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Abstract. Spectrum sensing, a basic functionality in cognitive radio, aims at
detecting the presence or absence of primary user (PU). As one of the most
popular spectrum sensing methods, Covariance-based sensing works based on
the correlation between signal samples. However, its performance sharply
declines in low Signal Noise Ratio (SNR) environment. To improve detection
performance of covariance-based sensing as far as possible, an improved blind
spectrum sensing scheme is proposed in this paper on the basis of QR matrix
decomposition and support vector machine (SVM). In the proposed scheme, QR
matrix decomposition is applied to the co-variance matrix of received signal
firstly, and then the main features are constituted by extracting and arranging
orderly the upper triangular elements of R matrix. After that, SVM is used to
conduct the obtained features and determine whether PU exists. The proposed
algorithm does not need the prior information of PU and noise. Simulation
results demonstrate that the proposed method has a better performance than
conventional covariance-based methods, especially in low SNR scenarios.
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1 Introduction

In recent years, spectrum scarcity has caused widespread concern. However, it is
reported by FCC that the usage rate of fixed spectrum varies from 15% to 85% [1],
which means that the traditional spectrum allocation method leads to the incomplete
utilization of spectrum. To solve the problem, cognitive radio (CR) was proposed.

Spectrum sensing (SS), a key technique in CR, which aims at detecting the exis-
tence of PU. Conventional sensing methods include energy detection, cyclostationary
feature detection, likelihood ratio test and so on [2].
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All of the above algorithms need the prior information about signal or noise, which
may not be realistic in practice. Therefore, some blind spectrum sensing algorithms
emerged. Among these blind sensing algorithms, eigenvalue-based [3, 4], and
covariance-based sensing methods [5] are widely accepted. Because they do not need
any prior information and take the correlation between signal samples into account. It
was voted that [6] proposed a blind scheme, features from the Cholesky decomposition
of covariance matrix as the criterion to determine whether the radio frequency band is
vacant, which was proved to have good detection performance. In addition, to overcome
channel fading and hidden terminal, [7] put forward a cooperative sensing algorithm.

As we all know, SS is actually a binary classification problem. Therefore, more and
more machine learning classification algorithms are applied in SS in recent years. In
[8], Awe OP extracted eigenvalues as the features of signal then used SVM for clas-
sification, it is proved by experiment that the algorithm has better performance. Then, a
paper proves the superiority of SVM [9]. Considering the mobility of secondary users,
[10] used the random forest to achieve a better network throughput.

In this paper, motivated by the work in [5-10], we proposed a blind spectrum
sensing algorithm based on QR decomposition and SVM. Firstly, the covariance matrix
of cooperative secondary users (SUs) is estimated. Secondly, we employ QR decom-
position of the covariance matrix to extract the features of signals when PU exit or not.
Finally, SVM is applied to classify whether PU presents.

The rest of this paper is organized as follows. In Sect. 2, the system model is given.
In Sect. 3, the process of feature extraction and the application of SVM is described. In
Sect. 4, simulation results are discussed. Finally, we draw our conclusion in Sect. 5.

2 System Model

2.1 Spectrum Sensing

The main task of spectrum sensing is to detect the presence of PU. Thus, spectrum
sensing can be represented as a binary hypothesis testing problem, which may be
written as

{Hlf vk =sk)+nk) 45 g (1)

where K denotes the number of samples and y(k) indicates the signal of SU received
from the PU transmitter. Additionally, s(k) and n(k) respectively denote the signal of PU
and noise. When PU exists, SU receives the signal of PU and noise, represented as H;.
Otherwise, SU only get noise signal, represented as Hj.

2.2 Cooperative Covariance-Based Detection

In covariance-based detection [5], s(k) and n(k) meet the basic assumptions: (1) n(k) is
an independent, identically distributed Gaussian signal, satisfying E(n(k)) =0,
E(n*(k)) = 62. (2) The samples of s(k) are correlated.
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Supposing that the number of cooperative SUs is L. Then we get the following
vectors:

:[yl(k) yz(k) yL(k”T (2)
S=1[s1(k) sa(k) ... s(k)]" (3)
N =[n(k) mk) ... n(k)]" (4)
where
yi(1) »(2) yi(K)
»(1) »2(2) y2(K)
Y= :
y(1) YL@) yi(K)

Then the L x K (0 < L/K < 1) statistical covariance matrix of ¥, S, N can be
written as

Ry =E[Y - Y"] (5)
R, =EI[S-5"] (6)
Ry=E[N-N"] =a.1, (7)

Hi: Ry=R,+d’I (8)
Hy: Ry = o3I,

From the above formulae, we can notice that when PU is absent, R, = 0. Because the
samples of noise are independent, Ry is a diagonal matrix. When PU is present, due to
the correlation of PU signal, the off-diagonal entries of R, are non-zero. In this case, Ry
is not a diagonal matrix.

3 The Improved Algorithm

3.1 The QR Decomposition of Signal

In pattern recognition, QR decomposition has been widely used. Because Q matrix in
QR decomposition is a group of orthogonal eigenvectors, R matrix covers all infor-
mation of matrix and reflects the main features of signal. And the main advantage of
QR decomposition is the numerical stability, which is suitable for spectrum sensing
with Gaussian signal and noise. In [11], QR decomposition is successfully applied in
channel identification.
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Based on the above theories, we decompose Ry by using QR decomposition.
Ry = OR 9)

where

O=[qg1 ¢ ... qi]

qi-q;=0 1<i<L

In the hypothesis of Hy, Ry = Ry = ailL. According to (9), we get

R=cl, =

In the hypothesis of H;, because of the correlation between SUs, R matrix of Ry is
not a diagonal matrix.
From the above analysis, we get

i riz oot L
rpp - 1L
H]Z R =
o
10
- (10)
7,
H()S R =
0.2

n

Therefore, the upper triangular matrix R can be used to differentiate PU from noise.
After arranging the elements of R in rows, the features when PU present or not are
extracted and represented as a vector.

3.2 SVM Based Sensing Algorithm

In the classification algorithms, SVM is regarded as one of the best classifiers. In this
paper, we use nonlinear SVM to achieve the detection of PU.

Combing the features and corresponding labels, the training set and the testing set
can be obtained. Assume the testing set as T = {(x1, y1), (x2, y2), -+, O, yu)}, M
is the number of training samples. x;, a 1 x (L x (L+1)/2) vector, is the feature,
consisting of the upper triangular elements of matrix. y;, the corresponding label, equals
1 when PU present, otherwise —1.
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The nonlinear SVM achieves classification based on the optimal separation
hyper-plane. The optimal hyperplane and classification decision function can be rep-
resented respectively as [10].

W p(x) +b" =0
f(x) = sign(w* - @(x) +b*) (11)

where ¢(x) is a mapping function, which maps x; into a high dimensional space.
According to the conditions of the optimal hyperplane, Lagrange function can be
constructed. Then the question of the optimal hyperplane can be converted to

MM M
miméz > 00yyiyiK (Xi, ;) — D 0
* Ti=lj=1 i=1
M (12)
st Yoy =0
i=1
OSO(,‘SC, 121727M

)

where o represent Lagrange multiplier. K (x;,x;) = @(x;) - ¢(x;). C is a positive con-
stant penalty parameter.

Based on (12), we can get the optimal solution of o as «* = (af, o5, - - - aL)T.
Then the optimal solution of w is calculated by
M
w' = Zafy,-x,- (13)
i=1

Selecting o, which satisfies 0 <« < C, the optimal solution of b can be obtained
M
b* =y = Y oviK (xi, ) (14)
i=1
Finally, the classification decision function can be written as

flix) = sign(z yK(x-x)+b) (15)

i=1

4 The Simulation Result and Discussion

In simulation, the modulation of PU signal and the noise are respectively assumed to be
OFDM and AWGN. The carrier frequency and the sampling frequency are respectively
100 MHz and 400 MHz. The value of L is 5, and the value of K is 1000. The simu-
lation mainly includes three steps as follows.
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1. We generate the training set and testing set according to the third section of this
paper. The size of them is respectively 8000 and 2000.

2. The training set then is sent into SVM to get the classification decision function.

3. Classification decision function obtained from step 2 is applied to feature vectors of
the testing set. Then the output of SVM are compared with corresponding labels in
testing set to compute the probability of detection P, and false alarm Pp,.

The probability of detection
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Fig. 1. The comparisons of the detection probability

Figure 1 compares the proposed algorithm with maximum-minimum eigenvalue
(MME) [3], maximum-trace ratio (MET) [4], and covariance absolute value (CAV) [5].
In this figure, their Py, at the certain SNR are same. It is obvious that the Py of proposed
method reaches 49% at the SNR of —20 dB, while the P; of MME, MET, and CAV are
below 40%. When SNR between —20 dB and —12 dB, the P; of proposed method
outperforms other algorithms about 15%.
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Fig. 2. The comparisons of the false alarm probability
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Figure 2 compares their Py, for given P4 at various SNRs. It is worth noting that the
Py, of proposed method is lower than other methods. At the SNR of —12 dB, the Py, of
the proposed method converges to 0, while others are above 0.1.
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Fig. 3. The ROC curves at the SNR of —15 dB

Figure 3 shows their ROC curves at the SNR of —15 dB. When P, equals 0.1, the
P, of proposed method reaches 0.84, which is greater than other algorithms. It is clear
that the proposed method has better detection performance than MME, MET, and CAV.

In summary, the detection performance of the proposed method is better than
conventional covariance-based methods. The first two figures show that the proposed
method is more stable than MME, MET, and CAV when SNR is low. The reason is
that the traditional methods cannot distinguish between signal and noise at low SNRs.
While features extracted from QR decomposition cover the all key information, which
can distinguish signal and noise effectively. The last figure shows the superiority of the
combination of QR decomposition and SVM.

5 Conclusions

In this paper, a blind cooperative spectrum sensing algorithm is put forward combing
QR decomposition and SVM. This method does not demand the information of signal
or noise and has good performance than conventional covariance-based methods.
Simulation results verified the superiority of the proposed scheme, and our future work
will focus on the influence of different modulation types.
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