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Smart Pressure E-Mat for Human Sleeping
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Abstract—With the emphasis on healthcare, early child-
hood education, and fitness, noninvasive measurement and
recognition methods have received more attention. Pres-
sure sensing has been extensively studied because of its
advantages of simple structure, easy access, visualization
application, and harmlessness. This article introduces a
Smart Pressure e-Mat (SPeM) system based on piezore-
sistive material, Velostat, for human monitoring applica-
tions, including recognition of sleeping postures, sports,
and yoga. After a subsystem scans the e-mat readings
and processes the signal, it generates a pressure image
stream. Deep neural networks are used to fit and train the
pressure image stream and recognize the corresponding
human behavior. Four sleeping postures and 13 dynamic
activities inspired by Nintendo Switch Ring Fit Adventure
are used as a preliminary validation of the proposed SPeM
system. The SPeM system achieves high accuracies in both
applications, demonstrating the high accuracy and gen-
eralizability of the models. Compared with other pressure
sensor-based systems, SPeM possesses more flexible ap-
plications and commercial application prospects, with reli-
able, robust, and repeatable properties.

Index Terms—Activity recognition, deep learning (DL),
healthcare, human sensing, pressure sensor.

I. INTRODUCTION

HUMAN activity recognition (HAR) aims to identify ac-
tivities through a snapshot of observations of the subject’s

behavior and environmental conditions. HAR research has been
used most extensively in healthcare [1], [2], sports [3], human–
computer interaction (HCI) [4], security [5], and robotics [6].
The mainstream mechanism of HAR is divided into wearable
sensors and external devices. Wearable sensors are widely used
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in the HAR field [7], [8], [9], [10], [11], [12], due to their fit to
the human body, valid signal, compact sensor size, better spatial
freedom, and the ability to work in various complex environ-
ments. However, wearable sensors suffer from the drawback
of requiring the subject to wear or mount multiple sensors on
different parts of the body. External devices are deployed to
observe, detect, recognize, and segment human features in the
scenario. Vision-based recognition methods involve computer
vision (CV) [13], [14], [15], usually using RGB, depth, infrared,
and thermal imaging cameras. The basic idea is to take the
whole image as input and show the pixel coordinates of key
points of the body. Due to noncontact measurement, the wider
corresponding spectral range, and the ability to work stably for
a long time for vision inspection, CV systems are widely used
in industry, agriculture, defense, transportation, medicine, enter-
tainment, etc., [16]. Vision-based HAR has some inherent limits,
for example, data acquisition is seriously affected by lighting
or temperature of the environment [17] and involves privacy
concerns [18]. Other types of external HAR methods, such as
radio frequency (RF) sensors [19], [20], [21], can accurately
classify human subjects and activities, but most of them are hard
to visualize human behavior.

A. Velostat-Based Application

Inspired by the mechanism that humans have sensory func-
tions when they are in direct contact with the external envi-
ronment [22], tactile sensing is widely used in the fields of
intelligent HCI technology and biomedical monitoring, which is
an essential means of data acquisition, analysis, and control of
machines to perceive the external environment. Pressure sensing
is the tactile sensing mode used in this article. It has diversified
production methods, strong versatility, and convenient config-
uration, ensuring lower production costs and more uses. Pres-
sure sensors have multiple subcategories, including capacitive,
piezoelectric, optical, piezoresistive, etc. [23]. Velostat [24], also
known as Linqstat, is a packaging material made of polymer
foil impregnated with carbon black to make it conductive.
Velostat-based piezoresistive pressure sensor arrays have been
widely studied and used in recent years. Despite its nonideal
electrical properties and the crosstalk observed in numerous
recent studies [25], [26], [27], which can reduce its responsive-
ness, Cao et al. [28] founded that adding diodes to the circuit
can mitigate the effects of crosstalk. However, this approach
may lead to increased fragility and discomfort. Nevertheless,
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART PRESSURE SENSOR ARRAY TECHNOLOGY

despite its electrical limitations, its low price, flexibility, and
scalability have garnered attention, especially in human sensing
applications [29]. In this article, we select a Velostat sensor array
as a tool to collect pressure distribution and complete HAR with
deep learning (DL).

The pressure sensor array aims to convert the vertically ori-
ented pressure input into a standard grayscale image. With DL
algorithms such as convolutional neural networks (CNNs) that
have excellent performance in image recognition and process-
ing, the DL and pressure sensor array are able to classify contact
objects with high accuracy. Tang et al. [36] designed a pressure
mattress with Velostat material for the hospice care of the elderly.
The Internet of Things (IoT) based solution used sensors to
record patient posture-related data and transmitted it to the cloud
for further processing. Hu et al. [37] developed an on-the-fly
human sleep recognition system using a pressure-sensitive con-
ductive sheet and a four-layer CNN architecture for sleep classi-
fication, with transfer learning to prevent overfitting and improve
classification accuracy. Yuan et al. [25] established an exten-
sive object recognition to classify ten objects and performed
a systematic material analysis and study of Velostat, including
resistance sensitivity, quasi-static response, and crosstalk issues.
Zhang et al. [42] focused on gait recognition using a combination
of pressure signals and acceleration signals to compensate for
the lack of data provided by a single sensor and transmitted the
data to a computer for signal processing and building a k nearest
neighbor (kNN) model to test the gait pattern recognition effect.
Chen et al. [43] explored DL algorithms including ResNet50, In-
ceptionV3, and MobileNet to identify differences in the response

of walking speed to plantar pressure. Jun et al. [44] performed
pathological gait classification, feeding the sequential skeleton
and average foot pressure data into a recurrent neural network
(RNN)-based encoding layers and CNN-based encoding layers,
respectively. The method effectively extracted features, then the
output features were connected and fed to a fully connected layer
for classification. Ghzizal et al. [45] used transfer learning of a
pretrained CNN to classify patients with Parkinson’s disease.
Tactile perception is an important research direction in the field
of robotics and artificial skin. We summarize the details of the
state-of-the-art pressure sensor array technologies in Table I.

B. Dynamic Pattern Recognition

Pressure pattern in the physical world, especially tactile sens-
ing in relation to humans, is a dynamic modality. Different
people have different physical characteristics and behavioral
habits, which affects the generation of pressure distribution.
Meanwhile, the nonideal properties of most pressure sensors,
especially piezoresistive sensors, also cause nonlinear effects
on resistance and conductance. Traditional classifiers are dif-
ficult to handle such tasks. Therefore, it is a trend to use DL
algorithms to classify a series of dynamic pressure images,
known as a stream of pressure images. There are traceable
solutions for image stream or video recognition. In the field of
image sequence recognition, the convolutional recurrent neural
network (CRNN) is used for the extraction of language text
from the image [46] and video classification [47], in which long
short-term memory (LSTM) is used to integrate CNNs. It is also
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Fig. 1. Schematic illustration of the SPeM system for HAR. Different
human activities generate distinct pressure distributions, which in turn
result in varied resistance distributions. These resistance distributions
subsequently give rise to diverse voltage distributions, enabling the gen-
eration of a stream of pressure images classified into different activities
by a DNN.

common practice for researchers to recognize dynamic pres-
sure image sequences using integrated CNNs. Song et al. [48]
utilized a similar CRNN architecture to identify four modes of
flexible tactile sensors, including stroking, patting, kneading,
and scratching. Sundaram et al. [49] demonstrated tactile gloves
for object-grasping robotics, in which a convolutional layer was
used to integrate CNNs and was used to recognize the type of
objects and judge the response gestures of robotics. Therefore,
the deep neural network (DNN) algorithm is used as the pressure
pattern recognition method in this article, and the performances
of the three methods are discussed and compared.

C. Motivation and Contribution

Our motivation received inspiration and impetus from health-
care, sport, gaming, early childhood education, entertainment,
etc. This work aims to introduce a flexible, noninvasive, portable,
and inexpensive pressure sensor system into the above areas of
application. On the one hand, pressure can be a Boolean feed-
back as a single-dimensional signal detection method. However,
the pressure distribution formed by the human body on a pressure
array can generate a visualized pressure image. Gumus et al. [50]
presented a textile-based pressure sensor array that was capable
of displaying the shape of objects, recognizing gestures, and
early childhood education. Children could input and display
numbers, arithmetic symbols, and English letters on an Android
mobile phone by pressing them on the education platform.
Wicaksono et al. [41] developed a knitted intelligent textile mat
to control the standing, walking, and running behavior of the
characters in the Minecraft video game. Moreover, pressure
sensor arrays have shown substantial potential in healthcare
applications such as the prevention of bedsores and detection of
falls, among others [51], [52], [53]. This article explores a wider
range of applications, utilizing an electronic mat composed of a
pressure sensor array to enable recognition of sleeping postures
and various activities, such as running, exercising, yoga, among
others. Through these explorations, our aim is to uncover its
potential in healthcare applications and beyond.

In this article, a pressure sensor-based system, Smart Pressure
e-Mat (SPeM), is proposed for human sleeping posture and
recognition of dynamic activity, as shown in Fig. 1. SPeM
consists of a pressure sensor array e-mat based on Velostat

piezoresistive material and a DNN classifier. After demonstrat-
ing the fabrication of the pressure sensor e-mat, a DNN algorithm
with three alternate architectures is designed to process the
pressure image stream. SPeM collects two datasets, including
four sleeping postures and 13 dynamic activities, which are used
to train different DNN models, respectively. After evaluation
and discussion of the experiment results, our SPeM system is
considered a highly accurate, low-cost, and convenient human
monitoring application. The contributions of this article are as
follows.

1) Sensor Array Design: A Velostat sensor array-based
SPeM is designed and established to generate human
pressure patterns. SPeM is low in price, foldable, portable,
flexible, and low weight, with a length of 2.030 m, a width
of 1.525 m, a height of fewer than 0.001 m, total weight
is 2749 g, its total price is 220 USD, and the resolution is
67.3× 52.3 mm2/pixel. We employ a specialized design
method utilizing separated Velostat sensor elements, ef-
fectively reducing the consumption of Velostat material
by 64%.

2) Sleeping Postures and Dynamic Activities Recognition:
SPeM is employed in our experimental setup to monitor
human sleeping postures and dynamic activities within
domestic scenarios. We have gathered human pressure
pattern datasets across two distinct environments, includ-
ing four sleeping postures and 13 dynamic activities.
These datasets comprise a total of 30 000 image stream
samples, with each sample containing ten image frames.

3) Pressure Image Stream Classification: DNN algorithms
are utilized to recognize pressure images of sleeping
postures and dynamic activities, achieving notable ac-
curacy. Experimental results demonstrate that the pro-
posed SPeM effectively captures the pressure modality
generated by human postures/activities, offering a high-
precision, comprehensive, and visualizable paradigm and
instance.

Therest of this article is organized as follows. In Section II, the
methodology of this work is described. The experimental setups
and results are demonstrated in Section III. Section IV discusses
the deployment of the proposed system in the real world. Finally,
Section V concludes this article.

II. METHODOLOGIES

This section presents the proposed SPeM system, including
the fabrication of the e-mat based on Velostat pressure sensor
array and the design of the DNN algorithm. The schematic
diagram of the proposed SPeM system design is presented in
Fig. 2.

A. SPeM System Design

The proposed SPeM system comprises a pressure e-mat for
sensing, a signal processing subsystem for calibration, scanning,
and sampling, and a back-end for visualization and classifi-
cation. The signal processing subsystem consists of a printed
circuit board integrated with analog multiplexers, shift registers,
and operational amplifiers, and embedded with an Arduino Nano
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Fig. 2. Design diagram of proposed SPeM system. The human pres-
sure modality is represented as pressure distributions on the pressure
e-mat. The signal processing subsystem generates a voltage distribution
by scanning the interface of the pressure e-mat. The backend operator
generates pressure images and utilizes a classifier for classification.

as the central signal processing unit. To generate pressure images
in real-time for visualization and classification, a Processing
program is run by the back-end operator, which utilizes the volt-
age distribution produced by the signal processing subsystem.
Yuan et al. [25] served as a systematic feasibility study that
validated the signal processing subsystem; refer to [25] for more
detailed schematic circuit diagrams and other details. The human
body exerts varying pressure on the pressure e-mat depending
on different tasks, resulting in distinct resistance distributions.
Arduino controls analog multiplexers and shift registers to scan
the pressure mat line by line and obtain the corresponding analog
voltage distribution. Therefore, the quality of the pressure image
is based on the ability of the pressure cushion to completely,
accurately, and reliably receive the human body pressure distri-
bution.

B. Fabrication of SPeM

For the Velostat pressure sensor array, the pressure distribu-
tion represented by the pressure image is only related to the
Velostat resistance at the intersections of the row and column
of conductive lines, i.e., the pressure sensor elements, and the
pressure distribution between elements is not sampled. Sepa-
rated sensor elements, i.e., using cut Velostat instead of a whole
piece of Velostat, is a viable approach to avoid waste of material
in inactive areas, as shown in Fig. 3. Separated sensor elements
have three advantages: save material, avoid stray current flowing
through the Velostat resistance material to adjacent elements,
and avoid the deformation caused by human body pressure to af-
fect adjacent elements through the material. The design approach
of the separated Velostat sensor elements can reduce the use of
Velostat material by 64%. Meanwhile, separated sensor elements
need to be distinguished from independent sensor elements. The
independent sensor element is that each sensor element does not
share the input and output circuits with other elements, while
each row and each column of separated sensor elements share
the input and output circuits, respectively. Therefore, compared
with independent sensor elements, separated sensor elements
have a minimal number of input and output ports, resulting in
a simpler signal processing subsystem, but there will inevitably
be crosstalk. Independent sensor elements are more suitable for
the requirement of a small number of elements, while separated
sensor elements are required in large sensor arrays.

Fig. 3. Schematic diagram of e-Mat. (a) Structure, size, and sensing
area. (b) Size and spacing of sensor elements.

Fig. 4. Actual image of e-Mat. (a) The e-mat is placed on a Queen size
mattress. (b) The e-mat is folded and placed on a digital weight scale,
and the total weight is 2749 g.

Fig. 3(a) shows the general structure and size of the e-mat,
consisting of five layers, in which two adhesive layers are used to
fix the upper and lower protective layers with the middle conduc-
tive layer, respectively. The protective layers are polyester due
to their cheap, wrinkle-resistant, durable, and soft properties.
The adhesive layers are acrylic, which is not only soft, but
also firm and efficient for bonding multiple objects together,
such as protective layers, conductive threads, and Velostat. The
conductive threads are stainless steel fiber, which is famous
for its role in conductive fabrics, and we have taken a fancy
to its softness. Therefore, the soft property of the selected
material is the core consideration, leading to the suitability of the
fabricated e-mat for human-related applications. Unlike other
Velostat-based pressure sensor arrays, the distances between
sensor elements in the vertical and horizontal directions of the
e-mat are not equidistant, as shown in Fig. 3(b). In order to
conform to the length and width of the human body when
lying on the bed, the size of e-mat is set to be equal to the
Queen size, and the actual sensing area is slightly smaller than
the bed sheet. Fig. 4(a) shows the Smart Bed Sheet placed
on a Queen-size mattress to collect data on subject sleeping
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TABLE II
PARAMETERS OF SPEM

posture. The fabricated Smart Bed Sheet is flexible, soft, and
portable, and Fig. 4(b) shows its foldability and low weight. We
summarize the parameters of the proposed SPeM in Table II.

C. DNN for Image Stream

In this article, we advocate the use of an end-to-end DNN as a
pressure image stream classifier to achieve both human sleeping
posture and dynamic activity recognition. CNN is one of the
leading solutions for image classification problems. However,
how to handle the temporal relationship between images after
2-D convolution is still an open problem. In pressure image
classification tasks, the sample is 3-D tensors I ∈ Rn×m×d and
the label is Y ∈ N, where n is the image length, m is the width,
and d is the channel. R and N are real numbers and natural
numbers, respectively. The length n, width m, and channel d
of the pressure image are determined by the actual manufacture
of the e-mat. Although the classification tasks proposed in this
article are based on an image stream, also known as video, the
sample is a 4-D tensor V ∈ Rn×m×d×j , where j is a customized
number of images in the stream, depending on the application
requirements. In this article, the dimensions of the sample are
27× 27× 1× 10. Considering the nonlinear resistance charac-
teristics of the Velostat material, the image stream generated by
SPeM depends not only on the pressure distribution of human
activity, but also on the electrical sensitivity of the Velostat based
on the resulting pressure distribution. Specifically, resistance
sensitivity is higher when the activity generates greater pressure
and the pressure is applied for a shorter time, and vice versa.
Considering the recognition of human sleep posture with a large
pressure distribution area and a lengthy application time, even
if it is a static human activity, the stream still presents different
pressure images due to the nonlinear resistance characteristics
of Velostat. In addition to the above two factors of activity and
Velostat nonlinear characteristics, possible secondary factors
include the subject’s personal habits, noise, etc.

Therefore, the critical thing is to find the temporal relationship
of j pressure images. Due to the excellent performance of
CNN in image processing, it is used as a feature extractor to
extract a high-level representation of human pressure patterns.
Subsequently, the temporal relationships between images in a
stream also need to be processed by neurons. Consequently,
after j CNNs are used to extract j image tensors I, a final
layer processes the relationship between images in the stream,
as a DNN classifier of the proposed SPeM system. Specifically,
Yuan et al. [25] proposed CNN RESNET-PI as the pressure

Algorithm 1: Smart Pressure e-Mat (SPeM) System.

Input: Initial DNN model θ0, training epochs E,
learning rate η, loss function f , Adam optimizer.

Output: Trained DNN model θ∗

# Scanning e-Mat to generate pressure image stream
1: while data collection do
2: for stream = 1, . . . , j do
3: for row = 1, . . . , n do
4: for col = 1, . . . ,m do
5: Pressure image Istream

row,col ← 8-bit analog output
6: end for
7: end for
8: Generate pressure image Istream

9: Pause 0.5 seconds
10: end for
11: Concatenate I and generate pressure image stream V
12: Append dataset ξ with stream and label pair {V,Y}
13: end while

# Training DNN
1: for e = 1, . . . , E do
2: for batched pair {V ,Y} do
3: Train DNN model θe ← Adam(θe−1; {V ,Y}, η, f)
4: end for
5: end for
6: Output the trained DNN model θ∗ ← θE

image feature extractor of DNN. RESNET-PI reduces the number
of model parameters by removing one residual block from
ResNet-18 [54]. RESNET-PI, as a lightweight CNN, not only
reduces computational complexity, but also avoids overfitting
pressure image data with a small number of features. Therefore,
the DNN algorithm uses a temporal feature-level concatenation
of RESNET-PIs, using pending convolution (Conv), LSTM, or
fully-connected (Dense) to process the temporal relationships.
Fig. 5 shows the proposed DNN with three alternate architecture
integrating RESNET-PIs.

The proposed DNN can adjust the number of sub-CNN ac-
cording to the number j of pressure images. Considering the
need for recognition speed for human monitoring applications,
the experiment in this article considers a sample including
j = 10 pressure images, which results in a sampling time of five
seconds for each sample. Considering that sub-CNNs are only
used as feature extractors here, they can increase the learning
efficiency and reduce the computational complexity by sharing
weights. A Dropout layer is inserted into each ResNet block to
further enhance the generalizability of the proposed DNN. The
entire process of generating the pressure image stream dataset
and training the DNN model by the SPeM system is elaborated
in Algorithm 1.

III. EXPERIMENT AND RESULTS

This section is organized as follows to illustrate the experi-
ments and results of this article. After introducing the nonideal
properties of Velostat and subject information, we conduct two
experiments, including human sleeping posture and activity
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Fig. 5. Fusion of RESNET-PI s for images with temporal relationship. The DNN with three alternate architecture can be considered as 3-D CNN,
CRNN, and CDNN when concatenated with Conv, LSTM, or Dense, respectively.

Fig. 6. Velostat non-ideal properties. (a) Voltage distribution of five
elements when unoccupied. (b) Voltage response curves during loading
and releasing states.

recognition, respectively. A sports game is introduced as an indi-
cator for our activity recognition. The experiment also compares
the performances and results of different DNN architectures.

A. Velostat Nonideal Properties

Piezoresistive resistors such as Velostat have some notori-
ous nonideal properties, including reduced sensitivity due to
crosstalk, stray currents, electrical noise, and nonlinear resis-
tance characteristics. We seek to improve the accuracy and
robustness of SPeM by discussing and characterizing these
properties of Velostat and by featuring them in the pressure
image stream data. Due to the inevitable crosstalk, the resulting
noise is a challenge. Fig. 6(a) shows the voltage distribution
of different elements when they are not occupied. It can be
seen that the voltage of different elements oscillates between
several units when unoccupied, which also causes the element
voltage to oscillate when monitoring human activities. Fig. 6(b)
shows the noise-induced voltage instability in the loading and
releasing states and the nonlinear resistance characteristics. In
which the loading and releasing states refer to the state of
continuous loading at 100 Newton pressure and the state of after-
stop loading, respectively. At the 10-th second, the Velostat
is loaded with a voltage rise, but the gradient is decreasing.
Although the voltage rise can converge to a final steady-state

TABLE III
SUBJECTS’ PHYSICAL INFORMATION, INCLUDING AGE, HEIGHT, WEIGHT, AND

BMI

value, for human monitoring applications, the voltage and the
generated pressure image constantly oscillate and rise as the
occupancy progresses. The same is true for the releasing state.
Therefore, we propose an image stream instead of a single image
as a sample in the dataset.

B. Experimental Setup

The data collection is at a home scenario, as it can better fit the
functionality of the proposed SPeM product. The portable pres-
sure sensor e-mat that can be easily extended to multiple uses, so
it is placed on a mattress and a carpet for different classification
tasks. The pressure distribution on e-mat is closely related to the
pressure distribution of the human body, and a diverse dataset
can effectively avoid overfitting the neural network model. We
recruit 14 subjects to assess the feasibility of the SPeM system,
comprising 11 males and 3 females. These individuals vary in
age, height, and weight. They also have various fitness routines,
athletic preferences, and proficiency in certain sports. Detailed
physical information about the subjects is presented in Table III.

Subjects with different instructions completed the posture and
activity collection datasets. Ten pressure images are used as a
sample of the dataset and have a sampling period of two images
per second. The collection time for each sample is approximately
5 s. Appropriate sampling time can not only obtain a higher
number of samples, but also ensure that each sample contains a
sufficient amount of pressure image information to be learned
by DNN models. Between samples, subjects moved and rotated
consciously to obtain a diverse dataset. The human sleeping
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Fig. 7. Illustration of four common sleeping postures. (a) Supine.
(b) Prone. (c) Left Lateral. (d) Right Lateral. Bokeh body parts are in-
cluded in the illustration to represent possible rotation and displacement
of the arms, legs, torso, and head during sleep.

postures and dynamic activities are collected in two datasets to
validate the application of the proposed SPeM in human moni-
toring. Each dataset is divided into a training set, a test set, and
a validation set with a ratio of 0.7, 0.15, and 0.15, respectively.
The optimizer is Adam, with the learning rate initially being
10−3, and the learning rate decreases by 0.1 every 100 epochs.
Since these are classification tasks, the last layer is Softmax, and
the loss is estimated by cross-entropy. The batch size is set to 32
and iterated 200 epochs to obtain the preliminary fitting results
of the DNN model. The DNN architectures are implemented on
TensorFlow and then trained on a Nvidia GeForce RTX(TM)
3080 GPU.

C. Sleeping Posture Recognition

SPeM is placed on a queen-size mattress for its first home
scenario application, which is the recognition of sleeping pos-
tures. This is crucial for high-precision posture recognition that
can effectively prevent diseases such as bedsores. As shown in
Fig. 4(a), SPeM is designed to completely cover the mattress.
Subjects are instructed to simulate four common sleeping pos-
tures in SPeM, as shown in Fig. 7. The subject’s body is oriented
in the same direction as the mattress, and we allow some degree
of movement and rotation of their arms, legs, torso, and head.
The orientation of the chest is used to differentiate between the
four postures while allowing for some movement and rotation
of the subject on the SPeM to diversify the dataset.

Fig. 8 shows some sampled pressure images of four human
sleeping postures, from which a clear outline of the human body
and the pressure distribution can be seen. In addition to the
changes caused by human pressure, there is also some noise
distributed around the edges of the image. Therefore, in the
process of recognition of the pressure mode, the classifier should
focus more on the center of the pressure image rather than the
edge area, and the neural network can undoubtedly achieve this
purpose. The classification results of various DNN models are
shown in Table IV, including CRNN, 3DCNN, and CDNN. It
can be seen that these three DNN models have all fairly high
accuracy and a similar training time.

D. Dynamic Activity Recognition

To provide a more accurate and vivid description of human
activities, we use the successful commercial game product,

Fig. 8. Pressure images of four human sleeping postures.

TABLE IV
CLASSIFICATION RESULTS OF DIFFERENT DNNS ON THE HUMAN SLEEPING

POSTURE AND DYNAMIC ACTIVITY RECOGNITION DATASETS

Nintendo Switch Ring Fit Adventure (RFA) [55], as an indicator
in this study. SPeM is considered a significant complementary,
prior, and auxiliary sensor to the RFA gaming platform to
enhance its performance. We only use the activity definitions,
instructions, and scores of the RFA for dynamic activity recogni-
tion experiments. The Nintendo Switch console is equipped with
various sensors, including an inertial measurement unit (IMU),
motion sensing infrared camera, brightness sensors, etc., and
can be equipped with a variety of physical games. RFA is an
exercise that can help overcome movement disorders and pro-
vide therapeutic applications to restore balance and functional
mobility, meeting the demand for home exercise [56], [57], [58].
By combining two independent Joy-Con controllers equipped
with Ring-Con firmware, various fitness movements can be
recognized and detected. However, RFA still has a high error
rate when differentiating fitness movements, as only the leg side
of the sensor set and the Ring-Con sensor set are used to identify
all body movements. To improve the efficiency and performance
of RFA, we propose using a prior classifier. The pressure sys-
tem contact sensor can better capture the pressure distribu-
tion of the human body and perform high-precision activity
recognition.

The design of dynamic tasks is a delicate process, as it requires
a link to home sports activities, while also requiring explicit
activity instructions and specifications. Therefore, we borrowed
activity directives and specifications from the successful case of
RFA as the dynamic activity settings for our experiments. The
visual cues and scoring system in RFA can effectively reduce
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Fig. 9. Schematic diagram of dynamic activities. Running is also one of 13 dynamic activities that are not shown here. (a) Hip Lift. (b) Wide Squat.
(c) Overhead Squat. (d) Thigh Press. (e) Leg Raise. (f) Forward Press. (g) Overhead Bend. (h) Plank. (i) Crescent Lunge. (j) Hinge Pose. (k) Fan
Pose. (l) Tree Pose.

TABLE V
DESCRIPTION OF THE 13 DYNAMIC ACTIVITIES

the subjects’ comprehension errors regarding the experimental
instructions, and the RFA can determine whether the subject’s
activity is normative through a scoring system. RFA includes
dozens of activities that work muscles in different parts of the
body, such as the chest, waist, and legs. We select 13 dynamic
activities to validate the proposed SPeM, as illustrated in Fig. 9,
including (a) Hip Lift, (b) Wide Squat, (c) Overhead Squat, (d)
Leg Raise, (e) Forward Press, (f) Overhead Bend, (g) Crescent
Lunge, (h) Hinge Pose, (i) Fan Pose, and Running (not shown).
RFA categorizes these activities based on training for different
body parts, such as Legs, Stomach, and Yoga practices. The
pressure patterns generated by these 13 dynamic activities differ
in terms of frequency, amplitude, size, and contact points, as

summarized in Table V. For example, the running activity,
characterized by vigorous swinging of both legs, leads to high
frequency and high amplitude, and the contact size between
the foot and SPeM is relatively small. Note that in addition to
these attributes, different activities will produce different shapes,
directions, and distances of pressure patterns that originate from
various parts of the body. We use a nonindependent and identi-
cally distributed (non-IID) data collection strategy to accurately
reflect the real-world preferences of people in their activities.
Two subjects collect data on all activities, while five subjects
only collect data on certain activities, including (a), (e), (f), (i),
and running. The remaining seven subjects record data for the
other eight activities.
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Fig. 10. Confusion matrix under predictions of CRNN for 13 activities
recognition.

The results of dynamic activity recognition are shown in
Table IV and Fig. 10. All three DNN models achieved similar
accuracy in classifying dynamic activities. The primary source
of misclassification arises from confusion between the Wide
Squat and Overhead Squat activities. These two activities modify
the center of gravity by using different arm positions to train
leg muscles, but the difference in the pressure modality exerted
on the SPeM in the vertical direction is minimal. Therefore,
the SPeM can differentiate the pressure modalities of similar
activities to some extent, but it is unable to capture or distinguish
the behaviors of the head, hands, and torso during activities
like Wide Squat and Overhead Squat. To address the observed
classification issues and improve the overall accuracy of the
system, SPeM could be combined with data from multiple
sensors to capture different modalities. For example, combining
SPeM with IMU sensors, emblematic of RFAs, might emerge as
a promising commercial application avenue. Such multimodal
approaches could be essential to address the observed clas-
sification challenges and improve the overall accuracy of the
system.

E. Effect of Different Image Stream Resolutions

To further investigate the impact of different resolutions and
image stream frame counts (i.e., sampling rates) on accuracy, we
downsample the originally collected samples with a resolution
of 27 × 27 × 1 × 10 and retrain and evaluate the DNN, as
shown in Fig. 11. We conduct experiments using CRNN for
dynamic activity recognition, simulating different resolutions
for the SPeM sensor hardware by performing interval sampling.
For example, a resolution of 10 × 10 means sampling every
second pixel, resulting in a simulated hardware resolution of
104.6 mm × 134.6 mm, which is twice the resolution of the
original sensor elements shown in Fig. 3.

As shown in Fig. 11, while higher resolutions generally lead
to better accuracy, there is a diminishing return effect where

Fig. 11. Effect of image stream resolution. The experiment is exempli-
fied with the CRNN for the dynamic activity recognition task.

the rate of improvement slows as the resolution increases. This
introduces a trade-off between resolution and system accuracy,
which must be carefully considered in different application
contexts. Moreover, different use cases may prioritize this trade-
off differently. For instance, in healthcare applications such as
pressure ulcer prevention, a lower resolution may be sufficient
due to the relatively static nature of human postures during sleep,
where the cost savings from reduced resolution and sampling
rate can outweigh the marginal loss in accuracy. Conversely, in
more dynamic applications like home entertainment, where pre-
cision and frequent monitoring are essential, a higher resolution
and sampling rate may be favored to ensure accurate activity
recognition.

IV. DISCUSSION

A. Adaptive System Configuration

The accuracy of the SPeM system will depend on the ex-
perimental setup and the resulting data collection process. Two
significant factors that affect classification accuracy are the
sampling rate and the period. The sampling rate is impacted
by the nonlinear resistance characteristics of Velostat. In our
experiments, we set the sampling rate to two hertz to account for
the application and release of Velostat resistance and the duration
of a single activity in the RFA. However, we have observed
that the sampling frequency may be a little high, resulting in
minor variations in adjacent images and wasting computational
resources, as well as electrical noise caused by cluttered currents
in the sensor array. It is essential to note that the sampling
period depends heavily on the application under consideration.
Although the experiments in this paper aim to control the exper-
imental variables and observe the differences between static and
highly dynamic applications, a faster sampling period may not
be appropriate for other applications, such as sleep recognition,
where it could result in the unnecessary waste of computational
resources. Therefore, it is necessary to adjust the system param-
eters to suit different human monitoring applications. A tailored
setting of application-following system parameters can lead to
better performance and accurate classification results in diverse
scenarios.
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B. Pressure Image Stream in Real-World Development

In this article, we use a DNN algorithm with three archi-
tectures to perform the classification task of dynamic pressure
image streams. However, based on our observations of related
work (see Table I), we have found that most human monitor-
ing applications for static activities, such as sitting, sleeping,
and long-term immobility, only use a single image as a data
sample. Therefore, we conservatively tested RESNET-PI and
other individual CNNs in the sleep posture dataset, achieving a
classification accuracy of approximately 0.98. Although single
CNNs are a feasible method under ideal conditions, in real-world
application scenarios, the proposed image stream-based classi-
fication method in the SPeM system is more robust. First, in
real-world scenarios, the pressure generated by human sleep is
affected by various external factors, such as blankets, pillows,
mattresses, and even dolls. Second, the pressure image generated
by the Velostat-based pressure sensor array is time-varying due
to electrical noise and crosstalk. Third, Velostat resistance also
changes over time due to its nonlinear resistance characteristics,
as shown in Fig. 6(b). For long-term static postures, we can
adaptively adjust the sampling rate to reduce system power
and storage overheads. Therefore, the introduction of the time
dimension can also increase the robustness of human monitoring
applications, and we advocate use in static-like human monitor-
ing applications.

C. Future Application Prospects of SPeM

The future application prospects of SPeM can be summarized
into following three aspects.

1) Serving as a healthcare product under the guidance of
professional physicians.

2) Integrating with other sensors to provide more robust
performance.

3) Further optimizing the design of the sensor array to gen-
erate images with higher resolution.

First, SPeM can be used under the guidance of professional
physicians to collect relevant patient data to perform more
specialized healthcare tasks, such as preventing bedsores, de-
tecting epilepsy and dementia, identifying falls, among other
applications pertaining to the elderly. For example, the high
performance of the proposed SPeM in the recognition of posture
during sleep suggests its potential to accurately identify the
direction of falls in the elderly, providing more precise estimates
of the severity of such incidents.

Second, SPeM can be fused with other sensors (such as the
RFA wearable sensor used in our experiments) to overcome the
limitations of a single sensor type. For example, in dynamic
activity recognition tasks, the pressure sensor may not fully
capture the movement of the human head, torso, or hands.
Therefore, combining SPeM with wearable sensors or other
sensor types could allow multimodal human monitoring.

Last, the proposed SPeM currently generates pressure images
with a resolution of 27× 27, which is far from sufficient for
visual applications in monitoring human activity. The fabrication
of pressure sensor array pads and related applications presents
challenges, particularly in large-scale and high-resolution

applications. However, because of the law of diminishing
returns, increasing size and resolution have limited benefits
to recognition accuracy. Beyond employing image-enhancing
techniques such as filtering, contrast enhancement, and image
interpolation, how to balance cost, material usage, and resolution
is an open research question.

V. CONCLUSION

In this article, we propose a SPeM system for large-scale
collection and demonstration of human pressure distribution and
develop two applications of human sleeping posture and dy-
namic activity. From the analysis of the pressure image stream,
DNN models are used to train, classify, and predict the two
datasets. The results of the experiment demonstrate that the
proposed SPeM system can excellently achieve high-accuracy
classification tasks. This article highlights the portability, flexi-
bility, and low price of SPeM and demonstrates its preliminary
applications in human health care, entertainment, monitoring,
etc.

Future work will follow the outline of the prospects for
application described in Section IV-C, involving data collection
for activity recognition in controlled scenarios, guided by pro-
fessional physicians and fused with input of multisensors. Under
the guidance of physicians, subjects could collect data in safer
scenarios that mirror professional and realistic situations, such
as pressure sores, epilepsy, dementia, falls, etc. Furthermore,
we aspire to establish an experimental scenario resembling a
hospital ward, deploying pressure sensors in various positions
such as rooms, mattresses, and table edges for comprehensive
data collection of pressure modes. In this experimental setup,
subjects would wear wearable sensors like IMUs for normal
living (or simulating diseases), and data labeling would be
performed manually using synchronized cameras. The collected
dataset will thus form a large-scale pressure modality dataset,
providing future researchers with a visual, testable, fusionable,
and comparable multimodal dataset with pressure modality as
the primary component.
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