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Abstract—Multistatic radio frequency (RF) imaging systems
utilize distributed RF sensors which transmit waveforms to
illuminate a target scene and estimate the dielectric properties
of the region of interest from the received echoes. This study
applies the principles of dynamic data driven systems to improve
the performance of multistatic RF imaging system in terms
of power efficiency and image reconstruction accuracy. Target
location information derived from initial image reconstruction is
applied to dynamically reconfigure the imaging system. Based
on the geolocation of targets relative to the distributed RF
sensors, Fisher information matrices associated with the tar-
gets and multistatic sensor pairs are calculated and applied
to derive optimum power allocation strategies under different
constraints. Image reconstruction of multistatic RF imaging often
suffers from artifacts and ghost targets caused by multipath
propagation and multi-order reflections. A grouped-coordinate
descent (GCD) type reconstruction algorithm is developed to
exploit target location information. The iterative optimization
alternates between the groups of target space parameters and
non-target space parameters. The dictionary of reconstruction
is dynamically updated to include the secondary reflections
from target locations. The improved model fidelity leads to
more accurate reconstructions without a significant increase in
computational complexity. Numerical simulations demonstrate
that the proposed power allocation strategies are effective in
energy saving. The proposed reconstruction algorithm converges
faster than sequential parameter update algorithms, and the re-
construction accuracy is superior to that using a fixed dictionary
containing the first order reflections only.

Index Terms—radio frequency imaging, power allocation, im-
age reconstruction, multipath propagation, multistatic radar,
sensor fusion, dynamic data driven application

I. INTRODUCTION

RADIO frequency (RF) imaging is a challenging prob-
lem that has attracted intensive research interests due

to its potential applications in defense, homeland security
and automotive industry [1]–[4]. Through the wall imaging,
surveillance of large areas and autonomous driving are some
applications of RF imaging, which is an inverse scattering
problem and has similarities to computed tomography in the
medical domain [5]. The imaging mechanism is to illuminate
the target scene using RF pulses and infer the dielectric prop-
erties of the region from the scattered waveforms recorded.
For multistatic imaging systems, RF sensors are distributed
in multiple locations and the reconstruction algorithm must
integrate the information from all sensor pairs. From system
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design and configuration to reconstruction algorithms, there
are many challenges to address to improve the performance of
RF imaging systems. This paper investigates power allocation
policies and reduction of reconstruction artifacts using princi-
ples of dynamic data driven applications systems (DDDAS).

DDDAS methods have long been applied to solve problems
in the fields of science and engineering, and have seen rapid
advancements in sensing, machine learning, and information
security in recent years [6], [7]. DDDAS can be adaptive
to both system input and output in real-time to improve
system performance. The basic process of DDDAS is to
monitor the key measurements or system output related to
system performance; design an objective function that reflects
the relationship between the system performance, the system
parameters and the measurements, such as a feedback loop;
and to adjust the system parameters based on the optimization
of the objective function. The implementation is usually in
real-time. A system dynamically driven by real-time data
has many advantages over systems with fixed configuration.
The benefits include: optimal resource allocation, such as
bandwidth usage and power consumption; increased accu-
racy of system output, such as signal reconstruction quality;
dynamic user access, such as spectrum monitoring based
access control; and adaptive decision making. Reconstruction
in an RF imaging system was traditionally offline due to the
high computational complexity. However, advanced hardware
implementation, such as high-end field programmable gate
array (FPGA) dedicated to each sensor, and fiber-optics cables
connecting sensors and control center that provide large band-
width for real-time communications, allows real-time system
adaptation and image reconstruction. This motivates us to
develop more adaptive imaging system based on the DDDAS
concept for radar systems [8].

The first issue addressed in this paper is power allocation
in multistatic RF imaging. When RF sensors are distributed
in multiple locations, the imaging system can exploit channel
diversities to improve the quality of reconstruction. The diver-
sity may include, but not limited to, waveform, channel noise,
scatterer and attenuation along propagation paths [9], [10]. An
optimum sensor management policy should be developed to
effectively exploit the diversity in multistatic imaging system
[11]. Sensor management has been an active research area in
the last couple of decades [12]–[16], where power efficiency
is a main issue investigated in resource-aware management.
When sensors are off-grid and have to operate over long
period, it’s critical to have an efficient power allocation strat-
egy to increase the system’s sustainability. Even if sensors
are on the power grid, power consumption should still be
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managed to reduce spectrum contamination and probability
of interception by an adversary. In [17], optimal power al-
location in multistatic radar and communication system was
investigated towards low probability of intercept. The objective
is to minimize total power consumption while maintaining
certain target detection probability and information rate. Yan
et al. studied radar sensor selection and power allocation
for multiple target tracking under the constraint of tracking
accuracy in [18]. Cramér-Rao lower bound (CRLB) was used
as a performance metric to quantify the tracking performance
in the study. Optimization of sensor configuration other than
power allocation has also been widely studied. For example,
the optimization of sparse aperture configuration was recently
investigated for millimeter-wave imaging in [19].

We propose power allocation strategies using Fisher in-
formation associated with target reflectivities based on target
location information derived from initial sensing. As seen in
[18] and will be discussed in Section III-A, Fisher information
is a commonly used performance metric. Two scenarios were
considered in our study. One minimizes the mean squared
error of target reflectivity estimators given a fixed power
budget, while the other minimizes the total power consumption
given required reconstruction accuracy. Our analysis shows
that the first scenario corresponds to a nonconvex optimization
problem, for which gradient based optimization algorithm
was developed to get solutions. The second scenario leads
to a convex optimization problem with linear objective and
nonlinear constraint, which can be solved efficiently with
existing convex optimization toolbox. Numerical experiments
show that the optimal power allocation strategies driven by
target location information are more efficient than uniform
allocation and greedy allocation in both scenarios.

When a RF waveform propagates from transmitter to re-
ceiver, it may be scattered multiple times and reach the re-
ceiver through different paths. The propagation paths are usu-
ally determined by the locations of scatterers in the scene. This
is the well-known multipath propagation phenomenon in RF
imaging. As an inverse problem, RF imaging is solved through
optimization procedure. Its objective function is determined by
the system model and the metric used. Multipath propagation
can be modeled by including multiple levels of scattering in
the system model. For example, Leigsnering has investigated
multipath propagation in through-the-wall radar imaging [20],
[21]. The reflections from surrounding walls are modeled using
prior knowledge of the location and thickness of walls. In
[22], ghost images caused by multipath propagation have been
exploited in radar target classification. In both studies, the
locations of higher order scatterers are assumed to be known
so the system models were predetermined and fixed throughout
the reconstruction process.

This paper considers reconstructing reflectivity of point
targets in free space. Each target is not only a first order
scatterer, but also a higher order scatterer on the propagation
paths of waveforms reflected from other targets. When the
number of targets and their locations are unknown, a naive
approach to model multipath propagation is to include every
pixel of the image as both first order scatterer and higher order
scatterer in the system model. However, such an exhaustive

approach can cause the size of reconstruction dictionary to
grow exponentially with the image size and lead to signif-
icant increase in reconstruction complexity. To maintain the
computational cost at a practical level, we propose to exploit
the target location information and update the reconstruction
dictionary dynamically to include secondary reflections from
targets only. This is a data-driven model reduction strategy
which generates adaptive model from data obtained during
online computation. Such strategies have been studied before
to reduce computational cost in inverse problems [23], to adapt
reduced models from incomplete data [24], and to assist real-
time decision making [25]. The target location information is
also used to develop a grouped-coordinate descent type algo-
rithm for the reconstruction. In each iteration, the optimization
alternates between the parameter domains of target space and
non-target space. The results show that the proposed algorithm
converges faster than sequential single coordinate descent
algorithm, and the dynamic dictionary improves system model
fidelity and reduces artifacts caused by multipath propagation
with low computational cost.

There are three contributions of this paper.
1) Fisher information collected by multistatic RF sensors

with respect to target reflectivity parameters is derived.
Optimal power allocation strategies based on Fisher
information are proposed for different scenarios and the
corresponding optimization algorithms are developed.

2) A grouped-coordinate descent type algorithm is devel-
oped for the reconstruction of multistatic RF imaging
system. The target location information allows dynamic
update of reconstruction dictionary to include secondary
reflections from targets, and iterative optimization that
alternates between target space and non-target space
parameters. The algorithm is not only effective to re-
duce artifacts caused by multipath propagation, but also
has a faster convergence rate and lower computational
complexity.

3) The target-aware RF imaging system demonstrates how
dynamic data driven methods can be applied to sensor
management and model reduction.

The rest of the paper is organized as follows. In Section
II, the system model of RF imaging is introduced. Section III
derives Fisher information based dynamic power allocation
strategies. The reconstruction algorithm with dynamic dictio-
nary is described in Section IV. Numerical simulations of the
proposed data-driven strategies and the results are presented
in Section V. Section VI concludes the paper and discusses
future work.

II. SYSTEM MODEL

Multistatic RF imaging system is composed of distributed
RF sensors to achieve spatial diversity. The sensors can be
either homogeneous transceivers or heterogeneous transmitters
and receivers. To create an image, RF pulses are transmitted to
illuminate regions of interest and the echoes recorded at differ-
ent locations are processed to estimate dielectric properties of
the regions and detect targets located within the regions. The
imaging system can use a discrete set of frequency components
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suitable for the environment of the region. For example, in
underground target imaging, the electromagnetic wave must
be able to penetrate the ground and the choice of frequency
depends on the type of soil and target depth [2]. This paper
considers free space waveform propagation for ground targets
and airborne targets detection, where waveform frequency
can be chosen according to desired image resolution. For
simplicity of the model, it’s also assumed that reflection at
each location is isotropic so that the reflectivity may vary with
frequency, but not angle.

Consider a multistatic imaging system composed by M
transmitters and N receivers distributed in an area A ∈
IR2. The reflectivity of the region of interest is a function
θ : A → IR. The shadowing on a bistatic link caused by
environment can be modeled as a weighted integral of θ(x)
over A [26], [27]. The goal of the imaging system is to
estimate θ by processing the recorded echoes. To discretize
the parameter space, let xi be the coordinates of the i-th
pixel of the image to be reconstructed, and θi := θ(xi) be
the reflectivity of xi. The estimation of θ is converted to
estimate θ = [θ1, θ2, . . . , θK ]T , a K-dimensional parameter
vector, where K is the total number of pixels in the image.

A. First order model
A transmitted waveform can be reflected by multiple scat-

terers and multiple times before reaching receivers, known
commonly as multipath propagation. For the (m,n)-th bistatic
link, the first order model assumes waveform transmitted
by the m-th transmitter is reflected by the scatterers in the
field only once before reaching the n-th receiver. Assuming
orthogonal channels, the baseband measurement obtained by
the (m,n)-th bistatic link, ymn(t), is a combination of the first
order echoes [1],

ymn(t) =
K∑
i=1

√
amn(xi)pmθism(t− τmn(xi))·

e−jφmn(xi) + ωmn(t) (1)

where sm(t) is the baseband pulse of unit energy used by
the m-th transmitter, amn(xi) is the path loss associated with
xi, pm is the transmission power of the m-th transmitter,
τmn(xi) is the bistatic propagation delay associated with xi,
e−jφmn(xi) is the phase offset between the transmitter and
receiver caused by the reflection at xi, and ωmn(t) is the
zero mean, additive white Gaussian noise of the channel. Let
x̃m be the coordinates of the m-th transmitter and x̌n be the
coordinates of the n-th receiver. The path loss amn(xi) is
proportional to 1

d2(x̃m,xi)d2(xi,x̌n) , where d(x,x′) = ‖x−x′‖
is the Eucleadian distance between x and x′. The propagation
delay τmn(xi) is determined by

τmn(xi) =
d(x̃m,xi) + d(xi, x̌n)

c
, (2)

where c is the speed of light. The phase φmn(xi) is determined
by the length of propagation path as well as the scatterer
located at xi. Please note the waveform propagated through
direct path is not included in Eq. (1) because it is usually
removed in the preprocessing step.

B. Second order model

The first order model in Eq. (1) doesn’t include higher
order reflections. However, when targets in the scene have
strong reflectivity, the strength of second order reflections
may be comparable to first order reflections. If system model
doesn’t distinguish second order reflections from first order
reflections, the reconstructed images may have serious artifacts
or even “ghost targets”. To improve the accuracy of image
reconstruction, higher order reflections should be included in
the system model. Eq. (1) is modified to introduce the second
order reflections,

ymn(t) =
K∑
i=1

√
amn(xi)pmθism(t− τmn(xi))e

−jφmn(xi)

+
K∑
i=1

K∑
j=1,j 6=i

√
amn(xi,xj)pmθiθjsm(t− τmn(xi,xj))·

e−jφmn(xi,xj) + ωmn(t) (3)

where amn(xi,xj) corresponds to the path loss along x̃m →
xi → xj → x̌n, τmn(xi,xj) is the propagation delay and
φmn(xi,xj) is the phase offset associated with the path. To
strike a balance between accuracy and complexity of the
system model, reflections of orders higher than the second
order are deemed insignificant and not included in the model.

C. Discrete system model

The system model shown in Eq. (3) can be discretized by
sampling the transmitted waveforms, the received echoes and
the noise process:

ymn =
√
pmDmnθ+

√
pmD̃mnv(θ) +ωmn (4)

where ymn is the vector representing the sampled echoes,
Dmn and D̃mn are matrices whose columns are the attenuated
pulses received along the paths of the first order reflections
and the second order reflections, separately, and ωmn is the
sampled noise vector. v(θ) is a K(K−1)

2 × 1 vector formed
from the distinct nondiagonal elements of the K ×K matrix
θθT , i.e. v(θ) = [θ1θ2, θ1θ3, . . . , θK−1θK ]T . Dmn and D̃mn

are called the first order dictionary and the second order
dictionary of the (m,n)-th bistatic link. The dictionaries can
be pre-calculated and stored for each bistatic link of the
imaging system.

III. DYNAMIC POWER ALLOCATION

For multistatic radio frequency imaging, the objective is to
obtain the most accurate estimation of reflectivity of the targets
in the scene. As the signal to noise ratio (SNR) of a waveform
propagation channel is directly affected by the power of the
transmitted pulses, power allocation policy has a direct impact
to the quality of reconstructed images. Thus, the investigation
of dynamic power allocation policy under different constraints
is one of the major subjects of this paper.

Dynamic power allocation in a multistatic radio frequency
imaging system is a task of sensor management. Optimal con-
figuration is critical to sensor systems operating under resource
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constraints. System optimality varies with sensor, environment
and target (SET) operational conditions. For example, power
efficiency is the key to long-term sustainability for off-grid
RF imaging system. Minimizing power consumption is also
necessary to reduce spectrum contamination in an urban
environment, and to achieve low probability of intercept.

A. Fisher information gain

Choosing an optimal configuration of a sensor system
from a high dimensional system parameter space is not a
trivial problem. Information based sensor management have
been well studied and widely applied to assess the system’s
fundamental limitations [28]–[30]. The general principle is that
sensors should be scheduled and resources should be allocated
to extract the maximum amount of relevant information. To
quantify and optimize the information collection capability of
sensors, various information measures, such as entropy [31],
Fisher information [32], [33], mutual information [34], and
Kullback-Leibler divergence [35], have been applied in the
design of risk or reward functions [36].

By assuming additive white Gaussian noise for all the
propagation channels, the probability density functions of ymn
conditioned on the value of θ, is

f(ymn;θ) =
1

(2πσ2
ω)L/2

e
− |ymn−

√
pmDmnθ|2

2σ2ω (5)

where σ2
ω is the variance of Gaussian noise, which is assumed

to be the same for all channels, and L is the dimension of
ymn. Please note the conditional probability given in Eq.
(5) is based on the first order system model to simplify
the derivation of power allocation strategies and reduce the
computational complexity of the optimization procedure. With
the parametric model in Eq. (5), image reconstruction can be
formulated as a maximum likelihood estimation of θ. For a
maximum likelihood estimator, its mean squared error is going
to approach Cramér-Rao lower bound (CRLB) asymptotically.
As the CRLB can be obtained through the inverse of Fisher
information matrix, the power allocation strategies developed
in this paper are based on the Fisher information gain.

As shown in Appendix A, the Fisher information matrix of
the (m,n)-th bistatic link with respect to θ is

Imn(pm,θ) =
pmDT

mnDmn

σ2
ω

(6)

which implies the information gain over θi is proportional
to the transmission power pm, and the attenuation coefficient
amn(xi) which is the i-th diagonal element of the K×K ma-
trix DT

mnDmn. Fig. 1 shows the attenuation maps formed by
two bistatic sensor pairs over the same region. Pixel intensity
of the images equals amn(xi). Note that the attenuation map
is equivalent to Fisher information gain map if transmission
and noise powers are the same for both links. It’s obvious
that each sensor pair forms a unique attenuation map, which
is determined by the sensor locations relative to the physical
locations of the image pixels. For any bistatic sensor pair, the
closer xi is to a transmitter or a receiver, the more information
can be collected with respect to θi by the sensor pair. Closely
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Fig. 1: Attenuation maps of two bistatic sensor pairs.

distributed bistatic sensor pairs can collect more information
with respect to their neighborhoods than greatly distanced
sensor pairs.

As users of RF imaging system usually focus on specific
targets, it is reasonable to reconfigure the system to achieve
more accurate estimation of targets’ reflectivity. The intuitive
idea is that power should be allocated to transmitters that are
close to targets to increase Fisher information gain over target
reflectivity. At the initial stage of sensing, target locations are
unknown. Power is distributed equally among all transmission
sensors. The initial sensing and reconstruction can give an
estimate of target locations. Targets of interests are most likely
to have high value of reflectivity. So a threshold θmin can be
applied over the reconstructed image, and the set of pixels
whose reflectivity is greater than θmin are regarded as targets or
clutters. Let S be the index set corresponding to such a target
set, i.e. S := {i|θi > θmin, i = 1 . . .K}. Let the cardinality
of S be q. We use θS to denote the q dimensional vector
consisting of the elements of θ indexed by the member of S.
The set S̃ = {1, 2, . . . ,K} − S denotes the complement of S
intersected with {1, . . . ,K}. In Section III-B, power allocation
strategies are derived under two different constraints based on
the Fisher information matrix of θS .

B. Dynamic power allocation

Optimal power allocation policies under two scenarios are
investigated in this paper. In the first scenario, the imaging
system has a fixed total power budget and power shall be
allocated among sensors to minimize mean squared error of
θ̂S . In the second scenario, the aim is to use minimal power
to achieve a required accuracy of θ̂S .

1) Mean Squared Error Minimization: Let P represent
the total power available to the imaging system, and p =
(p1, p2, . . . , pM )T be the power allocation among M trans-
mitters. After the initial sensing, the index set of targets
S is estimated by thresholding the reconstructed image θ.
The goal is to minimize the mean squared error (MSE) of
θ̂S , which is bounded by the inverse of Fisher information
matrix I−1(p,θS) for maximum likelihood estimation. So the
proposed optimum allocation scheme minimizes the trace of
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I−1(p,θS), which can be formulated as

min
p

tr(I−1(p,θS))

s.t.
M∑
m=1

pm = P

pm ≥ 0 m = 1 . . .M

pm ≤ pmax m = 1 . . .M

(7)

where pmax is the maximum power available to each sensor.
As the objective function is nonconvex, this is a nonconvex
optimization problem of which a global minimum is not easy
to obtain with low complexity algorithms [37]. Grid search
suffers from the curse of dimensionality as the number of trials
grows exponentially with the number of transmitters in the
imaging system. While random search is theoretically more
efficient than grid search in high dimensional space, it may
still require hundreds of trials to achieve desired accuracy [38].
We aim to develop a local minimum search algorithm that is
likely to approach global minimum via a good initialization.

A heuristic idea is to allocate power among sensors to
collect equal amount of Fisher information with respect to each
element in θS . By Eq. (14) in Appendix, Fisher information
of θi is

I(p, θi) =
1

σ2
ω

M∑
m=1

pm[Bm]i,i (8)

where Bm :=
∑N
n=1 D

T
mnDmn, and [Bm]i,i is the di-

agonal element of Bm corresponding to θi. The heuris-
tic approach will lead to a linear system of equations,
{
∑
m pm[Bm]i,i = 1, i ∈ S}. As the cardinality of S is q, the

system has a total of q equations. If q ≥ M , the system is
either fully determined or overdetermined, and has an analytic
solution to its least squares formulation. If q < M , the system
is underdetermined. A greedy method can be applied to reduce
the number of unknowns, which finds the transmitter closest
to each target and only keeps these transmitters in the system.
The greedy method reduces the number of unknowns to be less
than or equal to q and the system will again have an analytic
solution. Finally, the solution to the linear system of equations
is scaled to satisfy the constraint of

∑M
m=1 pm = P .

The heuristic solution is applied to initialize a gradient-
based algorithm to find the local minimum of the objective
function in Eq. (7), which is detailed in Algorithm 1.

Algorithm 1 Power allocation to minimize MSE of θS
1: Input: {Bm}, S, Niter , ε,
2: Init: p(0), step α(0)

3: while i < Niter and |p(i) − p(i−1)| > ε do
4: p(i) = p(i−1) − α(i−1)∇tr

(
I−1(p(i−1),θS)

)
s.t. pm ≥ 0 and pm ≤ pmax

5: p(i) = p(i)∗P∑
m p

(i)
m

6: α(i) =
|(p(i)−p(i−1))T ·[∇tr(I−1(p(i),θS))−∇tr(I−1(p(i−1),θS))]|

|∇tr(I−1(p(i),θS))−∇tr(I−1(p(i−1),θS))|2
7: i = i+ 1
8: end while
9: Output: p(i)

The gradient of tr(I−1(p,θS)) with respect to pm is derived

as follows.

∂tr
(
I−1(p,θS)

)
∂pm

=tr
(
∂I−1(p,θS)

∂pm

)
=tr
(
−I−1(p,θS)

∂I(p,θS)

∂pm
I−1(p,θS)

)

=− 1

σ2
ω

tr

I−1(p,θS)
∂
(∑M

m=1 pmBm,θS

)
∂pm

I−1(p,θS)


=− 1

σ2
ω

tr
(
I−1(p,θS)Bm,θSI−1(p,θS)

)
(9)

Here Bm,θS is a submatrix of Bm, whose elements are
{[Bm]i,j , i, j ∈ S}.

2) Total power minimization: The second scenario consid-
ered is to minimize the total power consumption to achieve
a required accuracy of θ̂S , which is specified by the trace
of the Fisher information matrix inverse tr(I−1(p,θS)). The
optimization problem is formulated as

min
p

M∑
m=1

pm

s.t. tr(I−1(p,θS)) ≤ η
pm ≥ 0 m = 1 . . .M

pm ≤ pmax m = 1 . . .M

(10)

where η is the upper bound of the trace of the inverse Fisher
information matrix specified by the user. This is a convex
optimization problem with linear objective and nonlinear con-
straint. It can be solved by CVXOPT, a free software for
convex optimization [39].

The efficiency of the two power allocation strategies will
be demonstrated in Section V. Intuitively, both strategies
would allocate more power to the transmitters whose as-
sociated Bm,θS has large trace value. For example, when
there is only a single target in the scene, the q × q matrix
Bm,θS degenerates to a scalar. The objective of minimiz-
ing tr(I−1(p,θS)) is equivalent to maximizing I(p,θS),
which is

∑M
m=1 pmBm,θS , and subject to the constraints of∑M

m=1 pm = P , pm ≥ 0 and pm ≤ pmax. This will lead to
a result of assigning pmax to the transmitters with the first
M̃ largest values of Bm,θS , where M̃ = bP/pmaxc and the
remaining power P − M̃pmax to the transmitter with the next
largest Bm,θS . When there are multiple targets in the field,
the allocation is not as simple and must be determined by the
optimization algorithms. Nonetheless one can still expect that
the transmitters with large trace of Bm,θS be allocated more
power than those with small trace of Bm,θS .

IV. GROUPED-COORDINATE DESCENT RECONSTRUCTION
WITH DYNAMIC DICTIONARY

For a multistatic RF imaging system, image reconstruction
is to estimate the unknown vector θ from the set of noisy
observations {ymn}. Like most other image reconstruction
techniques, it is an inverse problem which can be solved by
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Algorithm 2 Grouped-coordinate Descent Reconstruction with Dynamic Dictionary

1: Input: {ymn}, {Dmn}, p, Niter, ε
2: Init: θ(0) = arg minθ

∑
m

∑
n

∣∣ymn −√pmDmnθ
∣∣2 + λ|θ|1

3: S = {k : θ
(0)
k > θmin} and S̃ = {1, 2, . . . ,K} − S

4: D̃
(0)
mn = {Echoes of the second order reflections via xS}

5: while i < Niter and |θ(i) − θ(i−1)| > ε do
6: θ

(i)
S = arg minθS

∑
m

∑
n

∣∣∣ymn −√pm (Dmn,SθS + Dmn,S̃θ
(i−1)

S̃
+ D̃

(i−1)
mn v(θ

(i−1)
S )

)∣∣∣2 + λ|θS |1

7: θ
(i)

S̃
= arg minθS̃

∑
m

∑
n

∣∣∣ymn −√pm (Dmn,Sθ
(i)
S + Dmn,S̃θS̃ + D̃

(i−1)
mn v(θ

(i)
S )
)∣∣∣2 + λ |θS̃ |1

8: S = {k : θ
(i)
k > θmin} and S̃ = {1, 2, . . . ,K} − S

9: D̃
(i)
mn = {Echoes of the second order reflections via xS}

10: i = i+ 1
11: end while
12: Output: θ(i), S

statistical methods, such as maximum likelihood (ML), penal-
ized maximum likelihood (PML), or maximum a posteriori
methods. These methods usually generate reconstructions with
less variance relative to filtered backprojection. The quality of
reconstructions using purely the ML criterion is poor due to
artifacts and noise. Regularization or a penalty is often added
to the objective function to reduce the noise and artifacts,
which is called penalized maximum likelihood. Assuming
sparse targets in the field, it is natural to use l1 norm of θ
as a regularizer to encourage sparsity of the solution [40].

Sparse representation and reconstruction have been widely
studied to efficiently sample and reconstruct sparse signals
[41]–[43]. An efficient dictionary is important in sparse repre-
sentation and reconstruction. Various dictionary learning rules
have been developed for different applications. The problem
is generally formulated as

min
D,θ

1

2
|y −Dθ|2 + λ|θ|1 (11)

where y is the observation, D is the dictionary to be learnt,
θ is the signal or parameter to be estimated, and λ > 0 is the
coefficient which controls the weight of the regularizer. | · |1
represents l1 norm of a vector. When D is known, the problem
is commonly known as least absolute shrinkage and selection
operator (LASSO) [44]. Sparse reconstruction with a dynamic
dictionary was studied for joint model order and parameter
estimation in [45], [46]. The method iteratively selects a subset
of dictionary to achieve model reduction. The reconstruction
of RF imaging can be formulated as the following with fixed
first and second order dictionaries,

θ̂ = arg min
θ

1

2

M∑
m=1

N∑
n=1

∣∣∣ymn −√pm (Dmnθ+ D̃mnv(θ)
)∣∣∣2

+ λ|θ|1
(12)

As discussed previously, the number of elements of a full size
second order dictionary D̃mn is K(K−1)

2 , it is impractical to
use the dictionary due to the high computational cost caused
by the large model size. This motivates the need to find an
efficient model reduction method. As the secondary reflections
from non-target pixels are much weaker than those from target

pixels, D̃mn can be built based on the secondary reflections
from target pixels only. Due to the sparsity of targets, the size
of a target driven secondary dictionary is much smaller than
the full size dictionary.

It’s well known that incorporation of prior knowledge about
the distribution being imaged can accelerate statistical recon-
struction [9], [47], [48]. As target location can be estimated
from initial sensing, we propose a grouped-coordinate descent
(GCD) type reconstruction algorithm to incorporate the target
information. The algorithm iteratively updates the group of
target location space parameters and the group of non-target
location space parameters. In addition to the intrinsic fast
convergence rate, the algorithm also allows iterative intro-
duction and pruning of elements in the secondary dictionary
according to the estimated target locations, which significantly
reduces the size of the dictionary, and thus the computational
complexity of reconstruction caused by modeling the second
order reflections. The iterative optimization procedure with
cyclic fixing of groups of parameters and optimizing over
remaining parameters was first introduced by Jensen etc. for
maximizing likelihood functions [49]. Fessler formally named
the procedure as grouped-coordinate ascent (GCA) algorithm
to distinguish it from his previous work of space alternat-
ing generalized expectation-maximization, which is a single-
coordinate ascent (SCA) type algorithm for image reconstruc-
tion of emission tomography [50]–[52]. The global conver-
gence and the asymptotic convergence rates of this method
were established by Xu and Yin [53], [54]. They renamed
the procedure as block coordinate descent, and applied it in
nonconvex optimization [54]. Other than the fast convergence
rate, GCD type algorithms are also easily parallelizable, which
is a key attribute to enable real time applications.

The pseudocode of the reconstruction algorithm is given in
Algorithm 2. The algorithm takes the set of RF measurements
{ymn} and the set of the first order dictionaries Dmn as input.
After the first reconstruction, θ(0) has large values at target
and ghost target locations. Target set S is estimated based on
a threshold, S := {k|θ(0)

k > θmin}. Please note S is updated in
each iteration although the iteration number is omitted to avoid
confusion. Dictionary elements corresponding to the secondary
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reflections from target locations xS are added to D̃
(0)
mn. The

total number of elements in D̃
(0)
mn equals q(q − 1)/2. During

the i-th iteration, θ is split into two groups, i.e. the group of
target space parameters θ(i)

S and the group of non-target space
parameters θ(i)

S̃
. The two groups of parameters are updated

sequentially to speed up the convergence. Target set S and the
secondary order dictionary D̃

(i)
mn are updated according to the

value of θ(i). Once the stopping criteria is met, the algorithm
outputs S as the target set and θ(i) as the reconstructed image.

V. NUMERICAL SIMULATIONS

To demonstrate the effectiveness of the proposed power
allocation strategies and reconstruction algorithm, we have
simulated the performance of the dynamic data driven mul-
tistatic RF imaging system in different scenarios. While the
derivation in this paper doesn’t assume a specific geometric
setup of the multistatic RF imaging system, the numerical
simulations are based on the sensor distributions of two
distributed sensing research facilities. Fig. 2 shows aerial

(a) Tillman (b) Stockbridge

Fig. 2: Distributed sensing facilities in AFRL.

views of the two facilities. The facility shown in Fig. 2 (a)
is named Tillman, while the facility in Fig. 2 (b) is named
Stockbridge. Tillman is in a city environment, and composed
of 12 radar sensors pseudo randomly distributed on a circle of
80m radius. Each sensor is mounted on a tower and elevated
15.24m above the ground. The sensor is capable to transmit
arbitrary waveforms between 200MHz and 1GHz. Stockbridge
occupies 300 acres of rural land. It’s electromagnetically
more quiet than Tillman, and composed of 24 radar sensors
pseudo randomly located in the field [55]. Both facilities can
perform a variety of experiments including the generation of
complex EM environment, RF tomography, radar imaging,
hybrid sensor imaging and distributed sensing.

To simulate the echoes received by the multistatic RF
sensors, first order dictionaries for the bistatic links in Tillman
and Stockbridge are pre-calculated and multiplied with the
target and non-target reflectivity coefficients. The secondary
reflections are simulated according to the target locations in
each simulation. Zero mean stationary Gaussian noise is added
to achieve desired signal to noise ratios.

A. Power allocation

Using the estimated target locations and sensor locations,
optimal power allocations are calculated for the two scenarios

discussed in Section III, i.e. mean squared error minimization
and total power minimization, separately. Three power allo-
cation strategies including uniform power allocation, greedy
power allocation and optimal power allocation, are compared.
The greedy strategy is calculated based on the heuristic
approach aforementioned.
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Fig. 3: Comparison of power allocation strategies to minimize
mean squared error of reconstruction.

Fig. 3 shows the performance of the three power allocation
strategies in the scenario of minimizing mean squared error of
reconstruction. A total of 500 Monte Carlo simulations of 5
randomly located targets have been generated at each level of
power budget. Although different power allocation strategies
lead to different energy of the received RF echoes, the total
power budget and the noise level remain the same for all the
3 strategies to make fair comparisons. As it can be clearly
seen from the Fig. 3, the Fisher information based optimal
power allocation yields the best reconstruction accuracy as
compared to the other two power allocation strategies in
both Tillman and Stockbridge. The reconstruction accuracy
of greedy power allocation is similar to that of uniform
power allocation in Tillman, and is better than uniform power
allocation in Stockbridge. We think the performance difference
of greedy power allocation in the two setups is due to the
change in sensor distribution topology. Sensors in Tillman
are distributed on a ring in a smaller area than Stockbridge.
A target in a random location in Tillman may have similar
distances to several sensors, while a target in a random location
in Stockbridge has a higher chance to be closer to a specific
sensor than any other sensors. As greedy power allocation
favors nearest transmitting sensor, the sensor distribution in
Stockbridge may give advantages to greedy power allocation
over uniform allocation. Further investigation is needed to
validate this conjecture.

The comparison of the three power allocation strategies to
minimize total power budget given a required reconstruction
accuracy is shown in Fig. 4. The Fisher information based
power allocation has again performed better than the other two
strategies. In both Tillman and Stockbridge setups, the optimal
power allocation needs less power budget than the other two
strategies to achieve a specified reconstruction accuracy. As
the sensors in Stockbridge are distributed in a much larger
field, it’s reasonable that more power is needed in Stockbridge
than Tillman to achieve the same reconstruction accuracy. It’s
worth noting that greedy power allocation performs worse than
uniform power allocation in both Tillman and Stockbridge in
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Fig. 4: Comparison of power allocation strategies to minimize
total power consumption.

this scenario, while the performance gap in Stockbridge is
smaller than that in Tillman. The sensor distribution topology
may play a similar role as discussed above.

B. Reconstructions

Two experiments have been performed to demonstrate the
advantages of the proposed reconstruction algorithm. In the
first experiment, a scene of 5 targets randomly located in
Tillman is simulated without noise. Two reconstructions, one
using only first order dictionary, while the other using both
the first order dictionary and the dynamically built secondary
dictionary, are performed. Fig. 5 shows the results of the two
reconstructions. The reconstruction assisted by the secondary
dictionary has much less artifacts than the reconstruction using
only first order dictionary.

(a) Original image (b) First order dictionary
only

(c) First and second order
dictionaries

Fig. 5: Comparison of reconstruction accuracy using different
order dictionaries.

In the second experiment, the convergence rate of the
grouped-coordinate descent (GCD) reconstruction algorithm
is compared to that of the single coordinate descent (SCD)
reconstruction algorithm. The scene is the same as the first
experiment, but Gaussian noise is added to the simulated
echoes. Both algorithms use dynamic secondary dictionary
to improve reconstruction accuracy. Fig. 6 shows the residual
error of the two algorithms after different number of iterations.
It’s clear that the GCD reconstruction algorithm converges
faster than the SCD algorithm. The reconstruction results of
the GCD algorithm after 4, 8, 12, 16 and 20 number of
iterations are shown in Fig. 7. The reconstruction quality
increases with the number of iterations, which confirms the
convergence of the algorithm. Artifacts have been greatly
reduced after 20 iterations.
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Fig. 6: Comparison of convergence rate of SCD and GCD
algorithms.

i=4

(a) i = 4

i=8

(b) i = 8

i=12

(c) i = 12

i=16

(d) i = 16

i=20

(e) i = 20

Fig. 7: Reconstruction results of GCD algorithm after different
number of iterations.

C. Dynamic Data Driven RF Imaging

Finally, the entire dynamic data driven RF imaging system
is simulated using the sensor setup at Tillman. Figure 8
illustrates the implementation of dynamic power allocation
through a feedback loop in the RF imaging system. Assuming
a fixed total power used by the imaging system, uniform power
allocation is applied to obtain the echoes in initial sensing.
The first image reconstruction is performed using only the
fixed first order dictionary. After target locations are estimated
from the first reconstruction, the power allocation is updated
and new echoes are simulated based on the updated power
allocation. Then Algorithm 2, grouped-coordinate descent with
dynamic dictionary is used to reconstruct the reflectivity of

Fig. 8: RF imaging system with dynamic power allocation.
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the scene. Fig. 9 shows a snapshot of the performance of the
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Fig. 9: Reconstruction accuracy of dynamic data driven RF
imaging system with fixed total power budget.

dynamic data driven imaging system under different power
allocation strategies. Three targets were randomly distributed
in the scene. The mean squared error of reconstructed target
reflectivity generally decreases with the number of reconstruc-
tion iterations. The accuracy of the first iteration is the same
for all three power allocation strategies because reconstruction
from initial sensing is the same regardless of the strategies.
After that, the accuracy of uniform power allocation quickly
converges in about 8 iterations, while the accuracy of greedy
and optimal power allocations continuously to improve. The
accuracy of optimal power allocation converges after 18 it-
erations and achieves the best result. Although the imaging
accuracy varies with the target locations, the optimal power
allocation strategy always achieve the best accuracy, while
the greedy strategy and uniform strategy may beat each other
depending on target locations.

We have also investigated whether the imaging system’s
performance changes with the number of targets in the scene.
When using only the first order dictionary, imaging accuracy
deteriorates with increasing number of targets, which is ex-
pected as the second order reflections were not modeled and
become disturbance in the received echoes. When dynamic
dictionary is used to include the second order reflections,
imaging accuracy may vary with target locations, but does
not show significant changes with the number of targets.

VI. CONCLUSIONS

The principle of dynamic data driven applications systems
has been applied to improve the performance of multistatic
RF imaging system. Target location information derived from
initial sensing is exploited to optimally allocate power to
transmitting sensors for target reflectivity estimation. Fisher
information based optimization strategies are designed for two
scenarios. One is to minimize the mean squared error of
reconstruction given a fixed power budget, while the other
is to minimize the total power consumption given a specified
reconstruction accuracy. The numerical simulations show that
the proposed power allocation strategies perform better than
both uniform power allocation and greedy power allocation
in the two scenarios. The proposed grouped-coordinate de-
scent reconstruction algorithm incorporates target information

to improve model fidelity and convergence rate. The dy-
namic second order dictionary helps to reduce the artifacts
in reconstruction while maintains a practical model size and
computational complexity. The algorithm converges faster than
the traditional single coordinate descent algorithm and can be
easily parallelized. In the future work, we will explore the
impacts of sensor distribution topology to the power allocation
strategy, and the reflectivity estimation of anisotropic scatterers
in multistatic RF imaging.

APPENDIX
DERIVATION OF FISHER INFORMATION MATRIX

Consider the discrete first order model of the (m,n)-th
bistatic pair. The observation ymn has a multivariate normal
distribution conditioned on known reflectance θ, which is
shown in Eq. (5). The Fisher information matrix Imn(pm,θ)
is derived as follows.

Imn(pm,θ)

=E

[(
∂ log f(ymn;θ)

∂θ

)(
∂ log f(ymn;θ)

∂θ

)T ∣∣∣∣θ
]

=
1

4σ4
ω

E

[(
∂|ymn −

√
pmDmnθ|2

∂θ

)
·

(
∂|ymn −

√
pmDmnθ|2

∂θ

)T ∣∣∣∣θ
]

=
1

σ4
ω

pmDT
mn·

E
[
(ymn −

√
pmDmnθ)(ymn −

√
pmDmnθ)T

∣∣∣θ]Dmn

=
pmDT

mnDmn

σ2
ω

(13)
Assuming the noise of each channel is independent, the

Fisher information matrix over θ by the whole multistatic
imaging system is the sum over the Fisher information matrix
of individual bistatic pairs due to the linearity of expectation
and partial derivative,

I(p,θ) =
M∑
m=1

N∑
n=1

Imn(pm,θ)

=
1

σ2
ω

M∑
m=1

pm

N∑
n=1

DT
mnDmn

=
1

σ2
ω

M∑
m=1

pmBm

(14)

where Bm :=
∑N
n=1 D

T
mnDmn is a K ×K matrix.
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