⎤
⎢ ⎥⎣ ⎦

 

 FOR 1:m M=  

  Particle propagation [ ] [ ]( )1~m m
t t tX p X X −

 

  Update weight using observation [ ] [ ]( )m m
t t tw p Z X=  

 ENDFOR 

 Normalize weights to [ ]
1

1M m
tm
w

=
=∑  

 [ ] [ ]{ } [ ] [ ]{ }
1 1

, Resample ,
M Mm m m m

t t t tm m
X w X w

= =

⎡ ⎤=
⎢ ⎥⎣ ⎦

 

 

 

we apply Gaussian process modeling to generate a signal strength map of the WiFi signal 

strength map is overlapped with the 3D model and we divide the 3D model into different 

segments according to our survey points. Each segment is encoded in the vertices of a 

graph structure. We store the graph structure in the mobile device for the online tracking 

phase. When the “Locate” button is pressed, the mobile device starts scanning the WiFi 

received signal strength from all the access points it can detect. Particles are initialized 

through weighted the K nearest neighbor method. After the initial distribution, particles 

start to propagate under the guidance of the HMM motion model. Every 5 seconds, the  
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Figure 35: System workflow. 

 

 

particles are resampled using the HMM observation model. Through particle filtering, we 

are able to locate the user and track the user’s movement in real time. 

The training and testing are conducted in an office building corridor area and a 

library’s open space. In total, we have 24 survey points in the corridor and 21 survey 

points in the library. Localization tests are conducted on a predefined path. The average 

length of the path is about 90 m in the library’s open space and 100 m in the corridor 

area. The location update is performed every 5 s, which means the particle filtering step 

can be completed in 5 s. The memory usage is under 40 MB RAM since the iOS app will 

be forced to shut down if it exceeds this limit. During the traverse on the path, we 
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measured the error distance between the estimated location and the ground truth location. 

The ground truth location is based on manual annotation of waypoints. Whenever the 

tester reaches a waypoint, the timestamp is recorded and the estimated location with the 

actual one are compared. Figure 36 shows screenshots of the real time test results in a 

corridor area. 

Figure 37 illustrates the localization error in each waypoint. By including the 

motion sensors, the error has dropped significantly compared to using only the WiFi 

based localization method. 

 

 

  

Figure 36: Screen shots of localization test. 
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Figure 37: Error in each waypoint. 

 

To gain insight into the localization error distribution, Figure 38 presents the 

cumulative probabilities of the localization errors of the different cases. The comparison 

further shows that the motion dynamic model greatly increases localization accuracy. 

Due to the implementation issue on the iOS device, we have not included the 

visual sensors in the real time test. The visual sensors are applied separately. After the 

real time test is done, we capture the images at all the waypoints and correct the 

estimated location. Table 8 shows the correction results. 

Table 7 shows that the visual sensors could further improve the localization 

accuracy. Overall, the localization performance has proved that our iOS application is a 

robust, accurate, highly integrated indoor localization system. However, we have not 

implemented various state-of-the-art indoor localization methods in the literature, due to 
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Figure 38: Cumulative distribution function (CDF) of error. 

 

 

Table 7 

Visual sensor correction on localization results. 

Error Mean Median Maximum 

Visual sensor correction 0.10 m 0.23 m 0.66 m 
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the difficulty in realizing them on a mobile platform. The state-of-the-art method of a 

WiFi signal strength based method using Gaussian process is discussed in Chapter Four, 

we implemented this on the iOS platform. Moreover, we introduce a framework based on 

HMM to effectively fuse the WiFi information with motion sensor and visual sensor 

information on the mobile platform in order to improve system performance. 

7.7 Conclusion 

In this chapter, we have demonstrated an indoor localization system based on a 

graph structure and multimodal particle filtering technique. The implementation on the 

iOS platform, and the test in a real world situation proved that our application is a reliable 

indoor localization system. To the best of our knowledge, this is the first iOS app 

delivering such accurate, highly integrated indoor localization system on a small mobile 

device. Based on our system, many location-aware applications will be able to function 

properly indoors, providing more convenient service to people’s daily lives. 

In the future, we will focus on fusing the visual sensors on board into our real 

time localization system. We believe the key technology for future localization systems 

lies in how to efficiently fuse the information provided by various sensors. We are also 

looking to integrate our system into other platforms, for example, a vehicular 

infotainment platform, so that we have access to more sensor information and can 

function both indoors and outdoors. 

 

 



94 

CHAPTER EIGHT 

SUMMARY & FUTURE WORK 

 

Part of this dissertation work concentrates on indoor localization on smart mobile 

device. In our work, we explore the approaches of using WiFi RSS, motion sensors and 

visual sensor to achieve the goal of localizing the mobile device user and tracking the 

user movement at the same time. Through simulation in MATLAB and implementation 

on iOS platform, we analyze the performances (accuracy, robustness and time complexity) 

of different approaches. Furthermore, we derive a probabilistic framework using graph 

theory, HMM and particle filter to fuse the information from multiple sensors, so that we 

can easily combine additional sensors on board to help improve the localization system 

performance on smart mobile device. 

A good direction for future research is to investigate the deep neural network 

architecture for indoor localization. Deep learning has proved its ability in various tasks 

like image classification and object detection within videos. The multi-layer neural 

network is capable of extracting meaningful features from the training samples to fulfill 

the assigned task. Alex et al from University of Cambridge have developed a deep 

convolutional neural network called PoseNet for 6–DoF camera pose localization [84]. 

The basis of PoseNet is a famous deep neural network architecture for classification, the 

GoogLeNet [85]. GoogLeNet is a 22-layer convolutional network. PoseNet adds one 

extra layer to enable the ability of pose regression. It operates in real time, and obtains 

approximately 2 meters and 3 degrees accuracy for large outdoor scenes.  
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Additionally, one can sidestep the need for millions of training images by use of 

transfer learning, which is a very powerful tool in deep learning. The transfer learning is 

based on a pre-trained model that trained on the ImageNet database with tens of millions 

of images. People can take this pre-trained convolutional neural network (CNN), remove 

the last fully-connected layer, and treat the rest as a fixed feature extractor for a new 

dataset. Researchers have shown that the features learned from deep CNN on a very large 

database like ImageNet outperformed most of the famous expert-crafted features, e.g. 

SIFT and SURF [86]. People can also fine-tune the weights of the pre-trained network. 

This allows researchers to use a much smaller dataset and achieve state-of-the-art image 

recognition results.  
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