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Abstract
To produce maximum output power in a solar collector system, a maximum power point tracker (MPPT) is considered a vital
component in system design. Though, due to partial shading effect initiated by dynamic weather conditions, the tracking
process becomes more complex when locating the global maximum power point (GMPP). To solve this issue, an innovative
and adaptive MPPT based on sequential Monte Carlo is suggested to accurately and efficiently predict the global peak under
rapid changing weather conditions. The proposed method adaptively predicts the next best duty cycle value that will generate
the maximum output power. The capability of the technique has been tested strongly under standard test conditions (STC)
and dynamic weather conditions including random partial shading and changing irradiance and temperature input values.
The new recommended technique is compared to the classical perturb and observe algorithm, in addition to the particle
swarm optimization, and flower pollination tracking techniques. The simulated results illustrated dominance in accuracy and
efficiency under varying environment conditions. The efficiency calculated was found to be as high as 99.89% at STC and as
low as 98.58% at dynamic and random partial shading conditions. In addition, the results displayed high tracking speed in
predicting the GMPP while maintaining no oscillations at the output power.

Keywords Maximum power point tracker · Photovoltaic system MPPT · Duty cycle optimization · Sequential Monte Carlo

1 Introduction

Ever since the first invention of the photovoltaic technol-
ogy in 1954 by Fuller et al., researchers and scientists
have been committing time and effort into determining the
best maximum power point technique (MPPT) for produc-
ing the maximum power from photovoltaic systems [1].
However, despite the ability of harvesting decent results
under constant weather conditions, many of these techniques
failed extremely when encountering varying environmental
condition (i.e., varying irradiance, temperature, and partial
shading), because of having high divergence, incorrect pre-
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diction and selection of global peaks, or by presenting high
power oscillations around selectedMPPs [2]. Partial-shading
arises when PVmodules are faced with different solar irradi-
ation than other modules in a PV system. This phenomenon
produces multiple peaks displayed by power voltage char-
acteristic (P–V) curves adding complexity to the tracking
process [2, 4]. A well-designed MPPT intends to solve these
issue accurately and effectively.

MPPTs are categorized into off-line techniques, for
instance, fractionally short circuit current (FSCC) and open-
circuit voltage (FOCV); on-line techniques similar to perturb
and observe (P&O), or incremental conductance (InCond),
and artificial intelligence (AI) techniques that hold a variety
of algorithms such as fuzzy logic control (FLC), particle-
swarm optimization (PSO), artificial neural network (ANN)
techniques, genetic algorithms (AG), and flower pollination
algorithms (FPA)) [1].

Numerous studies havebeenproposedbymany researchers
to accurately locate the MPP in PV systems. For instance,
Radjai et al. [5] and Chiu et al. [6] modified the InCond
algorithm based on fuzzy duty cycle change, but the tech-
nique did not eliminate the oscillation around the MPP, or
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improve the tracking speed significantly. Sundareswaran et
al. [7] and Daraban et al. [8] suggested to unite the classical
P&Owith anAI technique (PSOorGA), but neither approach
showed significant improvement in tracking speed or power
oscillation, yet introduced high complexity designs. In addi-
tion, this approach degraded dramatically when the system
encountered severe weather conditions, or when affected
by partial shading due to the two known major issues of
the P&O technique (i.e., drifting and local maximum power
point (LMPP)). Furthermore, additional attempts were pre-
sented by Punitha et al. [9] and Syafaruddin et al. [10] and
they applied ANN and FLC techniques to locate the GMPP,
respectively. Besides the noticeable efficiency compensa-
tions, ANN process requires an additional sensor to acquire
the temperature variation, while composite design of fuzzy
instructions in FLC technique requires system data to locate
the next GMPP. Moreover, interesting and distinctive tech-
niques known as PSO and FPA (inspired and derived from
nature) have been applied to locate the GMPP [11, 14]. Both
techniques start with random searches to evade convergence
to a localminimum and continue searching until theGMPP is
located. Convincingly, these approaches provided an excel-
lent performance solving a key issue of the steady-state
fluctuations, but lately, converge to a local minimum once
impulsiveness is reduced [11, 14]. In addition, parameter ini-
tialization is a complicated process for both techniques. Babu
et al [12] and Ishaque [13] attempted to solve this issue, but
both did not show their evaluations under varying irradiance
and temperature conditions. Moreover, Prasanth et al [14]
applied FPA to locate the GMPP and his approach showed
significant improvement in terms of efficiency; however, the
results did not consider a varying irradiance, temperature,
or dynamic partial shading effect on the system, and only
included a constant irradiance input values under specific
partial shading patterns. Furthermore, their results show an
obvious power oscillation, slower tracking speed, and in addi-
tion to some error in calculating the efficiency highlighted in
Table 2.

This article proposes a stand-alone AI maximum power
point tracker that is capable of handling severe and dynamic
weather conditions while maintaining high accuracy, fast
responding time, and a power-output that is oscillation-free.
The proposed technique is based on applying the theory of
sequential Monte Carlo algorithm for Bayesian computation
to predict the most likely location of the MPP on a PV curve.

The remnant of this article is prepared in this manner.
Section2will introduce the proposedmethodology including
the system description, solar P–V characterization, and the
proposed DC–DC boost converter for a PV system. A brief
description of recursive Bayesian estimation and sequential
Monte Carlo techniques is explained in Sect. 3. Designed
Simulinkmodel and input data are discussed inSect. 4, trailed

by simulation and results in Sect. 5. Finally, conclusion is
signified in Sect. 6.

2 Methodology

The methodology scheme of the design is broken into a
PV system description including the booster configuration,
the Matlab/Simulink designed model, and the mathematical
model of SMC algorithm.

2.1 Proposed System Description

A diagram representation for a full photovoltaic design is
represented in Fig. 1. The two-stage representation consists
of a PV generator, a booster converter, an MPPT control
algorithm, aDC link, an inverter, and a filter that is coupled to
themaingrid [15].TheMPPTcontrol algorithm is considered
an essential part to providing the best duty-cycle value that
boosts the converter to produce maximum power output at
every instance of time. Considering the second stage as a
load, the focus will be on modeling the PV generator and
power converter circuits as an accurate nonlinear state-space
model that will be tracked by the recursive Bayesian estimate
in themeans of the SMCalgorithm to predict the next suitable
duty cycle value.

2.2 Solar PV Characterization

Acomprehensive circuit illustration of a single cell generator
is represented in Fig. 2. The figure shows four main com-
ponent blocks: PV panels, DC to DC converter, an MPPT
algorithm, and a system load.Aphotovoltaic panel is a collec-
tion of multiple cells connected together to form a complete
panel [16]. Each photovoltaic cell in the panel is described
as a semiconductor component that transforms light energy
into electricity [16]. The figure illustrates a PV module that
consists of an independent current generator connected to a
shunt resistor Rsh, a diode, and a series resistor Rs . A shunt
resistor Rsh is needed because the diode is not an ideal diode,
and the Rs is needed to represent the ohmic resistance of the
materials [3]. Usually, the value of the series resistor is very
small when compared to the value of the parallel shunt resis-
tor (Rsh >> Rs) [3]. When light is supplied to the PV cell,
an output (Iph) current is generated. Using nodal analysis,
Iph can be expressed as [15, 16]:

Ipv = Iph − Id − Ir (1)

Ipv is the panel’s current, and Iph is the current produced
from the light, and defined as [15, 16]:

Iph = Qe(ISC[1 + b(T − TSTC)]) (2)
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Fig. 1 A block diagram representation of a full photovoltaic system

Fig. 2 A circuit diagram
representation of photovoltaic
system

where Qe is irradiance value, ISC is the cell’s short circuit
current, b is a temperature constant, T is effective tempera-
ture, TSTC is the cell’s temperature at STC In addition, Id is
the diode current and described as [15, 16]:

Id = Is(e
(qVd/(nkT )) − 1) (3)

Is is saturation/reverse current of the diode, Vd is diode volt-
age, q represent the charge value (1.602 ∗ 10−19 C), k is
Boltzmann’s constant (1.38 ∗ 10−23 J/K), and n is the diode
optimist dynamic. Substituting Eqs. 2 and 3 into Eq.1 yields
a universal equation for the representative of the I–V curve
of a PV cell [15, 16]:

Ipv = Iph − Is[e
qVpv+IpvRs

nkT − 1] −
[
Vpv + IpvRs

Rsh

]
(4)

where Vpv is the cell’s voltage output, and it is modeled as
[15]:

Vpv = vc + Rc(Ipv − iL) (5)

where vc is the voltage across Rc and C and iL is the
current through the inductor labeled in Fig. 2. The process of

extracting these parameters byusingLambertW {} function at
STC (1000W/m2−25 ◦C) is specified by [15, 16]. In general,
the current and voltage produced by a single cell is very small
[15, 16]. To harvest a worthy current and voltage values from
a solar system, cells are coupled in parallel and in series
combinations to attain a usable output values [4].

The output of a panel is a nonlinear power signal, and it is
variably dependent on the irradiance and temperature input
values [16]. As the irradiance increases, the generation of
power increases; however,when the temperature is increased,
the generation of power is decreased [3]. The relationship is
shown in Fig. 3. From Fig. 3, it is clear that the maximum
power generated is located at a single point (without partial
shading), and locating that point is the interest of all MPPT
techniques.

2.3 DC–DC Boost Converter Characterization

Power conversion in a grid-connected PV system is needed
to maximize and improve the stability, reliability and quality
of the power output for that given PV model [7]. A power
converter is a two part system. The first part is a booster,
and it is used to boost the direct current signal from one
level to another (DC–DC) and maximizes its MPP voltage to
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Fig. 3 P–V characteristics of an array while a varying irradiance at a temperature of 25 ◦C, b varying temperature at an irradiance of 1000 W/m2

generate at most quantity of power. The second section is an
inverter that inverts the DC power value into a high quality
AC power value and then it passes it to be used by the PV
grid. The inverter section will not be taken into consideration
whenmodeling the power system, since it does not contribute
to the irradiance-driven dynamics [17].

The DC–DC boost converter is preferred and widely used
in PV generated systems because of its high efficiency and
controllability as anMPPT controller [7]. Figure1 shows the
circuit diagram of a DC–DC boost converter. As seen from
the figure, a MOSFET transistor is used to help in regulating
and amplifying the input voltage signal. With a simple math-
ematical arithmetic, a voltage gain can be calculated from
the diagram as displayed in the equation below [18].

Go = Vo
Vi

= 1

1 − D
(6)

where Vo is the output voltage and Vi is the input voltage. D
is the duty cycle. D is the fraction of time for one period in
which the signal is active. Now, the average power output of
the circuit model can be derived by recalculating the voltage
and current over the switching period [15].

The model of the boost converter is described as a two
differential equations and two state variables:

v′
c = Ipv − iL

C
, (7)

i ′L=Vpv−(RL+DRD)iL−(1−D)[Vdc+�Vd+(Rc+Rdc)iL
L

.

(8)

where C, L, Rc, RL , RD, Rd , Rdc, and�Vd are shown in
Fig. 2.

Fig. 4 Flowchart of MPPT-SMC controlled DC–DC boost converter

Furthermore, Fig. 4 provides a clear insight of the com-
pletemodel behavior. Theflowchart in Fig. 4 starts by reading
out the current Ipv and voltage Vpv for each instance of
time using sensors, then providing these data to the proposed
MPPT-SMC algorithm to predict the suitable duty cycle that
convey the MPP. This duty cycle is transposed as a PWM
signal to control the DC–DC boost converter to adjust the
PV panel’ current and voltage output. The rest of the circuit
is used to invert the output from DC to AC (Fig. 5).

3 Recursive Bayesian Estimation

Recursive Bayesian estimation (or Bayes filter) is a method
used for approximating an unidentified likelihood of con-
centration gathering iteratively in time by means of received
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quantities and a mathematical progression model [19]. Fig-
ure6 shows the process of the recursive Bayesian prediction.

The derivation of the mathematical model consists of the
following equation [20]:

p(Sk | Mk) = p(Mk | Sk)p(Sk)
p(Mk)

,

= p(Mk , Mk−1 | Sk)p(Sk)
p(Mk , Mk−1)

,

= p(Mk | Mk−1, Sk)p(Mk−1 | Sk)p(Sk)
p(Mk | Mk−1)p(Mk−1)

,

= p(Mk | Mk−1, Sk)p(Sk | Mk−1)p(Mk−1)p(Sk)

p(Mk | Mk−1)p(Mk−1)p(Sk)
,

= p(Mk | Sk)p(Sk | Mk−1)

p(Mk | Mk−1)
(9)

where p(Mk | Sk), p(Sk | Mk−1), and p(Mk | Mk−1)

are likelihood, prior, and evidence, respectively. The like-
lihood p(Mk | Dk) fundamentally controls the dimension
noise model in the output equation. The prior p(Sk | Mk−1)

describes the knowledge of the model, and calculated as [19]

p(Sk | Mk−1) =
∫

p(Sk | Sk−1)p(Sk−1 | Mk−1)dxk−1

(10)

defining p(Sk | Sk−1) is the alteration density of the state.
Furthermore, the evidence also known as the standardizing
constant hinge for p(Mk | Sk), where it is distinct by means
ofmeasurement function and its noise, while being described
by [20]

p(Mk | Mk−1) =
∫

p(Mk | Sk)p(Sk | Mk−1)dxk (11)

Calculating or calculating these three components is the
essence of recursive Bayesian estimate. Additionally, based
on the recursive Bayesian technique, stochastic filtering can
be categorized into three main categories [20]:

Prediction: a priori arrangement of approximation. It
aims to originate information regarding the magnitude of
interest which will be at time t + τ in the upcoming (τ > 0)
by means of information measured up to time t. The predic-
tion foresees the compactness gathering of the state onward
from a measurement time to the next. The state is exposed
to unidentified instabilities exhibited as arbitrary noise, and
generally decodes, distorts, and ranges the state concentra-
tion [19]. Explicitly, provided the value of p(Sk−1 | M1:k−1)

is accessible for tk−1, this time comprises p(Sk | M1:k−1).
Filtering: The extraction of desired information in time t

by means of data distinguished up to time t .
Smoothing: Capturing the important patterns in the data

by removing the noise. This step involves updating the
prediction density from Eq.10 constructed by the newest

Fig. 5 Flow diagram of suggested MPPT-SMC

measurement received, specifically specified by themeasure-
ment Mk [20].

3.1 Sequential Monte Carlo Technique

In general, the fundamental nature of SMC is to approximate
the posterior density function by evaluating the weight of
each sample [19, 20]. Specifically, using a sequential impor-
tance resampling (SIR) predictor, the proposed method will
aim to estimate themost likelihood of the next best duty cycle
xk+1 based on all previous duty cycle estimations. Now to
achieve this, a state-space model representation of the PV
system is required. A full nonlinear time invariant state-space
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Fig. 6 Flow diagram of recursive Bayesian estimation

Table 1 Simulation specifications of model, PV arrays, and boost con-
verter used in the design

Parameter Value

PV-array type SPR-305E-WHT-D

Pmax 305.23W

Vmpp&Impp 54.710 V, 5.580 A

Voc&Isc 64.2 V, 5.96 A

Sampling time 50µs

P&O D step size 300 µ

Resistance (R) 5m�

Inductor (L) 5mH

Irradiance (I r ) 100 Variable

Temperature (T ) 100 Variable

Partial shading 100 Variable

model is represented by [20]:

xk = f (uk−1), (12)

yk = D(xk). (13)

where x is the state vector, u = [Vpv Ipv]T is the input vector
for the MPPT-SMC algorithm, and y is measurement vector
that includes the predicted duty cycle, and they are repre-
sented as

xk = Auk−1 + nk−1, (14)

yk = Bxk + vk = Dk . (15)

where A =
(−1/vo 1/I k−1

pv
0 1

)
, and is defined as the state

transition matrix. B =
(
1
0

)
, and its defined as the mea-

surement transition matrix. vo is the priori estimation of the
DC–DC boost converter output voltage estimated from the
proposed distribution. nk−1 is a 2 × 1 matrix representing
the state noise processes, and vk is a 2× 1 matrix represent-
ing the measurement noise process, and both are modeled as
Gaussian with zero mean and covariance matrices of Q and
R.

Provided with the state-space model, the process begins
by initiating a proposal distribution based on calculating the
MPP voltage Vmp and current Imp at standard test conditions
(STC) provided by the PV array specification given in Table
1 and presented by the following equation,

q(xk | xk−1
i , yk) = MGk−1 + nk−1 (16)

where G = [V k−1
mp I k−1

mp ]T , and M =
(
1 0
0 1

)
. Then, the pro-

posed SMC method is expected to predict the next best duty
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cycle Dk based on the previous duty cycle Dk−1 and exist-
ing input PV current and voltage Vpv, Ipv values. Once Dk is
predicated, the value is compared to the previous duty cycle
Dk−1 to obtain �Dk = Dk − Dk−1. Where �Dk is the
adaptive step size, Dk−1 needs to be adjusted by either incre-
menting or decrementing it. Mathematically, the posterior
density function can be expressed as [19, 20],

p̂(xk | y1:k) =
N∑
i=1

wk
i δ(x

k − Xk
i ), (17)

where N represent the amount of resampling performed on
each data “i.e., N = 10 was used”, the Dirac delta distribu-
tion is represented by δ, andwk

i is the normalized importance
weight associated with particle xki . To assess the above equa-
tion, an alternative illustration of the state space equations is
presented as

xk ∼ p(xk | xk−1), (18)

yk ∼ p(yk | xk), (19)

where p(xk | Dk−1)andp(yk | xk) denote the probabil-
ity of the state and measurement distribution. Following the
derivations from [19], the normalized importance weight can
be calculated by

wk
i = p(yk | xki )p(xki | xk−1)

q(xki | xk−1
i , yk)

wk−1
i , (20)

where p(xki | xk−1) is the prior of xk . q(xk | xk−1
i , yk) is

a proposal distribution. For SIR, choosing the right proposal
distribution is a very crucial step since there are an infinite
number of choices. The prime proposal distribution is the one
that shrinks the variance of the significance weights condi-
tional to x0:k−1 and y1:k [20].

wk
i = p(yk | xki )wk−1

i . (21)

Assuming the initial density function p(x0i ) is known and
x0i is the initial state, then initialization of particles and their
weights can be performed by

x0i ∼ p(x0i ), i = 1, . . . , N . (22)

w0
i = 1

N
, i = 1, . . . , N . (23)

Substituting equations (22) and (22) into equation (17) pro-
duce,

p̂(x0) =
N∑
i=1

1

N
δ(xk − x0i ). (24)

For all k ≥ 1, we assume that the following estimation is
available.

p̂(xk−1 | y1:k−1) =
N∑
i=1

wk−1
i δ(xk−1 − xk−1

i ). (25)

The flowchart in Fig. 5 summarizes the sequence of the SMC
algorithm predicting the next best duty cycle that will be
passed to the boost converter [20]. As the algorithm starts
by initializing a set of duty cycle values and calculates their
initial weights based on the priori distribution, the algorithm
then moves to perform measurement updates based on the
state space model. Furthermore, the density function estima-
tion and newweight calculations are assigned to the particles.
Then, resampling is performed if the weight particles are
below certain level of threshold. Finally, the best duty cycle
is predicted according to the proposal distribution. Figure19
shows some examples of random partial shading patterns
and their weight calculations along different location of the
IV curves, in addition to the associated duty cycle values
found on the PV curves. The figure displays the difference
between duty cycle values and the LMPP in comparison with
the GMPP points.

4 Designed Simulink Model and Input Data

A complete Matlab/Simulink design model is illustrated in
Fig. 12. The model consists of ramp-up/down input blocks
that provide a random solar irradiation and temperature val-
ues that feeds into SPR-305E-WHT-D 3-PV array system.
Each PV array is designed to provide a 305.226 W max-
imum power. The Vmpp and Impp are 54.7 V and 5.58 A,
respectively. The VOC is 64.2 V, while the ISC is 5.96A. The
dynamic partial shading input to the model was designed as a
uniformly distributed random signal between 0.1−1. Any of
the PV array might have different shading on one or more of
the arrays. The PVblock is connected to aDC–DCboost con-
verter. The boost converter’s duty cycle is controlled by the
MPPT-SMC block where it provides a duty cycle value after
its predictions. The rest of the system’s blocks are required
to connect to the main grid. The complete specifications for
the PV arrays and boost converter are provided in Table 1.
A high-level design of the complete level including the used
input data (partial shading, temperature, and irradiance wave
forms) is provided in Figs. 7, 8, 9, 10 and 11.
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Fig. 7 Varying irradiance and
temperature input waveforms

Fig. 8 Simple partial shading pattern at STC (Array1 = 0%,Array2 = 20%,Array3 = 30% shades)

4.1 High-Level Simulink Model

4.2 Mathematical Model of SMC Algorithm

In general, the fundamental nature of SMC is to approximate
the posterior density function by evaluating the weight of
each sample [19, 20]. Specifically, using a sequential impor-
tance resampling (SIR) predictor, the anticipatedmethodwill
aim to estimate themost likelihood of the next best duty cycle
Sk+1 based on all previous duty cycles calculations. Now to
reach this, a state-space typical representation of the solar
system is required. A full nonlinear state space representa-
tion is given by [15]:

Sk = f (uk−1), (26)

Mk = D(Sk). (27)

while S is the state function, u = [Vpv Ipv]T is input func-
tion for the MPPT-SMC algorithm, and M is measurement
vector that includes the predicted duty cycle, and they are
represented as [15]:

Sk = Auk−1 + nk−1, (28)

Mk = BSk + vk = Dk . (29)

where A =
(−1/vo 1/I k−1

pv
0 1

)
, and it is defined as the state

transition matrix. B =
(
1
0

)
, and its defined as the mea-

surement transition matrix. vo is the priori estimation of the
DC–DC boost converter output voltage estimated from the
proposed distribution. nk−1 is a 2 × 1 matrix representing
the state noise processes, and vk is a 2× 1 matrix represent-
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Fig. 9 Moderate partial shading pattern at STC (Array1 = 0%,Array2 = 60%,Array3 = 20% shades)

Fig. 10 Severe partial shading pattern at STC (Array1 = 30%,Array2 = 90%,Array3 = 70% shades)

ing the measurement noise process, and both are modeled as
Gaussian with zero-mean and covariance matrices of Q and
R.

Provided the state-space model, the process begins by
proposing a proposal distribution based on calculating the
MPP voltage Vmp and current Imp at STC provided by the
PV array specification given in Table 1 and presented by the
following equation [19]:,

q(Sk | Sk−1
i , Mk) = YGk−1 + nk−1 (30)

where G = [V k−1
mp I k−1

mp ]T , and Y =
(
1 0
0 1

)
. Then, the pro-

posed SMC method is expected to predict the next best duty
cycle Dk based on the previous duty cycle Dk−1 and exist-
ing input PV current and voltage Vpv, Ipv values. Once Dk is
predicated, the value is compared to the previous duty cycle
Dk−1 to obtain �Dk = Dk − Dk−1, where �Dk is the
adaptive step size that Dk−1 need to be adjusted by either
incrementing or decrementing it. Mathematically, the poste-
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Fig. 11 Dynamic partial shading patterns at STC (shading is random)

rior density function can be expressed as [19, 20],

p̂(Sk | M1:k) =
N∑
i=1

wk
i δ(S

k − Ski ), (31)

where N represent the amount of resampling performed on
each data “i.e., N = 10 was used”, the Dirac delta dis-
tribution is represented by δ, and wk

i is the standardized
importanceweight related to a particle xki . To assess the above
equation, an alternative illustration of the state equations is
presented as [19, 20]

Sk ∼ p(Sk | Sk−1), (32)

Mk ∼ p(Mk | Sk), (33)

where p(Sk | Dk−1) and p(Mk | Sk) symbolize likelihood
of the state to measurement scattering. Following the process
from [19], the standardized weight can be calculated by [20]

wk
i = p(Mk | Ski )p(Ski | Sk−1)

q(Ski | Sk−1
i , Mk)

wk−1
i , (34)

where p(Ski | Sk−1) is the subsequent of Sk . q(Sk |
Sk−1
i , Mk) is the proposed distribution. For the algorithm,

selecting the accurate proposal distribution is a critical key
to enhance the performance. The prime proposal distribution
is the one that shrinks the change of the consequence weights
conditioning on S0:k−1 and M1:k [20].

wk
i = p(Mk | Ski )wk−1

i . (35)

Presumptuous the initial compactness function p(S0i ) is pro-
vided and S0i is the preliminary state, then initialization can
be performed by [20]

S0i ∼ p(S0i ), i = 1, . . . , N . (36)

w0
i = 1

N
, i = 1, . . . , N . (37)

Fill in for equations (14) and (15) into equation (11) yield,

p̂(S0) =
N∑
i=1

1

N
δ(Sk − S0i ). (38)

Provided for all k ≥ 1 the subsequent approximation is acces-
sible [19].

p̂(Sk−1 | M1:k−1) =
N∑
i=1

wk−1
i δ(Sk−1 − Sk−1

i ). (39)

The flowchart in Figs. 5 and 6 recapitulates the sequence
of the SMC algorithm predicting the next best duty cycle
to be provided to as an input to the converter [20]. As the
algorithm starts by initializing a set of duty cycle values and
calculate their initial weights based on the priori distribution,
the algorithm then moves to perform measurement updates
based on the state space model. Further, the density function
estimation and new weight calculations are assigned to the
particles. Then, resampling is performed if the weight par-
ticles are below certain level of threshold. Finally, the best
duty cycle is predicted according to the proposal distribution.
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Fig. 12 A circuit diagram representation of photovoltaic system
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Table 2 Simulation evaluation between rated power, classical P&O, PSO, FPA, and MPPT-SMC techniques

Shading Pattern Comparison @ STC/slow changing weather conditions No/simple shading patterns
Algorithm MPPT power (kW) Rated power Tracking speed Efficiency Oscillation

No shading P&O 300.74 303.17 0.73 s 99.20% Low

(STC) PSO 148.61 (W) 148.9 (W) 1.05 s 99.81% Zero

FPA 148.64 (W) 148.9 (W) 0.45 s 99.85 % Zero

MPPT-SMC 302.85 303.17 0.18 99.89 % Zero

No shading P&O ave(275.95) ave(285.69) ave(0.73 s) 96.59% Moderate

(Varying Irradiance) PSO NP NP NP NP NP

(Varying Temp.) FPA NP NP NP NP NP

MPPT-SMC ave(285.32) ave(285.69) ave(0.19 s) 99.87% Zero

Simple shading P&O 69.07 (W) 69.68 (W) 0.75 s 99.12% Strong

(Constant Irradiance) PSO 68.81* (W) 69.68 (W) 1.2 s 99.90%* Zero

(Constant Temp.) FPA 69.91* (W) 69.68 (W) 0.45 s 99.90% Zero

MPPT-SMC NP NP NP NP NP

Simple shading P&O ave(178.90) ave(198.31) ave(0.89 s) 90.21% Moderate

(Varying irradiance) PSO NP NP NP NP NP

(Varying temp.) FPA NP NP NP NP NP

MPPT-SMC ave(197.18) ave(198.31) ave(0.21 s) 99.43% Zero

Refer to references [13, 14] for quantitative comparison values of FPA, PSO, and P&O
ave = The average of the rated power and actual power are changing since the irradiance and temperature input values are changing (see simulation
figures)
NP not provided
*Error in provided data by reference [14], since it does not reflect the provided efficiency value

Figure19 shows some examples of random partial shading
patterns and their weight calculations along different loca-
tion of the IV curves, in addition to the associated duty cycle
values found on the PV curves. The figure displays the differ-
ence between duty cycle values and the LMPP in comparison
with the GMPP points.

5 Simulation and Results

The evaluation of the MPPT-SMC presented in this arti-
cle was executed using Matlab/Simulink software version
2019A. An average of a 100-kW grid connected PV array
model has been used and modified to support the new
proposed technique. The model consists of constant and
ramp-up/down input irradiance and a temperature block, a
block for the PV panels and a boost converter module with
specifications listed in Table 1, an MPPT controller block,
and a forced-commutated Voltage-Sourced Converter (VSC)
that connected to a utility grid via a 100kVA (260V/25kV)
transformer. A total of 3 PV arrays were used in the simu-
lation each having a 66-parallel string where each string is
formed from 5 modules connected in series. Each module is
designed from 96 PV cells [5].

The simulation results will consider six main patterns
to assess the sturdiness and precision of the suggested

algorithm. The first pattern will consider the standard test
conditions where there are constant irradiance and tempera-
ture values with no partial shading affecting the system. The
second pattern will move gradually to introduce changing
irradiance and temperature values while having no partial
shading. The third pattern will assess the system by stressing
the system with simple partial shading while changing the
irradiance and temperature input values. The fourth pattern
will increase the partial shading to a moderate level. The fifth
pattern will study the capability of the systemwhile affecting
it with a severe partial shading condition. The final assess-
ment of the system will consider an approach that was not
seen in the previous literature research and never was consid-
ered in the previous published algorithms and that is studying
the system under dynamic partial shading environments.

The dynamic partial shading assessment is very crucial
to evaluating any technique’s accuracy and robustness, since
it reflects the actual dynamic behavior of the environment
where the system is placed by considering random changing
irradiance and temperature values affecting the system while
randomly changing the partial shading conditions. The ran-
dom change in partial shading is a very likely condition, since
partial shading depends on many factors, especially, random
cloud movements, in addition to other random factors such
as foreign objects and surrounding trees. So, evaluating the
system with more realistic environment conditions will truly
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Fig. 13 aRated power versus generated power. b System generated current. c System generated voltage. d Predicted duty cycle for GMPP. Pattern-1:
Simulated results comparison at STC: no partial shading, Irradiance = 1000 W/m2 on each PV array, Temp = 25 ◦C)

give us an insight on the capability and sustainability of the
MPPT algorithm. The results of the suggested technique will
be paralleled to the conventional P&O, PSO, and FPA tech-
niques. For reduction of cloudiness in all of the figures, the
figures will only show the data of rated power (theoretically
calculated), the suggested MPPT-SMC technique, and the
classical P&O technique. PSO and FPA results data assess-
ments will be listed in Table 2 referring to their references
[11, 14], respectively.

5.1 Pattern 1: STC Constant Irradiance, Temperature,
and No Partial Shading

As stated, the first pattern, considers a STC environment to
evaluate the system at the best case scenario while having
constant irradiance condition fixed at 1000 W/m2, temper-
ature fixed at 25◦C and no partial shading affecting the

system. Figure13 is divided into 4 subplots oriented top-left
to bottom-right.

The first subplot shows the rated power vs. power output
by means of the classical P&O technique, and the recom-
mendedMPPT-SMC technique. The second and third subplot
give an insight viewon locating the voltage and current values
that produce the maximum power between the conventional
P&O and the suggested MPPT-SMC techniques. The final
subplot shows how the mentioned I–V points are predicted
using the correct duty cycle.

From the results, the classical P&O technique shows a
noticeable linger in its response when compared to the sug-
gested MPPT-SMC. In addition, the outcomes illustrate that
the anticipated MPPT-SMC technique has higher efficiency,
better tracking speed, and almost no oscillation in contrast
with the traditional P&O performance. I–V sub figures also
show variation of locating the correct current and voltage
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Fig. 14 aRated power versus generated power. b System generated current. c System generated voltage. d Predicted duty cycle for GMPP. Pattern-2:
simulated results comparison with no partial shading, Irradiance = N (950, 100) W/m2, f = 10 Hz, Temp = N (46, 15) ◦C, f = 3 Hz)

values using both techniques. The final efficiency, tracking
speeds, and oscillation are listed and referenced in Table 2.

5.2 Pattern 2: Varying Irradiance and Temperature
While No Partial Shading

In the second pattern assessment, a varying irradiance and
temperature input waveforms were introduced to the system
while the effect of partial shading on the system was kept
out. The irradiance input waveformwas selected as a random
Gaussian distributed signal (ex. frequency of “ f = 10 Hz”,
mean of “μ = 950”, and standard deviation of “σ = 100”),
while the temperature input waveform was selected, also, as
a randomGaussian distributed signal (ex. f = 3Hz,μ = 46,
and σ = 15), since the nominal cell temperature of the used
PVpanel is 46 ◦Cand the variation of temperature in compar-
isonwith the irradiance is usually slower. Figure7 exhibits an

example of the generated waveforms based on the described
specifications. It is worth noting that many input waveforms
were tried to ensure the robustness and the accuracy of the
system and all provided the same results.

In the second pattern assessment, a varying irradiance and
temperature input waveforms were introduced to the system
while the effect of partial shading on the system was kept
out. The irradiance input waveformwas selected as a random
Gaussian distributed signal (ex. frequency of “ f = 10 Hz”,
mean of “μ = 950”, and standard deviation of “σ = 100”),
while the temperature input waveform was selected, also, as
a randomGaussian distributed signal (ex. f = 3Hz,μ = 46,
and σ = 15), since the nominal cell temperature of the used
PVpanel is 46 ◦Cand the variation of temperature in compar-
isonwith the irradiance is usually slower. Figure7 exhibits an
example of the generated waveforms based on the described
specifications. It is worth noting that many input waveforms
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Fig. 15 aRated power versus generated power. b System generated current. c System generated voltage. d Predicted duty cycle for GMPP. Pattern-3:
simulated results comparison with simple partial shading, Irradiance = N (950, 100) W/m2, f = 10 Hz, Temp = N (46, 15) ◦C, f = 3 Hz)

were tried to ensure the robustness and the accuracy of the
system, and all provided the same results.

Evaluating the system in this scenario by means of the
suggestedMPPT-SMCdisplays a noticeable advantagewhen
correlatedwith the classical P&O technique andyields higher
efficiency, higher tracking speed, and no oscillation about
MPP as comprehended in Fig. 14. However, this scenariowas
not studied by the FPA and PSO techniques for comparison.

Refer to Table 2 for more detail comparison between all
four technique. In addition, analyzing the subfigures of the
current, voltage, and duty cycle from Fig. 14 shows the sta-
bility in finding all these measurement points that produce
maximum power.

5.3 Pattern 3: Varying Irradiance, Temperature, and
Simple Partial Shading

In the third pattern assessment, partial shading was intro-
duced to the system. As before, the system had varying
temperature and irradiance input waveforms, but simple par-
tial shading conditions were presented to the system as
an additional environmental effect reducing the amount of
power generation. As stated earlier, partial shading adds
complexity on locating the global maximum point due to
the multiple or several peaks generated on the P–V curve.
Locating the GMPP accurately and efficiently is the goal
of the projected technique. The introduced partial shading
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Fig. 16 aRated power versus generated power. b System generated current. c System generated voltage. d Predicted duty cycle for GMPP. Pattern-4:
simulated results comparison with moderate shading, Irradiance = N (950, 100) W/m2, f = 10 Hz, Temp = N (46, 15) ◦C, f = 3 Hz

sequence was as follows: no shading affecting the first PV
array, 20% shading on themiddle PV array, and 30% shading
on the last PV array.

Figure8 displays the I–V and P–V curves of the simple
partial condition at STC. The P–V curve figure displays three
peaks, one of them is a global peak, while the other two peaks
are local. Identifying the global peak quickly and efficiently
was achieved using the proposed MPPT-SMC technique.

Figure15 confirms that even with simple shading pattern
affecting the PV system, the recommended technique suc-
cessfully and quickly is able to identify and locate the GMPP
to generate the max power available out of the design. From
the figure, the variation is clearly seen between the classical
P&O and the new suggested technique.

Table 2 shows the variation in efficiency and tracking
speed between P&O, FPA, PSO, and MPPT-SMC suggested
technique.

5.4 Pattern 4: Varying Irradiance and Temperature,
andModerate Partial Shading

For the moderate partial shading pattern assessment, the sys-
tem input waveforms were kept as in the previous case;
however, the partial shading effect was increased on the sys-
tem. Themoderate partial shadingwas as follows: no shading
on the first PV array, 60% shading on the middle PV array,
and 20% shading on the last PV array.

Figure9 displays the I–V and P–V curve of the moderate
shading condition at STC. The P–V curve in the figure clearly
shows the increase in severity of partial shading condition
by having more mature global and local maximum power
points, and this adds complexity when attempting to locate
the GMPP since any of the peaks can be mistaken to be a
GMPP.
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Table 3 Simulation evaluation between rated power, classical P&O, PSO, FPA, and MPPT-SMC techniques continues

Shading pattern Comparison @ dynamic weather conditions Moderate/extreme shading patterns
Algorithm MPPT power (kW) Rated power Tracking speed Efficiency Oscillation

Moderate shading P&O ave(131.29) ave(151.75) ave(1.25 s) 86.52% Strong

(Varying irradiance) PSO NP NP NP NP NP

(Varying temp.) FPA NP NP NP NP NP

MPPT-SMC ave(150.58) ave(151.75) ave(0.21 s) 99.23% Zero

Severe shading P&O 29.68 (W) 56.61(W) 1.36 s 51.52% Strong

(Constant irradiance) PSO 49.96 (W) 56.61 (W) 1.2 s 86.52%* Zero

(Constant temp.) FPA 55.71 (W) 56.61 (W) 0.60 s 99.21% Zero

MPPT-SMC NP NP NP NP NP

Severe shading P&O ave(69.22) ave(90.54) ave(1.65 s) 76.45% Strong

(Varying irradiance) PSO NP NP NP NP NP

(Varying temp.) FPA NP NP NP NP NP

MPPT-SMC ave(89.44) ave(90.54) ave (0.23s ) 98.79% Zero

Dynamic shading P&O ave(105.92) ave(141.93) ave(3.66 s) 74.63% Strong

(Varying irradiance) PSO NP NP NP NP NP

(Varying temp.) FPA NP NP NP NP NP

MPPT-SMC ave(139.91) ave(141.93) ave(0.35 s) 98.58% Zero

Refer to references [13, 14] for quantitative comparison values of FPA, PSO, and P&O
ave = The average of the rated power and actual power are changing since the irradiance and temperature input values are changing (see simulation
figures)
NP not provided
*Error in provided data by reference [14], since it doesn’t reflect the provided efficiency value

Figure16 represents the maximum power produced by
the system while under moderate shading circumstances.
From the figure, it is obvious that the suggested MPPT-SMC
quickly and precisely predicts the GMPP while varying the
irradiance and temperature values. The figure indicated very
high efficiency, high tracking speed, and no power oscilla-
tion. Additionally, the classical P&O technique lingers in
finding the correct GMPP for the provided input waveforms,
and once the point is found, the algorithm struggles onfinding
the next GMPP resulting in lower efficiency, slower tracking
speed, and increased power oscillation. Table 3 has full com-
parison details to the remaining techniques.

5.5 Pattern 5: Varying Irradiance and Temperature,
and Severe Partial Shading

Moving on with the analysis, the fifth pattern applied severe
partial shading on the system. The system had 30% shading
on the first PV array, 90% shading on the middle PV array,
and 70% shading on the last array. Figure10 expresses the
I–V, and P–V curves of the severe partial condition at STC.
From the figure, it is conspicuous that LMPPs and GMPP are
very close to each other in values, and easily can be falsely
interpreted of one another. Considering Fig. 17, the results

display high performance efficiency usingMPPT-SMC algo-
rithm compared to the rated power and to the classical P&O
technique. Moreover, the foreseen technique displays fast
tracking speed, and no power oscillation around the MPP.
The subfigures also displays the capability of the suggested
MPPT-SMC algorithm to efficiently predict the duty cycle
value that accurately locate the GMPP without producing
any power oscillations.

5.6 Pattern 6: Varying Irradiance, Temperature, and
Dynamic Partial Shading

In the final assessment, the anticipated MPPT-SMC tech-
nique was considered under dynamic partial shading while
varying the input irradiance and temperature waveforms.
Under dynamic partial shading conditions, the effect of par-
tial shading changes dynamically and unpredictably repre-
senting actual and more realistic weather and environmental
conditions such as movement of the clouds in the sky, or fly-
ing objects, birds, and soil/sand dust particles due to wind
storm effects (i.e., common in desert areas, and specifically
the middle east region). This study scenario was not seen
nor considered by reviewed literature even though it is a
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Fig. 17 aRated power versus generated power. b System generated current. c System generated voltage. d Predicted duty cycle for GMPP. Pattern-5:
simulated results comparison with severe partial shading, Irradiance = N (950, 100)W/m2, f = 10 Hz, Temp = N (46, 15)◦C, f = 3 Hz)

very important case, because it usually cause a dramatic
power degradation. Dynamic partial shading causes the sys-
tem to keep jumping and relocating the GMPP randomly
and dynamically to any place on the P–V curve, instigat-
ing intense complexity in localizing the GMPP correctly and
efficiently. Considering this case, Fig. 11 demonstrates sev-
eral possible partial shade conditions moving dynamically
all over the P–V curve.

The figure shows how the suggested MPPT-SMC tech-
nique approaches this problem by focusing on the GMPP by
assigning high importance weight to them and eliminating
the LMPP by giving them lower weight values adapted from
the nature of the algorithm. From the figure and with very
few iterations (N ≤ 10), the algorithm was able to iden-
tify and assign weight to all MPP, then accurately identify
and predict the most likelihood of the location of the global
point on the I–V curve which then translated to a duty cycle

using Eq.6. The P–V curve in Fig. 11 shows the GMPP and
LMPP with duty cycle values translated from the I–V curve.
Examining Fig. 18 provides a clear insight on the accuracy
and the fast tracking speed of the suggested technique to pre-
dict and locate the GMPPwhile dynamic shading is in effect.
Furthermore, the recommended method displays no oscilla-
tion around the MPP, while keeping up with the dynamic
partial shading condition. This case adds to the capability
and sustainability of the proposed method when it comes
to predicting and locating the GMPP to produce the highest
power generation possible from the system. Refer to Table 3
for a complete measureable evaluation amongst the classical
P&O, PSO, FPA, and the submitted MPPT-SMC techniques.
Figure19 is an illustration for several IV and PV curves
demonstrating different and randomly selected partial shad-
ingweather conditions and the process of the SMC algorithm
assigning weights for a variety of points on the IV curves.
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Fig. 18 aRated power versus generated power. b System generated current. c System generated voltage. d Predicted duty cycle for GMPP. Pattern-6:
simulated results comparison with dynamic shading, Irradiance = N (950, 100) W/m2, f = 10 Hz, Temp = N (46, 15) ◦C, f = 3 Hz)

Then, the model proceeds to calculate the duty cycle val-
ues for the points with the highest weights importance based
on the designed state space model adaptively. From the fig-
ure, it is clear that the algorithm accurately and effectively
locates the GMPP points while eliminating the LMPP points
successfully. These duty cycles are then passed to a boost
converter to adjust the load to manipulate certain PV panels
power productions to allow the partially shaded PV panels
to increase their production to optimize the overall system’s
power generation.

6 Conclusion

This article focuses on designing a new and highly power
efficient maximum power point tracker technique based on
the use of the sequentialMonte Carlo technique that provides

high power efficiency, fast tracking speed, while maintain-
ing no power oscillation. From the different types of SMC
algorithms, sequential importance resampling technique was
used andmodeled to predict the best duty cycle value thatwas
provided for a boost converter to provide the highest power
generation under all environmental conditions. The newly
proposed technique was evaluated using Matlab/Simulink.
The assessment considered several environmental conditions
varying from simple partial shading to severe partial shad-
ing while having a varying input irradiance and temperature
values. Finally, to further assess the capability and sustain-
ability of the technique, dynamic partial shading patternswas
considered in the evaluation. The importance of consider-
ing dynamic partial shading in the evaluation arises from
the random behavior of the environment factors such as ran-
dom cloud movements, irradiance, temperature, and shading
objects present near the system. The results of the measure-
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Fig. 19 Weight and duty cycle calculations using MPPT-SMC for several different partial shading patterns

ment were paralleled to the classical P&O, FPA, PSO, and
to the rated power of the system. The results proved that the
newly suggested MPPT-SMC technique showed an excep-
tional performance capability in regards to providing high
efficiency, fast tracking speed, and no oscillation surrounding
the MPP. The efficiency of the proposed MPPT-SMC tech-
nique ranged from as high as 99.89% under STC to 98.58%
under severe and dynamic partial shadingweather conditions
while varying the temperature and the irradiance values. The
tracking speed of the suggested MPPT-SMC techniques var-
ied from 0.18 s under STC to 0.36 s when having dynamic
and severe shading conditions. The overall evaluation of the
model showed consistency on locating the MPP regardless
of the present weather conditions.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s13369-023-08023-
0.
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