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Abstract. Owing to no need for prior knowledge of signal, blind spectrum
sensing has received wide attention. Covariance Absolute Value (CAV) detection
algorithm, one of the most popular blind sensing algorithms, considers the corre‐
lation of signal samples. However, its detection performance is restricted by the
uncertain threshold calculation. To optimize the performance of CAV, we
propose a new method based on a new statistic and goodness of fit test. The
statistic is constructed from the off-diagonal of covariance matrix firstly, then
Anderson-Darling (AD) test is used to estimate the existence or absence of
primary user. The proposed method not only achieves blind detection but also
improves the sensing performance of CAV. Experimental results manifest the
effectiveness of the proposed scheme.
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1 Introduction

As a vital technology in cognitive radio, spectrum sensing is devoted to the appearance
or absence detection of the primary user (PU) for possible improvement of spectrum
utilization [1]. Recently, Covariance spectrum detection algorithms are prevailing [2,
3]. Because they take the correlation of signal samples into consideration and do not
require the information about signal and noise.

CAV detection algorithm [4] as one of covariance detection has the advantages
mentioned above all. However, its capability is limited by the multiple approximate
solutions in the process of threshold estimation. To optimize its performance, some
methods have been proposed. [5] put forward a two-stage spectrum sensing algorithm
on the basis of energy and CAV detection. In [6], features are extracted from covariance
matrix and put into support vector machine to achieve the improvement of detection
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performance. Nevertheless, the above methods do not solve uncertain estimated
threshold in essence.

To fundamentally improve the performance of spectrum sensing, some literatures
prefer to use the goodness of fit testing [7, 8]. The goodness of fit testing, a nonparametric
hypothesis testing problem, consists of Anderson-Darling (AD), Cramervon Mises(CM)
and Kolmogorov-Smirnov(KS). What’s more, [8] verifies the superiority of AD test.
Thus, this paper puts forward a modified covariance matrix-based spectrum sensing
scheme. It constructs new statistics from the off-diagonal elements of covariance matrix
firstly, and then AD test is used to determine the existence or absence of PU.

The structure of this paper is as follows. In Sect. 2, the system model of spectrum
sensing and CAV is introduced. Section 3 gives the construction of statistics and the
process of AD test. Experimental results and analysis are given in Sect. 4 and conclusion
are drawn in Sect. 5.

2 Theoretical Principle

2.1 Spectrum Sensing

The core role of Spectrum sensing is to obtain the state of PU, which can be presented
as follows [9]

(1)

Where, H0 and H1 separately represent the absence and existence of PU. y(k), s(k)
and n(k) indicate the signal obtained by SU, signal of PU and noise. K denotes the
samples.

The testing performance of sensing algorithm can be measured by the detection
probability Pd and the probability of false alarm Pfa, which are formulated as

Pd = P(H1
|
|H1) (2)

Pfa = P(H1
|
|H0) (3)

Obviously, a good detection method has large Pd and small Pfa. However, these two
indicators are mutually restricted. In practice, the receiver operating characteristic curve
(ROC) is used as the main measure.

2.2 CAV Sensing Model

Assume that noise is a Gaussian signal of independent and identically distributed with
a mean zero and variance !2

n
.

Supposing the smoothing factor is M, the vectors and covariance matrixes of signal
and noise can be written as [9].
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Y = [y(k) y(k − 1) … y(k −M + 1) ]T (4)

S = [s(k) s(k − 1) … s(k −M+1) ]T (5)

N = [n(k) n(k − 1) … n(k −M+1) ]T (6)

RY = E
[
Y ⋅ YH

]
(7)

Rs = E
[
S ⋅ SH

]
(8)

RY = Rs + !2
n
IM (9)

Traditional covariance-based spectrum sensing algorithm constructs statistics based
on the criterion that whether the covariance matrix of the receiver is a diagonal matrix.
However, multiple approximate solutions in the process of computing threshold may
limit its performance.

3 The Proposed Algorithm

To alleviate the problem of covariance-based method, this paper proposes an improved
algorithm. A new statistic is constructed first and then AD test is used to determine the
state of PU. The specific processes are shown in the following.

3.1 The Construction of Statistics

Suppose that the power of the signal is !2
s
. Define the sample autocorrelations of the

received signal [3] as

"(m) =
1
K

K−1∑

k=0
y(k) ∗ y(k − m) m = 0, 1,⋯ ,M − 1 (10)

Then the M ×M statistic covariance of SU can be written as

(11)

As verified in [4], the distribution off-diagonal elements of RY in the situation of H1
and H0 can be represented as follows
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(12)

Where #m = E(s(n) ∗ s(n − m))∕!2
s
 [4] denotes the normalization correlation of

sample points.
From (12), we know that in H0 the distribution of the whole off-diagonal elements

of obeying the normal distribution otherwise, they deviate from the normal distribution.
Based on the conclusions mentioned above, this paper constructs statistics. The

specific process is denoted as follows.
(1) Remove the diagonal elements RY to form a new (M − 1) ×M matrix R and calculate

the mean and variance of each column of R. Thus, we can get M mean-variance
pairs, which can be represented as (Xi,S2

i
). The range of i is 1 to M.

(2) Construct statistics Ti, which can be calculated as follows

Ti =
Xi

Si∕
√
n

(13)

Where n = M − 1. According to (13), we can get that in, Ti is students t distribution
with degree n − 1, namely Ti ∼ t(n − 1). However, in H1, Ti deviates significantly from
t(n − 1). Therefore, the state of PU can be judged by the distance between the distribution
function of observations and the cumulative distribution function of t(n − 1).

3.2 AD Test

Suppose the empirical distribution function of observations Ti(i = 1, 2⋯M) and the
cumulative distribution function of t(n − 1) respectively as FM(y) and F0(y).

Calculating the distance A2
M

 between FM(y) and F0(y).

A2
M
= n∫

+∞

−∞

[FM(y) − F0(y)]2 dF0(y)
F0(y)(1 − F0(y))

(14)

In [10],A2
M

 can be simplified as

A2
M
=

M∑

i=1
(2 ∗ i − 1)(ln zi + ln(1 − zn+1−i))

M
−M

(15)
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Where zi = F0(Ti)

Then, According to A2
M

 and threshold $, the state of PU can be determined as
{

H1: A2
M
> $

H0: A2
M
< $

(16)

As proved in [11], the distribution of A2
M

 under H0 converges to a limiting distribution
when M >= 5 and it is independent of F0(y). Thus, the value of $ at a given Pfa can be
calculated using the limiting distribution of A2

M
. For example, when

Pfa = 0.05, $ = 2.492 and when Pfa = 0.1, $ = 1.93 3 .

4 Experimental Results and Analysis

In the experiments, it is assumed that the modulation type of PU is OFDM, the noise is
AWGN. The frequency of the carrier and are respectively set at 100 MHz and 400 MHz
[9]. The value of M is set to 10. Then we discuss the performance of proposed method
and CAV.

The sampling point is 100 in this paper without special instructions. At a certain
Pfa = 0.05, Fig. 1 compares theirs under different SNR. It shows that the proposed algo‐
rithm outperforms CAV. When SNR is between −15 dB and −10 dB, the performance
of proposed method exceeds CAV more than 2 dB.
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Fig. 1. The comparison of Pd at different SNR

The setting value of K to100, Fig. 2 compares their ROC at different SNR of both
algorithm. It is obvious that the detection performance of proposed algorithm is better
than CAV. The performance of proposed algorithm at -14 dB even outperforms CAV
at −12 dB, which conforms with the result of Fig. 1.

20 Y. Chen et al.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pfa

Pd -12dB,Proposed algorithm
-14dB,Proposed algorithm
-16dB,Proposed algorithm
-18dB,Proposed algorithm
-12dB,CAV
-14dB,CAV
-16dB,CAV
-18dB,CAV

Fig. 2. The comparison of ROC at different SNR

Setting the value of M to 10 and SNR is −16 dB, Fig. 3 compares the ROC curves
at different samples of both algorithms. It is can be clearly seen from this figure that
when achieving the same detection performance, the proposed algorithm requires fewer
samples than CAV.
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Fig. 3. The comparison of ROC curves at different samples

To sum up, the proposed method is superior to CAV owing to the construction of
new statistics and AD test. The above results confirm the stability of AD test and validity
of statistics.
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5 Conclusion

In this paper, an improved covariance matrix-based spectrum sensing algorithm is
considered. Where a new statistic based on covariance matrix-based algorithm is
constructed. It preserves the advantages of the CAV algorithm and experiments manifest
the improvement of the detection performance.
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