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INTRODUCTION

In the information age, there exist many types of sensors

for collecting data from an environment, such as pressure,

radar, acoustic, chemitcal, electromagnetic, thermal, prox-

imity, and optical sensors. Each of these independent

modalities has its advantages and drawbacks. Whether the

modality is active or passive in nature, or vulnerable to

different forms of interference, the ability to properly uti-

lize all the available information in an efficient manner is

invaluable for system performance. There are many meth-

ods of achieving sensor fusion. While there is no optimal

solution to integrating information effectively, there are

merits and limitations of certain approaches based on the

type of modality and the nature of the dataset. The end

goal of sensor fusion is to reduce uncertainty from multi-

ple data sources in order to perform reliably and robustly.

Sensor fusion is a critical task in a wide range of appli-

cations, such as security, healthcare, weather forecasting,

Internet of Things, navigation, and communication. Many

technologies and services used daily are examples of sensor

fusion, such as autonomous driving [1]. Among these

applications, there is a prevalent benefit to taking advan-

tage of multiple sources of information if the classification

method or algorithm is capable of exploiting the relation-

ship between the input data. How these modalities are com-

bined can differ greatly based on the overall objective, and

with the methods and sensors used. In some cases, the sys-

tem of sensors might simply be redundant in nature, such

as having a backup smoke detector in a room, while other

systems might rely on complementary sensors such as a

network of security cameras. For the purposes of this sur-

vey article, the focus will be on RF and EO modalities, and

the different methods of fusion using such modalities.

The use of EO modalities such as still images, full

motion video (FMV), and Infrared (IR) have a number of

applications in target identification and tracking in chal-

lenging environmental conditions. Similarly, there are a

number of applications for RF based modalities, such as

radar or RFID aiming to achieve similar objectives over

conditions that would pose a challenge for EO modalities,

and provide information different than EO modalities. The

heterogeneous fusion of EO/RF modalities would improve

performance with the number of exploitable features it pro-

vides. While most of the traditional applications for EO/RF

sensor fusion use active RF modalities, there are numerous

benefits of passive RF modalities. Hence, the fusion of pas-

sive RF data with EO data is the focus of this review article.

In this article, an overview of existing multimodal EO/

RF sensor fusion is presented along with a review of vari-

ous sensor fusion applications, schemes, models, and

approaches. The primary focus will be on the application

of fusing EO and passive RF data for the purposes of

detection and tracking. The aim of this article is to provide

a general insight into the state-of-the-art technologies for

EO/RF sensor fusion, and to discuss the features and

architecture proposed for EO/RF sensor fusion for the pur-

poses of object assessment. The rest of this article is

Authors’ current addresses: Asad Vakil, Jenny Liu, and
Jia Li, Department of Electrical and Computer Engi-
neering, Oakland University, Rochester, MI 48309 USA
(e-mail: avakil@oakland.edu). Peter Zulch, Information
Directorate, Air Force Research Laboratory, Rome, NY
13441 USA. Erik Blasch, Air Force Office of Scientific
Research, Arlington, VA 22203 USA. Robert Ewing,
Sensors Directorate, Air Force Research Laboratory,
Dayton, OH 45433 USA.
Manuscript received February 29, 2020, revised June 11,
2020; accepted June 18, 2020, and ready for publication
June 29, 2020.
Review handled by Dietrich Fraenken.
0885-8985/21/$26.00 � 2021 IEEE

44 IEEE A&E SYSTEMS MAGAZINE JULY 2021

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on July 09,2021 at 00:04:41 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1923-1955
https://orcid.org/0000-0002-1923-1955
https://orcid.org/0000-0002-1923-1955
https://orcid.org/0000-0002-1923-1955
https://orcid.org/0000-0002-1923-1955
https://orcid.org/0000-0001-6894-6108
https://orcid.org/0000-0001-6894-6108
https://orcid.org/0000-0001-6894-6108
https://orcid.org/0000-0001-6894-6108
https://orcid.org/0000-0001-6894-6108
https://orcid.org/0000-0003-3443-4651
https://orcid.org/0000-0003-3443-4651
https://orcid.org/0000-0003-3443-4651
https://orcid.org/0000-0003-3443-4651
https://orcid.org/0000-0003-3443-4651
mailto:avakil@oakland.edu


organized as follows. Common definitions, conceptualiza-

tions, and related literature in EO/RF fusion are discussed.

Details are provided for the experimental design and

architecture of fusion of EO and RF neural network

(FERNN), and the results of those experiments are dis-

cussed. Finally, we present concluding remarks and dis-

cusses future research directions.

REVIEW OF STATE-OF-ART TECHNOLOGIES

SENSOR FUSION ARCHITECTURE AND TERMINOLOGY

Sensor fusion is a common method for the analysis and

utilization of information and is an essential part of many

applications such as data mining and machine learning.

As there exist many applications and unique datasets, dif-

ferent approaches have been developed for each of the

corresponding applications. The nature of sensor modali-

ties and sources of information determine the approach to

process and correlate with different information sources.

Describing and classifying these sensor fusion meth-

ods is therefore important to distinguish the fundamental

principles taken to implement sensor fusion. An important

aspect of classifying fusion between sensors is the nature

of the sensors themselves. The source of data can gener-

ally be categorized as heterogeneous versus homogeneous.

Homogeneous data are typically simpler to fuse together,

due to the data already being in a compatible form. If the

sensor data are heterogeneous, most fusion methods

require some level of preprocessing and a compatible

means of feature extraction.

These considerations can vary depending on the specific

application, the form of the input information, and how the

system interprets the input information. For example, syn-

thetic aperture radar (SAR) images are a type of RF modal-

ity, but its fusion with EO images does not necessarily

require any complicated preprocessing beyond registration

as bothmodalities are in the same 2-Dmatrix format.

While there is no commonmodel of sensor fusion or any

singular comprehensive system of classifying sensor fusion

methods, the majority of existing models propose partition-

ing of the information fusion architecture based on how the

source input information undergoes preprocessing, feature

extraction, pattern processing, situation assessment, and

decision making [2]. Classifications can be based on the

communication scheme between sensors prior to fusion,

how the information is processed between classification

algorithms after preprocessing and feature extraction by the

levels where fusion takes place in the fusion architecture.

Level-based classifications generally categorize fusions as

low-level, mid-level, and high-level sensor fusion, normally

corresponding to the terms data-level, feature-level, and

decision-level fusion, respectively [3].

Among the earliest widely adopted sensor fusion clas-

sification criteria is from Dasarathy [4]. Dasarathy divides

data fusion into five categories, data in-data out, data

in-feature out, feature in-feature out, feature in-decision

out, and decision in-decision out. The Dasarathy model

classifies sensor fusion techniques into five categories by

their respective input and output in order to avoid ambigu-

ity between data selection, feature extraction, feature

fusion, pattern recognition, and decision analysis.

In the context of EO/RF sensor fusion, data input for

EO can vary from still images to video, while data input

for RF can receive signal strength (RSS) values. The EO

features that could be extracted include decluttered

images, corner detection, segmented regions of interest,

etc. For RF features, time of arrival (TOA), time differ-

ence of arrival (TDOA), angle of arrival (AOA), and

Doppler are often calculated. The decisions used as an

input could be detection or motion estimation results

based on individual sensor modality, while the output of

fusion provides low-level object assessment.

Credit: Image licensed by Ingram Publishing
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Aside from the aforementioned sensor fusion criteria,

the types of sensor fusion can be split between preclassifica-

tion and postclassification. As the name suggests, preclassi-

fication sensor fusion takes place before any classification

occurs, while postclassification fusion takes place afterward.

Preclassification entails both sensor-level and feature-level

fusion. Several examples of EO/RF fusion in the preclassifi-

cation category are listed in Table 1.

For sensor fusion schemes that use low- or data-level

fusion, the expectation is that the fused data are more infor-

mative and synthetic than the original sets of information

alone. End-to-end learning has been conducted in the past

for EO modalities, as the end-to-end learning classification

of images is one of the most rudimentary neural network

(NN)models. NN have also been implemented for RF appli-

cations, such as obtaining radio spectrum feature vectors [7],

wireless signal identification [5], and cognitive radios [8].

Feature extraction for EO/RFmodalities varywith appli-

cations. The procedure of spatio-temporal alignment, data

association and correlation, and grouping techniques such as

clustering, or state estimation, might be implemented in

order to improve the performance. The expectation is that

the input of structures would help with classification, track-

ing, or identification; thereby transforming the raw data into

meaningful features for fusion and generating a decision.

Postclassification, also referred as decision-level fusion,

has several variations, which are summarized above in

Table 2.While the majority of EO/RF sensor fusion applica-

tions are decision- or upstream-level fusion at most, in situa-

tions where the number of classes are high, the use of

postclassification fusion is desirable. Abstract-level fusion is

the simplest form of postclassification fusion, which

includes methods such as majority voting and weighted

majority voting [9]. An example of abstract-level sensor

fusion for EO/RF modalities can be seen in [14], in which

SAR and EO images are fused through multilevel decision

fusion before the classification with majority voting.

Rank-level fusion generates and assigns ranks to clas-

ses normally using either class set reduction or class set

reordering methods to select the smallest possible subset

of decisions that contain a correct class or to generate a

ranking of classes in which the correct class has the high-

est possible ranking [15]. Another type of postclassifica-

tion information fusion is measurement-level fusion [17],

which can be further divided into classification and com-

bination approaches. Classification sensor fusion uses

multiple classification methods to consolidate scores

from each method, also referred to as score-level fusion

Table 1.

Preclassification Methods

Methodology Characteristics References

Data Level

Fusion

End-to-end

learning, in the

context of EO/RF

the raw

processing of

modalities such as

image/video/laser

with radar/I/Q

data/SAR/RSS to

achieve

classification.

[5], [6], [7],

[8]

Feature Level

Fusion

Achieving

classification by

extracting

meaningful

features such as

decluttered

images obtained

via spatio-

temporal filtering,

edge detection

and TDOA/TOA/

AOA to improve

classification.

[9], [10],

[11], [12],

[13]

Table 2.

Postclassification Methods

Methodology Characteristics References

Abstract Level

Fusion

Comparison of

different

classifier

decision outputs

[7], [14],

[15]

Rank Level

Fusion

Comparison of

decisions from

different

classifiers based

on the class set

reduction or

class set

reordering

[9], [15],

[16]

Measurement

Level Fusion

Integration of

classifiers by

normalizing

individual

classification

schemes

[15], [17]

Dynamic

Classifier

Selection

Multilevel fusion

of different

classifiers that

are optimized

based on their

respective

performance at

different levels

[15], [18],

[19], [20],

[21], [22],

[23]
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[28]. In the case of combination approach, the framework

integrates and normalizes and uses the weighted sums of

the individual classification schemes [29]. Finally, the

dynamic classifier selection uses the results of the classi-

fier most likely to provide an accurate result for the spe-

cific pattern input [18], a method also known as a winner

take all approach, or the associative switch [30].

Sensor fusion schemes can also be distinguished by the

relationship of the sensor modalities used with respect to

the application, which leads to the categories of competi-

tive, complementary, and cooperative fusion. These rela-

tionship based schemes are summarized in Table 3.

Competitive fusion, sometimes referred to as redundant

fusion, uses each individual modality to deliver indepen-

dent measurements of the same property. The primary ben-

efit of such fusion schemes is the improved reliability and

accuracy, typically used in high-level fusion, such as vot-

ing. An example of competitive sensor fusion can be found

in [10], where a noncooperative EO/RF sensor fusion was

used to improve the detection performance of unmanned

aerial system (UAS). Camera input and radar input were

mapped into a NED (north-east-down) coordinate system

while the combined observations were processed through

the integrated system. The use of a competitive data fusion

scheme improved the system’s situational awareness com-

pared to the standalone single modality system, while

maintaining the same reliability and false positive identifi-

cations as the single modality system.

Complementary sensors do not directly depend on

each other but can be combined to give a more complete

image of the phenomenon under observation. Many

examples of complementary sensor fusion can be found

in decision making algorithms, since this type of fusion

typically occurs at the raw data level. Some notable

examples include deep learning, hidden Markov models,

and support vector machine (SVM). Fusion algorithms

that can handle end-to-end learning from heterogeneous

sensor input belong to this category. An example [31]

uses a fully convolutional neural network (CNN) and a

traditional extended Kalman filter to combine LiDAR,

camera, and radar data for road detection of autonomous

vehicle. The architecture for its fusion framework uses

the complementary inputs and is designed to tolerate the

individual sensor’s failure. The redundant sensor fusion

scheme enabled an extremely robust and reliable system

of detection.

Cooperative sensor fusion uses the information pro-

vided by two or more independent sensors to derive infor-

mation that would not otherwise be available from the

sensors if they operated independently. Cooperative fusion

is typically used in applications such as triangulation, from

which multiple RF receivers can locate what the individual

receivers cannot. Due to the nature of cooperative fusion

and the fact that the fusion scheme exploits the unique data

that different modalities and information sources can pro-

vide, many cooperative sensor fusion methods are used for

the heterogeneous data. An example [26] realizes sensor

fusion between EO/RF sensors, radar, and IR via an inter-

acting multiple model (IMM) algorithm. The radar is used

as a noncooperative sensor to improve robustness of the

fusion model for the purposes of implementing a sense-

and-avoid system for UAS. With the use of sensor inputs

cooperating with each other for the purposes of air traffic

detection and a noncooperative radar input used as a means

of independently verifying the state of traffic, the IMM

tracking could produce accurate position and velocity vec-

tors which provide a more reliable trajectory prediction

than the IMM tracking with only radar input.

Other communication classification systems for sensor

fusion include decentralized, also known as distributed,

centralized, and hierarchical. Traditionally, most sensor

fusion architectures are centralized, pooling the available

information in order to output a decision or classification,

with the centralized architecture providing measurements

to a common unit to achieve sensor fusion. In comparison,

a decentralized architecture implies there is no communi-

cation between the sensor nodes, with each node using its

own processing abilities to fuse local information with the

Table 3.

Sensor Relationship Fusion Based Schemes

Methodology Characteristics References

Competitive

Fusion

Independent classification from separate sources such as video or radar

input that improve reliability and error detection, normally through

methods such as decision level fusion or voting.

[10], [24]

Complementary

Fusion

In the context of EO/RF fusion, the spatial and spectral benefits of both

modalities can be used improve the performance of a fusion system by

exploiting the overlap between the sensors.

[19], [25]

Cooperative

Fusion

Fusion of EO, RF, and other modalities in order to provide a complete

picture of the environment that the individual features and input data

alone cannot.

[16], 26],

[27]
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information from its peers. Decentralized sensor fusion is

accomplished autonomously, occurring at no single point.

In contrast, distributed nodes interchange data at a given

communication rate. The benefits of a decentralized sen-

sor fusion scheme can be seen in [32] in which the use of

sparse approximation (Joint Sparse Representation) is

capable of achieving the same estimation result as a cen-

tralized algorithm while significantly reducing the com-

munication cost.

Hierarchical methods are a hybrid of the other techni-

ques [33], instead of performing sensor fusion at different

levels within the architecture’s hierarchy, some using

feedback while others are simply feedforward. The nature

of the system still centralizes its output to some degree,

but with the added benefit of reducing the calculations

needed by designating separate nodes to achieve a form of

decision or feature-in decision-out fusion. There are many

variations on this sort of sensor fusion architecture, Kahler

et al. [34], for example, used a two-step probabilistic cue

integration for the purposes of achieving object tracking

in three dimensions while Song et al. [35] used a hierar-

chical architecture to reduce the computational complex-

ity of a decentralized data fusion algorithm by being

placed between the clusters and fusion center.

Another notable sensor fusion categorization discrimi-

nates between upstream and downstream data fusion.

Upstream data fusion is the processing, exploitation, and

fusion of sensor data as closely to the raw sensor data feed as

possible. In contrast to downstream (post-decision) fusion,

upstream data fusion processes the input information and

minimizes the data loss that can result from conventional

data reduction methods. Upstream fusion improves the per-

formance by accessing the data at an appropriate point in the

processing chain near the data source, strategically chosen

to acquire the desired data within the earliest point in the

fusion architecture [36]. Upstream fusion was used by Gara-

gic et al. [12] to integrate FMV and passive RF data, using

multimodal emitter tracking and localization architecture.

The algorithm combines deep learning and feature manifold

representations to achieve upstream sensor fusion.

METHODOLOGIES IN EO AND PASSIVE RF SENSOR

FUSION

When dealing with modalities that involve radio fre-

quency (RF) and electro-optical (EO) sensors, the focus

for fusion has traditionally been on active RF sensors.

Doppler radar and imaging radar (e.g., side-looking air-

borne radar), as well as other similar active RF sensors,

are well suited for tracking a moving target when used in

concert with a form of EO modality. However, the com-

bined exploitation of the two sensor modalities can still be

improved [37]. That being said, RF modalities excel in

providing range, angular, and spectral resolution of

information from RF modalities and the benefits of com-

bining RF data with higher spatial resolution of EO-based

sensors is extremely desirable for detection and tracking.

There are a number of RF-based modalities that are used

in applications such as tracking, proximity, localization, and

detection. While many EO modalities are intuitively easier

for humans to understand and to implement for similar appli-

cations, unlike RF modalities; RF approaches to such prob-

lems are less susceptible to problems such as ocular

interference. RF-based sensors are not limited by factors like

visual interference from natural phenomenon such as fog,

clouds, snow, or any other form of weather that would other-

wise interfere in the collection of EO data. In addition, RF-

based sensors can provide repetitive coverage over a wide

geographical area, and in doing so, can determine the precise

distance and velocity of a target. As mentioned earlier in this

section, many RFmodalities in detection and tracking appli-

cations utilize active RF sensing.

One example of active RF/EO fusion was given by Seo

[38], where SAR data are used in combination with multi-

spectral (MS) images using random forest regression. This

approach fuses together the SAR image containing the sur-

face roughness characteristics while retaining the spectral

characteristics of the MS images, before being fed into a

modified random forest regression algorithm, outperform-

ing the comparison algorithms with the same KOMPSAT-

5 and Landsat-8 OLI datasets. The use of SAR imaging to

facilitate fusion between RF and EO sensor data is a com-

monly used approach for automatic ground target recogni-

tion. While Orynbaikyzy et al. [39] used a more traditional

algorithm, Kim et al. [40] utilized a double weighted NN

fusion scheme that uses sum-based linear fusion to generate

features and a NN- based fusion at the decision level.

Another example of active EO/RF fusion is Bui et al.

[41] in which SAR and multisource satellite imagery were

fused together at the data, feature, and decision levels. As

mentioned earlier [41], 2-D radar, EO, and IR sensor data

were used with an extended Kalman Filter and State Vec-

tor Fusion to track a target in 3-D Cartesian coordinates in

a Monte Carlo simulation. In Zhang et al. [13], the use of

Rao–Blackwellized particle filtering was implemented in

order to fuse the asymmetrical fields of view for the radar

and EO modalities. The application of adaptive waveform

design and control incorporated dynamic agility selection

in order to improve the performance of the system’s abil-

ity to track an unknown number of targets using the two

modalities. Other notable algorithms include the use of

sparse representation in order to combine medium wave-

length IR (MWIR) cameras and RF Doppler sensors for

vehicle tracking [42], which uses a joint sparse approxi-

mation approach for multimodality images.

There are a number of advantages for the implementa-

tion of passive RF modalities such as passive radar or

RFID. Passive RF modalities are difficult to detect, require

lower power and have lower costs than the ones associated

A Survey of Multimodal Sensor Fusion for Passive RF and EO Information Integration
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with the construction and usage of active radar, and are

harder to implement countermeasures against, such as

jamming and spoofing which can corrupt the collection of

RF-based modalities and transmitted imagery. Combining

the EO/RF modalities improves the overall reliability and

has been implemented in a few applications for target

detection, estimation, and tracking, as summarized in

Table 4.

For the research by Barott et al. [6], a SVM is used as

a final method of classification. Similar to previously men-

tioned papers, Fasano [10] and Kemkemian and Nouvel

[26], which use different metrics for accuracy, they share

the end goal is for the sense-and-avoid of unmanned air-

craft. The purpose of the fusion is to use two complemen-

tary instruments, passive radar, and an EO/IR system to

not only the detection of aircraft, but also the identification

of the model and relative threat to the unmanned aircraft.

The architecture for fusion first preprocesses the thermal

and visible images, isolating the propulsion and aircraft

before extracting the characteristics. These features are

then correlated with the relative distance and orientation

of the radar return, and subsequently to create a multispec-

tral aircraft signature, which is used as an input for the

SVM classifier.

The use of an autoencoder-based dynamic deep direc-

tional-unit network [20] was capable of learning compact,

abstract feature representations from the high-dimensional

spatiotemporal data of full motion video, and I/Q data.

The architecture exploits the access to elements of interest

within regions of interest using temporal tracking and

supervised classification before being fed into a decentral-

ized supervised discrimination layer that applies Bayesian

program learning in order to implement upstream multi-

modal data fusion. Among the network’s achievements, a

notable benefit of the approach is that the network is

capable of reconstructing missing modalities given the

observed signatures.

Other research into achieving EO/RF fusion for vehi-

cle tracking and detection using FMV and P-RF include

joint manifold learning [43],sheaf-based approach with its

data [21], SVM classifier [6]. In [43] and [21], the use of

simulation data is used for the primary method of training

and testing, while in Barott et al. [6] real data collected

from Daytona Beach International Airport are used. In

[43], the use of a joint manifold learning fusion approach

is used for the mixed simulation data. The use of a digital

imaging and remote sensing image generation (DIRSIG)

dataset provides video measurements and three distributed

RF sensors. The intrinsic low-dimensional data, the 2-D

images of the vehicles, are extracted by manifold learning

algorithms from high-dimensional data by implementing a

linear transformation of the vehicle positions. The RF data

are similarly handled by manifold learning, and then the

implementation of linear regression is used for tracking.

These results were compared with a number of methods,

such as maximally collapsing metric learning or neighbor-

hood preserving embedding, calculating position errors

with respect to the ground truth after implementing noise.

Finally, in Robinson et al. [21], the use of simulatedmul-

tisensor data is used to locate a moving emitter. The method

of fusion implemented is Sheaf Theory, a tool for systemati-

cally tracking locally defined data attached to the open sets

of a topological set. For the purposes of implementing sensor

fusion, the data samples and model of data are used as the

inputs of a sheaf-based fusion architecture. The model of the

data is used to construct the sheaf while the data samples are

converted into samples for partial assignment. The outputs

of the two are then used to search over the global sections

using the optimizer, before using the results to report values

over the stalks. During testing, the observed stalks for each

Table 4.

Methods of Achieving Detection and Tracking via EO/Passive RF Sensor Fusion

Input Data Method References

Passive Radar and EO/

IR sensor input

Unmanned Aircraft Vehicle sense and avoid application using

SVM classifier

[6]

FMV and Passive RF Sheaf-based heterogeneous sensor fusion using passive RF

collected via Doppler Radar and FMV for target detection and

tracking.

[38]

FMV and Passive RF Joint Manifold Learning based heterogeneous data fusion

approach to form a joint sensor data manifold for vehicle

detection and tracking.

[41]

FMV and Passive RF Deep learning approach using feature manifold representations

for multiobject tracking and detection.

[42]

FMV and Passive RF Autoencoder based Dynamic Deep Directional-unit network to

achieve unsupervised upstream sensor fusion for the detection

and tracking of vehicles

[20]
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sensor measure the real-time offset and complex I/Q samples

for each RF sensor while the EO data are collected, keeping

the xy-location of each detected pixel for the video input.

For the modeled stalks, which provide a comparison for

each pair of sensors, the time offset relative to the video

detection and the time aligned I/Q samples for each group of

RF sensors are tracked. The third vertex tracks the true loca-

tion of the ground truth, the emitter, and transmitted signal.

EVALUATION METRICS OF EO/RF SENSOR FUSION

Sensor fusion algorithms are generally evaluated in terms

of accuracy and robustness. During experimentation, cer-

tain trials will likely be completed in order to compare the

robustness of the model. Methods such as adding visual

occlusion or noise will normally be implemented, with

other methods of distortion to ensure that the model can

use that training in unfamiliar situations. But sensor fusion

is the process of combining measurements from multiple

nodes, each of which have a certain level of uncertainty.

When these sources of information are fused together, it is

not always clear how these uncertainties will interact and

influence the overall performance of the sensor fusion

algorithm. It is important to collect information in order to

gain insight into the performance of an implemented

fusion architecture. This section discusses the evaluation

methods for EO/RF fusion and their respective applica-

tions, summarized below in Table 5.

For the vast majority of the many sensor fusion appli-

cations that are NN based, F-1 Score is traditionally used

to score the performance. The measurements of precision

and recall, the measurements that compare the true posi-

tive rate and the sensitivity are commonly accepted for

most classification problems. However, not all EO/RF

sensor fusion applications are focused on classification.

Some are made for tracking and estimation purposes, and

therefore need to be compared to a ground truth. For

machine learning however, there are a few more factors

that need to be addressed when testing a NN-based sensor

fusion architecture.

One of the major characteristics and concerns for

machine learning in general is the nontransparency of the

models. Deep learning itself suffers from several major

limitations, requiring vast amounts of training data, having

poor ability to represent uncertainty, being easily fooled

by adversarial examples, and being difficult to optimize.

Because of the black-box like nature of such networks, it

can be difficult to perform reasoning with them and these

aforementioned qualities mean that they are prone to gen-

eralizing poorly or overfitting the data. In order to improve

these issues with uncertainty, the implementation of Alea-

tory Variability and Epistemic Uncertainty are commonly

used approaches. Aleatoric variability is uncertainty inher-

ent in observation noise while Epistemic Uncertainty is

ignorance about the correct model generated by the data,

the parameters, the convergence, etc. In Tagasovska and

Lopez-Paz [47] specifically, the use of Simultaneous

Quantile Regression and Orthonormal Certificates are

used as a loss function to estimate Aleatoric Variability

and Epistemic Uncertainty, respectively. There is an

important distinction between a system malfunction, a

failure that is recognized, and a normal operation where

false-positives can occur, and the use of uncertainty is an

important measure to help interpret the results of a

NN-based fusion method.

In [48], concerns about the stability of a fusion system

that is trained end-to-end is not encouraged by its readers,

due to the potential incompatibility with assumptions

about the stable hierarchical architectures of components.

In Yang et al. [49], the creation of an explainable neural

network (xNNþ) in order to improve the understanding

and provide sufficient model interoperability is explored.

The estimation of multiple parameters via a modified

mini-batch gradient descent method derived from the

backpropagation for calculating derivatives and the use of

the Cayley transform is implemented to preserve the

Table 5.

Methods of Evaluating EO/RF Fusion Algorithms

Applications Method References

Multilevel Mapping Multilevel map classification evaluation using producer’s and user’s

accuracies.

[7]

Indoor Tracking Location estimation error compared to ground truth [44], [45]

Air Traffic Detection Cramer–Rao lower bound, performance indices, range estimation

error in terms of mean and standard deviation.

[6], [26],

[32]

Target Detection and

Tracking

Comparison of positional errors between the ground truth and the

mapped manifold learning results.

[43]

Automated Activity

Recognition

Computational cost, accuracy, and comparison of memory

fingerprints for evaluating fusion efficiency

[46]
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projection orthogonality. The approach improves

interpretability of the model while maintaining the predic-

tion accuracy. While there has been research into creating

a more transparent models [50], the vast majority of

machine learning methods are all-training based and non-

transparent, which makes them being able to use metrics

in order to properly interpret the results all the more

important.

For the multilevel map classification via SVM [7],

Kulin et al. compared the producer’s accuracy and user’s

accuracy, the complements of omission and commission

error, respectively. Producer’s accuracy is the map accu-

racy from the map maker’s point of view. This metric for

mapping measures how often real features on the ground

are accurately shown on the classified map and probability

that a certain land cover on the ground is classified cor-

rectly. Conversely, the user’s accuracy is accuracy from

the point of view of the map user. The metric can be sum-

marized as reliability, calculating the total number of cor-

rect classifications for a specific class and then dividing it

by the row total.

For the evaluation of their joint manifold learning

framework, Shen et al. [43] compared their results for

vehicle detection and estimation to the ground truth. In

order to better test the reliability of their algorithm, the

implementation of white noise and position shifts are

applied in order to test if the framework can apply its

learned intrinsic mapping from one scene to a similar one.

In addition, comparisons were made with other traditional

sensor fusion algorithms in multiple scenarios, relating the

estimated trajectory with the ground truth and plotting

position errors over the respective frame index.

For the passive multispectral radar/EO/IR sensor

fusion architecture for UAS in [6], the use of a

Cramer–Rao lower bound (CRLB) on localization accu-

racy is used. In similar applications, such as [26] or

[32], which seek to avoid collision between unmanned

aircraft, a simulation system for the EO and radar input

is used to implement tracking, trace range, and azimuth

error for the RF modality in terms of the mean and stan-

dard deviation. Performance indices were used to mea-

sure the performance of the UAS system, emphasizing

the characteristics of the response deemed to be rele-

vant to optimize the control system and providing

feedback.

Besides metrics that directly relate to the evaluation of

accuracy measurements, another aspect of performance to

consider is computational cost of the process and delay

caused by the fusion architecture. As previously men-

tioned, the design of decentralized or hierarchal fusion

architectures are less taxing in terms of computational

cost, but in exchange introduce more delays in communi-

cation. Certain models actually exploit the nature of

decentralized architectures, improving the individual node

estimators by capturing the correlation between the sensor

observations of matching parameter values for different

manifolds [51].

Aside from the metrics of computational cost and effi-

ciency, the size of training data is also relevant. The main

problem that all fusion methods face is the constraints in

the execution of data acquisition, processing, and the

implementation of the algorithm. In Mart�ın et al. [46], the

accuracy, computational costs, and memory fingerprints

for the traditional classifiers Naı̈ve Bayes, Decision Table,

and Decision Tree were calculated for different sensor

data and optimization method. These metrics provide

insights into how the individual modalities interact with

the fusion, particularly with the memory fingerprints.

While there is no universal benchmark for fusion evalua-

tion, these are some measures that provide for better

understanding the fusion architecture and assessing the

impact of different modalities.

FUSION OF EO AND PASSSIVE RF NN

In 2017, Michigan Tech Research Institute created a

DIRSIG simulation of Medium Wave IR FMV input and

emulated three corresponding P-RF sensors (see Table 6).

The DIRSIG dataset contains 13 simulations that cover a

variety of visual obscuration scenarios, while receiving

RF signals at three different locations. These DIRSIG

simulations are oriented around tracking one or more

moving targets, automotive vehicles, and provide various

Table 6.

Simulations in DIRSIG Data

Simulation Number of
Vehicles

TX
Waveform

1 1 Tone

2 1 Tone

3 1 2G

4 2 2G, None

5 2 2G, 3G

6 3 2G,3G, None

7 3 2G, 3G, 4G

8 3 2G, 3G, 4G

9 2 2G, 3G

10 1 2G

11 3 2G, 3G, 4G

12 3 2G, 3G, 4G

13 3 2G, 3G, 4G
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opportunities, visual obscuration, to test the uncertainty

reduction of the chosen sensor fusion method. For the

purposes of implementing EO/RF fusion, the FMV input

was treated as an EO input. As the vehicles in the simu-

lations are small enough when compared to the back-

ground of the simulation, the thermal properties of the

vehicle will not change the relative size of the target the

network needed to detect.

For the EO and RF sensor fusion research presented in

this article, the raw P-RF data are preprocessed to obtain

I/Q histograms over time. The histograms are then aligned

in time with the simulated EO data for the purposes of

detection and estimating the number of vehicles. When

compared to the ground truth of the simulation, neither of

the standalone modalities was able to achieve accuracy

above 90%. But the fusion of EO/RF neural network

(FERNN) was able to achieve an accuracy of 95%.

Histograms has been widely used in image processing

and image retrieval [52], [53]. In [22], a histogram of RSS

values was used for a Wi-Fi-based indoor positioning sys-

tem called KAILOS (KAist Indoor Locating System). The

system uses crowd-sourced fingerprints via signal fluctua-

tion matrix (SFM) and an extended Viterbi algorithm to

achieve accurate indoor positioning. SFM is essentially a

universal histogram of the RSS values irrespective of loca-

tions and access points that calculates the probability of

observing an online RSS of an access point at a location

as a log-odd probability.

While there exist many methods and algorithms of

sensor fusion, the difficulties in establishing a correspon-

dence between the EO and RF inputs indicate that a deep

learning approach would be more suited for the research

[23]. While methods such as Dempster–Shafer theory pro-

vide the opportunity to reason with uncertainty [54], the

sheer size of the samples and RF data in raw format make

finding a traditional correlation between EO and RF data

very difficult.

The DIRSIG dataset contains 13 different simulations.

Table 6 shows the number of vehicles and the waveforms

transmitted by vehicles in each scenario. For the purposes

of the experiment, six simulation scenarios were selected

from the DIRSIG data based on the number of vehicles

and the transmitted waveforms in the simulation. These

simulations were selected in order to balance and ensure

the robustness of the model for the training and validation

data of the NN. From the six chosen scenarios, simulations

2 and 10 were used for the training and testing of the

FERNN’s accuracy in detecting one vehicle. For the sce-

nario of two vehicles, simulations 4 and 9 were selected

for testing and training, and for the scenario of three

vehicles, simulations 11 and 12 were chosen. Simulation 2

contains a single vehicle which transmits a tone, while

simulation 10 has a single vehicle which transmits a 2G

waveform. Simulations 4 and 9 share a common 2G wave-

form while simulations 11 and 12 share the 2G, 3G, and

4G waveforms. The purpose of choosing these scenarios

with different waveforms was to ensure that a level of

robust change was added into the training in order to pre-

vent the NN from ignoring the EO input.

In the DIRSIG dataset, there are similar scenarios

where fusion of EO and P-RF can provide better accuracy

over single modality. The EO sensor in the simulations is

limited by visibility in detecting the number of vehicles

when compared to the ground truth. Even when the targets

reach the scope of the EO sensor, there are several instan-

ces of optical obscuration that are caused by the simulated

foliage. As seen in Figure 1, frame 295 and frame 310 are

generated by EO sensor corresponding to a scene with two

moving vehicles. But only one vehicle is visible to the

sensor in frame 310 due to obscuration caused by foliage.

However, the RF histograms remain largely unchanged as

can be seen in Figure 2, because the optical obscuration

does not affect the histogram generated for the same cir-

cumstances 15 frames later. In order to overcome this dif-

ficulty of EO sensor and to better gauge the accuracy of

the network with respect to the ground truth, improving

the accuracy and robustness of the system via EO and pas-

sive RF fusion is necessary.

The fusion of EO/RF neural network (FERNN) pro-

posed seeks to accurately estimate the number of moving

targets in the scene through EO and passive RF fusion.

Four states were generated in order to best describe the

detection of the given scenario. The state of the simulation

is denoted by a one-hot vector ss ¼ ½ s1 s2 s3 s4 �,
whose elements are all false values (0) with the exception

of one true value (1) for the element corresponding to a

Figure 1.
Comparison of DIRSIG Simulation 9 Frame 295 versus Frame 310.

Figure 2.
Comparison of DIRSIG Simulation 9’s RF histograms for frames

295 and 310.
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specific state. The first state, i.e., ss ¼ ½ 1 0 0 0 �, is
defined as having no cars in the simulation, which is

included for the purposes of determining the accuracy of

the EO modality as the ground truth versus what the EO

modality can detect. Within the DIRSIG simulations, the

ground truth is that there is always at least one vehicle in

all the simulations. The other three states are for the pres-

ence of a single car, two cars, and three cars, respectively,

within the simulation.

For data from EO sensors, each simulated video input

was first processed into image frames, resized, and con-

verted into grayscale for simulation video that was not

originally grayscale. For the purposes of reducing training

time and conserving processing power, the image frames

were resized to match the P-RF histograms.

Prior to being fed into FERNN, the raw P-RF data

are processed to generate histograms of the I/Q data.

The histogram depicts the estimation of the probability

distribution of the P-RF data. The histograms are then

fed into the NN in conjunction with the corresponding

EO frames. Figure 3 shows an extracted EO frame and

the corresponding histogram of P-RF sensor that have

been aligned in time. In order to achieve heterogeneous

feature-level fusion, a deep neural network is trained

over the pairs of 2-D matrices from the two modalities.

The fusion NN itself is a sequential model that com-

pares the predicted states with the labels and then modi-

fies its weights accordingly, as shown in Figure 6 and

described in part C. For the purpose of decision-level

fusion, the NNs are trained for standalone modalities,

i.e., an EO NN and a P-RF NN.

EO NEURAL NETWORK

A separate CNN is trained for the detection and estimation

of the number of vehicles based on EO data. This image-

based NN can achieve 91% accuracy upon using the modi-

fied labels that are exclusively just for an image classifica-

tion. For these modified labels, if a frame is generated for

a period in which the vehicle is temporarily obscured by

foliage, the frame is labeled as having no vehicle detected,

which is inaccurate when compared to the ground truth of

the simulation. Likewise, simulation frames in which the

vehicle has not entered the scope of the EO sensor are also

labeled as not detecting a vehicle.

In order to accomplish classification, both FERNN and

the standalone EO network begin preprocessing, resizing,

and labeling the frames. After that the networks categorize

the images by the number of vehicles detected. Unlike the

ground truth for the overall scenario simulation, the stand-

alone EO NN will output that no vehicle is detected when

vehicle is not visible to the EO sensor. For the purposes of

comparison testing, the standalone EO NN retains the

original training it received to classify an image by the

number of vehicles it detects. When being tested against

the ground truth for each simulation, in terms of the num-

ber of vehicle(s) traveling in the area, the accuracy of the

EO network decreased to an accuracy of only 72%. This

result is expected, as the simulation has a number of

optically obscured examples inside of the simulation set.

RF FEATURE EXTRACTION AND NN

The most basic signal that can be collected for the RF

sensing is known as in-phase and quadrature components.

These I/Q components are the basis of complex RF signal

modulation and demodulation, and the backbone of mod-

ern communication systems. During previous experi-

ments, our group had successfully trained a CNN to detect

the human occupancy of an enclosed indoor space using

the raw I/Q data of passive RF signals. For the DIRSIG

dataset, however; the I/Q data in its raw format were inef-

fective for the purposes of vehicle detection. The I/Q data

were processed to generate a 2-D histogram, which is an

estimation of the probability density function of the P-RF

data. In the DIRSIG simulation, there are three SIGINT

sensors to generate the P-RF data. These sensors are

placed orthogonally, one in north, and one in west, and

one in the nadir. The generated 2-D histograms are then

fed into the fusion networks in order to facilitate the

homogenous fusion between the three P-RF sources.

As seen in Figures 4 and 5, the 2-D histograms show

visually different patterns due to the different waveforms

transmitted by vehicles. To illustrate the differences in

histograms, the histogram value was plotted in the

z-dimension to provide a clear visual difference. The his-

togram of P-RF in Simulation 1 (see Figure 4, left, single

Figure 3.
The extracted EO frame and the corresponding P-RF histogram

(Simulation 9, NADIR RF reciever).

Figure 4.
Comparison of I/Q histograms collected by SIGINT in simulation

1 (left) and simulation 9 (right).
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vehicle, tone signal) is noticeably different from Simula-

tion 9 (see Figure 4, right, two vehicles, 2G and 3G sig-

nals). Some simulations, such as Simulation 4 (see

Figure 5, left, two vehicles, 2G on one of the vehicles in

question) and Simulation 1 1(see Figure 5, bottom right,

three vehicles, 2G, 3G, and 4G signals) share one com-

mon RF signal types, which is harder for the detection

and discrimination of multiple types of vehicles. The his-

tograms of Simulations 4 and 9 are still noticeably differ-

ent despite both simulations have the same number of

moving vehicles.

For the standalone RF NN, in earlier iterations, the

classification accuracy would rise to 100% accuracy within

four epochs for differentiation. These earlier versions of

the software, however, relied on the unique histograms

formed by the different transmission waveforms. In order

to balance training and testing data for the standalone RF

and EO networks, the simulations used for testing were

limited to the ones whose transmission waveforms are as

different as possible. Simulations 1 and 2 for example are

unique compared to other simulations in which only one

car is detected because the waveform is a pure tone. Simu-

lations 11, 12, and 13 all have a variety of signals, 2G, 3G,

and 4G, while some simulations such as 4 or 10 are limited

to a single waveform (2G). When trained under these con-

straints, the accuracy of the standalone P-RF NN is 83%.

FEATURE LEVEL FUSION

In order to achieve sensor fusion from heterogeneous

modalities, both the resized and preprocessed grayscale

EO frames and P-RF histograms are fed into a sequential

NN. The data from both the RF and EO modalities are

stacked into a sequence of arrays that acts as the training

data for the NN. After being standardized and normal-

ized, the sequential model begins the training for feature-

level fusion.

FERNN takes the input arrays containing the values

from the preprocessed RF and EO data and then flattens

them, using ReLu and SoftMax before compiling the

model with the Adam Optimizer. Unlike classical stochas-

tic gradient descent (SGD), which maintains a single

learning rate for all weight updates, Adam Optimizer uti-

lizes individual adaptive learning rates for different

parameters from estimates of the first and second moments

of the gradients. This approach combines the advantages

of two other existing extensions of the SGD, adaptive gra-

dient algorithm, and root mean square propagation. The

loss function of the model is sparse categorical cross-

entropy. SoftMax was applied to implement classification

of different states. Compared to the results of the stand-

alone RF and EO NNs, the feature-level fusion network

can achieve 95% accuracy, with regards to the ground

truth of the simulation.

DECISION-LEVEL FUSION AND COMPARISON

RESEARCH

Traditional learning methods and probabilistic classifiers

were implemented to compare FERNN with methods of

decision-level fusion. Logistic regression (LR), Naı̈ve

Bayes (NB), random forest (RF), Gaussian naı̈ve Bayes

(GNB), and support-vector machine (SVM) were imple-

mented for decision-level fusion experiments. In addition

to these methods, FERNN was modified to implement

downstream fusion as well.

Naı̈ve Bayes is a probabilistic classifier that applies

Bayes’ Theorem under the assumption that the data are inde-

pendent of each other. GNB instead works under the

assumption that the continuous values for each class have a

Gaussian distribution. Random forest is an ensemble learn-

ing method for classification that focuses on the generation

of decision trees. These decision trees are used to avoid over-

fitting and generate a prediction. Logistic regression is a sta-

tistical model that is used to implement regression analysis

to model the probability of a class or event. SVM is a super-

vised learning model that analyzes data for the regression

analysis and classification. However, unlike logistic regres-

sion, naı̈ve Bayes, and GNB, it is a nonprobabilistic linear

classifier.

In order to better use the available data, the approach

for decision-level fusion was ensemble learning methods,

soft and hard voting, in addition to a NN approach and

late (or downstream) fusion via SVM. Soft voting uses the

individual classifiers calculations for the probability of the

outcomes and averages out the resulting outputs. Hard vot-

ing uses majority vote in order to choose a model from the

Figure 5.
Comparison ofI/Q histograms collected by SIGINT in simulation

4 (left) and simulation 11 (right).

Figure 6.
Fusion of EO and RF neural network (FERNN) architecture.
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ensemble to make the final prediction with the available

data. Besides soft and hard voting, the data from the fea-

ture-level fusion experiments, the standalone EO and

standalone RF NNs, were used to implement decision-

level fusion. The predictions for each of the individual

models were fed into an SVM model that used the

concatenated values. Besides SVM, a NN model used the

same prediction values to classify the dataset.

RESULTS

The trained standalone EO NN alone could reach 91%

accuracy in determining the current number of detected

vehicles based on the available image provided. However,

when tested against the ground truth, with the knowledge of

a vehicle moving outside of the camera’s angle or obscured

by local foliage, the overall accuracy of the NN would

decrease to only 72%. Similarly, the standalone P-RF NN,

could only reach an accuracy of 83% when taking into

account all the histograms for the selected simulations,

where scenario 1 describes a ground truth of one vehicle,

scenario 2 describes a ground truth of two vehicles, and sce-

nario 3 describes a ground truth of three vehicles.

As seen in Table 7, the accuracy of the standalone P-RF

NNwas significantly higher when trainedwith a small number

of simulations. When comparing simulations 9 and 10 to dif-

ferentiate between one vehicle and two vehicles, the NN could

perform at 95% accuracy. However, when the number of cate-

gories increases to 3 and the NN was trained with three differ-

ent simulations, the performance decreased to 92% accuracy.

In this situation, histograms formed by the P-RF feature extrac-

tion are still unique enough to ensure an acceptable accuracy.

In order to ensure that the training data were robust enough for

the purposes of vehicle detection, six simulations were com-

bined in the training process, each of which containing visually

different histograms. The addition of all these training and test-

ing data reduced the accuracy of the NN to 83%.

As shown in Table 8, the overall accuracy of different

sensors on their own is unsatisfactory, with EO only man-

aging to score a 72% accuracy against the ground truth

and RF only reaching 83% accuracy when trained and

tested with large number of different scenarios. With

FERNN, the accuracy can reach a much higher level of

95%, when the EO frames, the data of P-RF sensors

located at nadir, north, and west are all fed into the NN.

Based on the results of the feature-level fusion, a sig-

nificant increase in accuracy was dependent on the number

of feature sources for training available. As seen in

Table 9, the F1 score for using only the EO and Nadir

SIGINT is 80%. Similarly, the F1 scores for the EO and

North and EO and West are at 78% and 82%, respectively.

Based on the results presented in Tables 10–12, the accu-

racy of the NN only reaches satisfactory values when all

four sources of SIGINT (see Table 13) and the corre-

sponding frames are fed into the training

F1Score ¼ 2 � Precision � Recall
Precisionþ Recall

(1Þ

Precision ¼ True Positive

True Positiveþ False Positive
(2Þ

Recall ¼ True Positive

True Positiveþ False Negative
: (3Þ

Table 7.

RF Accuracy Comparison

Situation Accuracy

Comparison of simulations 9 and

10, differentiating between

detecting one vehicle and two

vehicles

95%

Comparison of simulations 2, 9, and

10, differentiating between

detecting one vehicle, two vehicles,

and three vehicles

92%

Combined data from simulations

2,4,9,10,12, and 13, differentiating

between detecting one, two

vehicles, and three vehicles

83%

Table 8.

Accuracy Comparison Between Standalone Modalities

and Feature Level Fusion

Situation Accuracy

Standalone EO 72%

Standalone RF 83%

Feature Level Fusion Architecture 95%

Table 9.

EO and Nadir sigint Fusion

Scenario Precision Recall F1-Score

1 0.70 0.72 0.71

2 0.87 0.79 0.83

3 0.83 0.88 0.85

Accuracy 0.80

Macro AVG 0.80 0.80 0.80

Weighted AVG 0.80 0.80 0.80
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In order to accurately evaluate the performance of

FERNN, the F1 score, precision, and recall were calcu-

lated based on (1)–(3) for the statistical analysis. The F1

score is the harmonic mean of the precision and recall, the

measurements of positive predictive value and sensitivity

for machine learning. Precision is the measurement of

type-I error, false positives, while recall is the measure-

ment of type-II error, false negatives. Figure 7 shows the

F1 scores of all the NN trained for vehicle detection and

scenario categorization. The fusion of EO and all three

P-RF sensors yield the best result.

Besides feature-level fusion, more traditional methods

were explored to analyze the effectiveness of using the RF

features and EO input. Logistic regression, random forest,

Naı̈ve Bayes, and GNB were all applied to the same data-

sets as the EO-RF fusion NNs. As these ensemble methods

are more traditional in nature and not based on NNs, the

evaluation of classification accuracy is conducted by

k-fold cross validation.

K-fold cross validation is a procedure meant to esti-

mate the skill of a machine learning model on unseen

data. The limited samples are used to estimate how the

model is expected to perform in general when used to

make predictions on data that is not used during training.

The process first shuffles the dataset randomly, splitting

up the dataset into k groups. For each of these unique

groups, one is designated as a test dataset, while the others

are treated as part of the training dataset. The model is fit

on the training data and then tested on that dataset, saving

the evaluation score and discarding the model. After

repeating the process, the skill of the model is summarized

using the sample of the model evaluation scores.

As can be seen in Table 13, Logistic Regression and

GNB consistently performed better than Naı̈ve Bayes and

Random Forest in terms of accuracy. The accuracy for these

classifiers improved when there were fewer inputs from the

RF histograms. Considering the nature of the RF features and

the EO inputs, it is possible that because the data received as

a 2-D array that the classifiers that assume the data to be inde-

pendent, random forest and Naı̈ve Bayes, performed compar-

atively poorer than logistic regression and GNB.

Once the feature-level fusion comparison experiments

were completed, the architecture for the feature-level

fusion was adopted to implement decision-level fusion.

As seen in Figure 8, at least one source of EO data were

classified with the RF features, and once that classification

Table 11.

EO and West sigint Fusion

Scenario Precision Recall F1-Score

1 0.79 0.75 0.77

2 0.92 0.82 0.86

3 0.75 0.92 0.83

Accuracy 0.82

Macro AVG 0.82 0.83 0.82

Weighted AVG 0.83 0.82 0.82

Table 12.

EO and RF sigint Fusion

Scenario Precision Recall F1-Score

1 0.96 0.96 0.96

2 0.99 0.94 0.96

3 0.91 0.96 0.93

Accuracy 0.95

Macro AVG 0.95 0.95 0.95

Weighted AVG 0.95 0.95 0.95

Table 10.

EO and North sigint Fusion

Scenario Precision Recall F1-Score

1 0.87 0.65 0.74

2 0.67 0.92 0.78

3 0.82 0.86 0.84

Accuracy 0.78

Macro AVG 0.79 0.81 0.79

Weighted AVG 0.80 0.78 0.78

Figure 7.
Comparison of F1 scores for different NNs implemented for vehi-

cle detection.
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is completed the results are used for decision-level fusion.

For the purposes of comparison research, hard and soft

voting was chosen, using the classification output of logis-

tical regression, Naı̈ve Bayes, random forest, and GNB to

implement decision-level fusion.

As seen in Table 14, the results for hard and soft voting

showed little difference in terms of total accuracy. Given the

input methods being weighed against each other, and the

accuracies they had individually, the result of the decision-

level fusion is dependent on the accuracies of the methods

implemented. Soft voting performed marginally better than

hard voting, as for the given inputs only one of the methods

performed above 0.80 in accuracy.

Besides implementing voting for decision-level fusion,

SVM learning was used in order to test the effectiveness

of decision-level fusion. For the SVM decision-level

fusion, the prediction values of the independently trained

standalone EO and standalone RF NN were fed as a

concatenated array of values. As seen above in Table 15,

the late decision fusion implemented via SVM with the

standalone EO and RF NN classification weights could

achieve an accuracy of 88%.

Out of the results of using feature- and decision-level

fusion with the RF histograms and EO frames, the highest

accuracy of all the methods tested was FERNN. Out of the

decision-level fusion methods, late-fusion NN (LFNN)

was the closest in terms of accuracy, with an F1 score of

90.7%. From the results, it can be concluded that for this

dataset of the RF and EO features, a NN benefits more

Table 13.

Classification Accuracy of Traditional Probabilistic

Classifiers and Learning Methods

Method and Input Data Accuracy

Logistic Regression (EO and

Nadir)

0.81(� 0.13)

Logistic Regression (EO,

Nadir, and North)

0.75 (� 0.17)

Logistic Regression (EO,

Nadir, North, and West)

0.73 (� 0.17)

Naı̈ve Bayes (EO and Nadir) 0.64 (� 0.04)

Naı̈ve Bayes (EO, Nadir, and

North)

0.64 (� 0.08)

Naı̈ve Bayes (EO, Nadir,

North, and West)

0.63 (� 0.07)

Random Forest (EO, Nadir,

North, and West)

0.64 (� 0.21)

Random Forest (EO, Nadir,

and North)

0.69 (� 0.16)

Random Forest (EO, Nadir,

North, and West)

0.67 (� 0.17)

Gaussian Naı̈ve Bayes (EO

and Nadir)

0.73 (� 0.14)

Gaussian Naı̈ve Bayes (EO,

Nadir, and North)

0.71 (� 0.15)

Gaussian Naı̈ve Bayes (EO,

Nadir, North, and West)

0.70 (� 0.14)

Figure 8.
Overview of comparison research architecture.

Table 14.

Decision-Level Fusion Comparison

Method and Input Data Accuracy

Hard Voting (LR, RF, NB, GNB)

(EO and Nadir)

0.73 (þ/- 0.14)

Hard Voting (LR, RF, NB, GNB)

(EO, Nadir, and North)

0.71 (þ/- 0.15)

Hard Voting (LR, RF, NB, GNB)

(EO, Nadir, North, and West)

0.70 (þ/- 0.12)

Soft Voting (LR, RF, NB, GNB)

(EO and Nadir)

0.74 (�0.13)

Soft Voting (LR, RF, NB, GNB)

(EO, Nadir, and North)

0.72 (� 0.11)

Soft Voting (LR, RF, NB, GNB)

(EO, Nadir, North, and West)

0.71 (� 0.13)

Table 15.

SVM Fusion for EO and RF Data

Scenario Precision Recall F1-Score

1 0.76 0.84 0.81

2 0.93 0.96 0.94

3 1.00 0.73 0.85

Accuracy 0.88

Macro AVG 0.90 0.88 0.88

Weighted AVG 0.90 0.88 0.88
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from feature-level fusion over decision-level fusion. Like-

wise, the results indicate the preference of upstream fusion

to downstream fusion.

Within ensemble learning fusion, soft voting, which uses

the individual outputted probabilities over simple majority

voting; still performed as well if not better. Based on the

approach and results, the association of the RF features with

the corresponding EO frame produced more accurate results

compared to the direct estimations of the output class in

question. From the ensemble learning experiments and the

standalone EO and RF network results, it can also be con-

cluded that the association of changes in the RF histogram

features was relied on more than the EO, which was less

accurate on its own compared to the ground truth.

When compared to the decision-level fusion models

that were the SVM and LFNN, the results showed that the

ensemble decision fusion schemes significantly underper-

formed. The LFNN can achieve 90.7% accuracy with the

same training set that the SVM decision-level fusion

model was able to achieve 88% accuracy with. In compar-

ison, the soft and hard voting decision-level fusion with

traditional classifiers however, both failed to achieve even

80% accuracy. Compared to all the decision-level fusion

methods tested, FERNN, the proposed feature-level fusion

performed with the highest accuracy, achieving a 95% F1

score versus the LFNN’s 90.7% F1 score.

CONCLUSION

Multimodal sensor fusion, especially in the context of EO

and passive RF fusion, is an active research field that is

growing with many different innovative applications and

approaches. The sheer volume and variety of methods

makes it often difficult to pick and choose for a particular

situation or dataset, a problem that is made worse by the

complex sensor sources. It goes without saying that there

is no singular or general solution for determining the opti-

mal approach for information fusion, as the answer is

always dependent on the situation, the dataset, and

modalities used. Just explaining how some of these sensor

fusion schemes are classified or described is a difficult

task as there currently is no singular all-encompassing

organization or classification of methods for this field.

Besides surveying the state-of-the-art literature based

on the contributions to multimodal sensor fusion, the focus

was on EO and passive RF fusion. While this research was

primarily focused on the application of deep learning in

information fusion, there exist many suitable classification

schemes for exploiting the advantages of EO and passive

RF modalities. For the purposes of EO and passive RF

fusion, the use of raw data (i.e., upstream fusion) and fea-

tures provides more robust and reliable results when com-

pared to decision or postclassification fusion schemes.

Related literatures have also found similar results

when using passive RF and any form of EO modality,

such as previously mentioned [12] and [43]. For the pur-

poses of using passive RF in applications that do not use

forms of RF, such as Doppler or SAR imaging, the value

that lower level fusion provides is greater than the metal-

earning of higher level (i.e., situation) or decision-level

(i.e., product) fusion for the purposes of fusing these two

modalities. While it is a fundamental issue for any multi-

modal sensor fusion application, appropriate synchroniza-

tion of different modalities is still a subject of interest.

Determining when and how much data need to be proc-

essed from different modalities in order to optimize corre-

lation and best help extract relevant features is an issue

that has not been explored exhaustively. The use of spik-

ing deep belief networks, such as [55] for example, could

have potential unsupervised use in probabilistically recon-

structing the passive RF data to perform classification.

While there are many approaches to machine learning

and classification, some other possible directions using

passive RF in sensor fusion could be addressed by includ-

ing machine vision. For EO and passive RF, a few

machine vision approaches have been researched, such as

[56] and [57]. But the question of how to properly inte-

grate context in the fusion process in order to improve a

classification algorithm’s ability to find relevant features

and better discriminate between different classes is impor-

tant [58]. Using the machine vision approach for passive

RF creates a need to formalize the concept of context and

also to explore how the changing context could influence

the fusion process, as well as determining what model

would be best suited to handle such a change.

While feature- and raw-level fusion have shown promis-

ing results, the question of what value correlation at the deci-

sion level could have for classification has not been explored

thoroughly for passive RF/EO fusion. While it may be diffi-

cult to apply for the passive RF modality there could be an

intrinsic value in using a dynamic classifier selection

approach, similar to [22] which uses a dynamic settings hid-

den Markov model (HMM) classification algorithm for

object detection with passive RFID tags. Even if decision-

Figure 9.
Comparison of accuracy for different NNs implemented for deci-

sion level fusion.
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level fusion is not necessarily the best approach for classify-

ing passive RF input, the metalearning training could have

value in a multilevel sensor fusion, such as in [59].

This article has covered existing passive RF/EO sen-

sor fusion works, identified relevant issues that deserve

further investigation, and proposed a feature level fusion

network for integrating information from passive RF his-

tograms and EO sensors and compared its performance to

traditional methods of classifying linear input. From the

results of FERNN, it can be concluded that the application

of P-RF histograms as a feature can significantly improve

the accuracy of the NN, particularly when fused at the fea-

ture level. The performance of the proposed EO and P-RF

fusion network is superior to the performance of the NN

of single sensor modality for both feature- and decision-

level fusion in regard to vehicle detection and scenario

categorization.
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