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Abstract— Deep learning-based models have made significant 

contributions to many fields in recent years but lack robust 

explainability in their decision making and interpretability in their 

inference processes. While deep learning is capable of processing 

information that traditional methods might struggle with, such as 

nonlinear data, the lack of results explainability can be 

detrimental to the credibility in such models. Hence, there is a need 

to enhance the level of explainability, which can come from 

multimodal analysis. In this study, we implement a Convolutional 

Neural Network (CNN) for the fusion of Passive RF (P-RF) and 

Electro-Optical (EO) data to gain insights into how P-RF data can 

be utilized for target detection. The P-RF data first undergoes 

feature extraction via Short-Time Fourier Transform (STFT), 

Continuous Wavelet Transform (CWT), Wigner-Villle 

Distribution (WVD) and Constant-Q Gabor Transform (CQT). In 

previous experiments using the ESCAPE dataset, the multimodal 

design training was incentivized to utilize the P-RF data with I/Q 

histogram as the feature by purposefully restricting the available 

EO data. Prior experimentation with both Greedy Algorithms and 

Saliency Maps indicated that the fusion of P-RF and EO data still 

heavily focuses on the EO data, if possible, only relying on the P-

RF data if it was necessary to detect the target. While P-RF has 

seen more use in vehicle detection for both autonomous driving 

and drone applications in recent years, its impact on sensor fusion 

based decision making is still under investigation. By expanding 

on the available P-RF data, this paper compares different features 

of P-RF data and their impact in the fusion using diverse 

counterfactual explanations (DiCE), as well as potentially 

increasing the reliability of the P-RF data for target detection. 

Keywords—Explainable AI, Sensor Fusion, EO, Passive RF 

I. INTRODUCTION 

The use of artificial intelligence (AI) has been extensively 
applied to many fields in recent years, including multimodal 
fusion [1]. While traditional data fusion methods are 
transparent and understandable, the innate blackbox nature of 
deep learning (DL) models is a major issue. While such DL 
models can process nonlinear data and excel where traditional 
algorithms cannot - by approximating the desired results, it 
could be difficult to consistently explain the processing results. 
Ignoring factors like the larger amount of training data needed 
for multimodal DL algorithms, the ability to understand what 
the model is processing is integral to the development, 
troubleshooting, and design.  

Implementing DL training without having any means of 
understanding the model’s decision-making process can lead to 

major issues [2]. Such problems are numerous, including 
inheriting biases from systems that are meant to inherently be 
impartial [3]. Others inherent design issues include exploiting 
features that were not meant to be included in the model 
training for the desired application [4]. These kinds of issues 
are easy to miss given the vastness of the training data needed 
for most multimodal DL algorithms, but have the potential to 
have devastating effects on applications such as autonomous 
driving, financial decision, medical healthcare [5], etc. 
Understanding that AI is not a comprehensive method that 
solves all problems is the first step to determine how to use the 
technology in a safe and productive manner. Using DL can 
provide an efficient or effective manner to enhance situation 

awareness [6]. 

Choosing to not use any form of DL algorithms because of the 
blackbox drawback is obviously not a reason to avoid utilizing 
the power of DL methods; especially in the case for data which 
is inherently difficult for human users to understand, and for 
higher dimensional fusion of multiple data sources. Such is the 
case for utilizing passive radio frequency data (P-RF) in data 
fusion. P-RF data provides various benefits for target detection, 
primarily with regards to the non-invasive nature of the 
modality. A P-RF based approach for multimodal fusion can 
augment visual data, cannot be visually obscured by camera 
angle, and is harder to detect for the purposes of electronic 

countermeasures. 

Methods of using RF data for vehicle detection include 
leveraging RF signal strength [7], active RF signals [8], passive 
RFID [9] [10], and joint-sparse data level fusion [11]. However, 
using the raw I/Q data as P-RF for vehicle detection has not 
been extensively researched. In this paper, we present our work 
at using P-RF data in sensor fusion to achieve vehicle target 

detection. The contributions of this paper are as follows: 

1. Processing P-RF data via Short Time Fourier Transform 
(STFT), Continuous Wavelet Transform (CWT), Wigner-
Villle Distribution (WVD) and Constant-Q Gabor 
Transform (CQT). While these methods are considered 
conventional, they have not been used for passive RF nor 

for vehicle detection with that modality. 

2. Utilizing Explainable AI to analyze the local and global 
impact on the fusion model for each of the five P-RF 
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features that are tested and compared, using a 
counterfactual based causal inferencing scheme, Diverse 

Counterfactual Explanations (DiCE).  

II. LITERATURE REVIEW 

2.1 EO/RF Sensor Fusion 

The application for the heterogenous sensor fusion research 
presented in this paper, via deep learning (DL), is to accurately 
detect vehicle targets using EO and P-RF sensor inputs while 
also providing some level of explainability. The fusion of EO 
and RF data for the purposes of tracking has been used 
extensively [12] in similar applications, but the use of passive 
RF data [13] which is more challenging to implement without 
conventional methods such as Doppler radar. While most 
research has traditionally been focused on active RF sensors, 
the use of P-RF data comes with logistical and economic 
benefits, as it requires less power, is considerably harder to 

detect than active RF methods, and requires less hardware.  

RF modalities excel in providing range, angular, and spectral 
resolution of collected information [14]. The benefits of 
combining RF data with higher spatial resolution of EO based 
sensors are extremely desirable for detection, classification, and 
tracking. There are several RF-based approaches that are used 
in applications such as tracking [15], localization [16], and 
detection [17]. Most EO modalities are intuitively much easier 
to implement, owing to a human’s reliance on sight, such as full 
motion video (FMV) and infrared (IR) [18]. RF-based sensors 
can also provide repetitive coverage over a wide geographical 
area, and in doing so, can determine the precise distance and 
velocity of a target. While both EO and RF have limitations that 
from environmental operating conditions, the lack of overlap 
these modalities have in terms of these limitations makes the 

fusion of the two highly desirable. 

While there has been P-RF research for the purposes of 
implementing vehicle target tracking, these methods typically 
involve RFID [19] or rely on sensor fusion of a blackbox 
method to utilize the data. Additional research uses P-RF for 
animal [20] and human occupancy detection [21,22]  as well as 
wi-fi sensing for human activity analysis [23,24]. To our 
knowledge, there is a few reported techniques that rely on the 
use of the raw P-RF In-phase Quadrature (I/Q) data, owing to 
a) the inherent difficulty of utilizing the modality and b) other 
more active methods such as doppler already existing. In 
previous work we have utilized P-RF histograms of the I/Q data 
[25,26] in order to achieve data fusion, this paper explores other 

methods of expanding the use of the raw P-RF data.  

2.2 Explainable AI (XAI) 

With the use of artificial intelligence (AI) even reaching 
recreational use such as ChatGPT and Open AI, it is important 
to consider the need for explainability when considering 
uncertainty [27]. While proponents of AI might point out that 
requiring explainability will slow down AI processing, it is 
important when considering the moral and design 
considerations. Ignoring issues like whether or not an ante-hoc 

explainable AI (XAI) is truly faithful to the original model, the 
incomplete nature of saliency map visualizations, or the 
tradeoffs in performance, without XAI its impossible to 
understand what a blackbox model’s decision-making process 
is. With XAI, there is both a design challenge and also morally 
concern, as it makes diagnosing errors extremely difficult. 
Problems in the training data, such as the very human choices 
[3,28] that the model’s trained on can cause the human biases 
to be ingrained into the model’s decisions. Other errors in 
training data might also cause the model to pick up on either 
wildly incorrect or “cheat” [4] its way to getting the correct 
results, which will not help it in its real-world applications. As 
such, especially as applications like autonomous driving, 
medical, and financial fields already use AI, the need to have 

some level of accountability [29] is of paramount importance. 

As explainable AI (XAI) is still an emerging concept [30], there 
has yet to be any uniform adoption of interpretability 
assessment criteria for XAI. There are several criteria used to 
describe different approaches for providing explainability and 
the levels of explainability. These include (1) post and ante-hoc 
methods, which describe where and when the method itself is 
implemented in the model, (2) local or global, which describe 
what level of interpretability is being provided, or (3) model 
agnostic or model specific, which describe how versatile the 

method is.  

Methods of XAI also vary based on the type of information 
being processed and the model used, such as visualizations. By 
implementing the post-hoc method, it’s possible to correlate 
pixels on an input image to neuron activations, providing a level 
of understanding as to what parts of the image the model 
determined to be relevant features. While not as empirical as 
expressing impact via weights, visualizations provide a more 
user-oriented explanation that a human expert can understand. 
The visualization explanations are not necessarily restricted to 
users with knowledge of the field, as the input image and what 
regions are activated might provide intuitive changes that can 
be noticed. That being said, it is difficult to quantify the impact 

of the information that is provided by the visualizations. 

Some more commonly used examples of Explainable AI 
methods include LIME [31] (Local Interpretable Model-
Agnostic Explanations) and SHAP [32] (SHapley Additive 
exPlanations). These methods are model-agnostic explanations, 
and provide partial dependence plots, which are global and 
model-agnostic in nature. Others include the use of Greedy 
Algorithms to recreate the blackbox model’s decision-making 
process, such as ExplainX.ai, an advanced version of 

ProtoDash [33].  

For the purposes of this paper, we are presenting our work with 
Diverse Counterfactual Explanations (DiCE) [34] in order to 
explore the impact of different types of P-RF data in 
heterogenous sensor fusion for vehicle target differenetiation. 
DiCE [35] was first published in 2019, and provides 
explainability by using counterfactuals, hypothetical examples 
which show how the model obtains a different prediction. The 

Grant FA9550-21-1-0224. 
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python-based DiCE framework generates and evaluates a 
diverse set of counterfactual explanations that are based on 
determinantal point processes. Each of those counterfactuals 
are then evaluated using metrics that enable the comparison of 
counterfactual-based methods to other local methods. While 
attribution-based methods like SHAP and LIME can provide a 
number of insights which are useful, as complementary post-
hoc methods of XAI, given the larger pool of data and the 
limitations of each method, DiCE was chosen. This paper 
explores contrasting the different P-RF and EO modalities with 
respect to each other, such that the choice of choosing a 
counterfactual based causal inferencing using the DiCE 

method. 

III. EXPERIMENT DESIGN 

3.1 The Escape Dataset 

 The Experiments, Scenarios, Concept of Operations and 
Prototype Engineering (ESCAPE) [36] dataset was published in 
2019 (Figure 1) by the Air Force Research Laboratory (AFRL) 
Information Directory for the purposes of enabling multi-modal 
signature data-fusion research [37,38,39,40]. The ESCAPE 
dataset combines a variety of different sensors, including EO, P-
RF, radar, acoustic, and seismic data in a common scenario for 
the application of advanced fusion. In each of the scenarios 
provided, there are one or more vehicles which attempt to 
“escape” detection. The motivation for the ESCAPE data is to 
develop  any model using the multimodal data with an incentive 
to use more than just the EO sensors, especially when the EO 
input data is purposefully limited. 

 
 

Fig. 1. ESCAPE data collection. 

For the purposes of the scenarios and sensor data chosen from 
the ESCAPE data, the three that were used in this research are 
designated as Scenarios 1, 2, and 3, which correspond to the 
ESCAPE dataset’s Scenarios 1, 2C, and 2D respectively 
(Figure 2). The total number of vehicle targets between the 
three scenarios is ten, and each scenario deals with a different 

number of targets (2, 3, and 5 targets respectively). The overall 
purpose of the dataset is that all the targets are designed to 
“escape” detection, by employing a number of different tactics 
that incentivize the fusion model to use multiple modalities as 
data inputs. The evasive scenarios come with the benefit of 
thereby challenging any model meant to differentiate between 
the potential vehicles when engaging in tracking. Similar 
vehicles move in such a manner that even human users might 
have difficulty in differentiating between them with just the EO 
visual information. All three scenarios involve multiple 
vehicles entering and exiting a garage, with multiple vehicles 
of similar make and build combined with dissimilar vehicles. 
The movements of these vehicle are also varied in order to 
present challenging discrimination opportunities that confuse 

tracking differentiation. 

 
Fig. 2. Comparison of Scenarios #1, #2, and #3. 

Scenario #1 (Similar Vehicle Switch) has two possible vehicle 
targets, both of which are of the same build and color as each 
other. For each of these scenarios, only one source of EO data 
was used, in order to maximize the need for the model to utilize 
the P-RF data rather than ignoring the P-RF input. The scenario 
starts as vehicle #2 travels into the garage in plain view of the 
EO sensors. As this happens, vehicle #1 travels into the garage 
from behind the tree line. While doing so, from the EO sensor’s 
point of view, vehicle #1 is “hidden” due to visual obscuration 
that prevents the model from detecting its movements most of 
the time. Once vehicle #2 enters the garage, vehicle #1 then 
exits the garage, and the objective of the first scenario is to 
successfully determine when the “switch” is made. If the model 
incorrectly identifies the vehicle exiting as #2, then that means 
the model has failed and the vehicle has successfully “evaded” 

detection. 

Scenario #2 (Similar Vehicle Appearance) is nominally more 
complicated than scenario 1 by comparison. In this scenario, 
there are three total vehicles and essentially follow the same 
pattern as Scenario 1, but only two of the three look visually 
similar. The difference is that rather than vehicle #3, which is 
visible, or vehicle #1, which is not possible to obtain at the 
video angle chosen switching in the garage, is that vehicle #2 
that was parked in the garage the entire time. This makes it 
appear to an outside viewer that vehicle #1 enters and exits 
when in fact it is hidden inside of the garage. If the model 
determines vehicle #2 to be vehicle #1, then vehicle #1 will 
have thereby “escaped” detection. The EO input is insufficient 
on its own to make that determination, as the difference 

between similar vehicles, incentivizing the use of P-RF data 
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Scenario #3 (Similar Vehicle Overtake) is the most complicated 
of the three and chosen due to the complexity of the five vehicle 
targets, all of which are traveling at different speeds and with 
different makes. Four of these vehicles arrive out of the front of 
the garage, while the fifth vehicle arriving from out of view, 
thereby making the tracking at the end of the video input, 
linearly speaking, extremely difficult to conduct with only the 
EO input for that time frame. The variable speeds displayed by 
the five vehicle targets also presents an additional dimension of 
complexity with respect to tracking as the vehicles that are 
similar in design will overtake the other at different points 
within the scenario, making tracking a challenging process for 

Scenario 3 in general. 

3.2 Data Preprocessing 

The two sources of data are preprocessed in a number of 
different ways, with EO being preprocessed with Dense Optical 
Flow (DOF), and P-RF data being preprocessed into histograms 
and with a Fast Fourier Transform (FFT) over the original I/Q 
data. While different sources of data enhancement have been 
tested in previous research, the usage of different 
interpretations of the same data is ideal for the purposes of 

gaining insights with the decision level fusion. 

To extract more useful features from the P-RF data, Wigner-
Ville Distribution (WVD), Continuous Wavelet Transform 
(CWT), Constant-Q Gabor Transforms (CQB) [36], and Short-
Time Fourier Transforms (STFT) are also implemented. WVD 
has been used for the better half of the century and provides a 
high-resolution time-frequency representation of the 
background P-RF data provided. The Constant-Q Transform 
and Short-time Fourier Transform are related algorithms that 
transform data series into the frequency domain. The STFT 
plots changing spectra as a function of time, while CQB plots 
in logarithmic scale, providing greater accuracy at lower 
frequencies but less accurate at higher frequencies. Lastly, 
CWT provides an overcomplete representation of the P-RF 

background data.  

By expanding on the uses of P-RF data, it becomes possible to 
provide more features for the model to utilize. More feature 
incentivizes fusion, especially for scenarios in which EO 
sources alone are incapable of determining and locating the 
target vehicle. While most vehicles are largely within what the 
EO modality can see, when tested for vehicles that are behind 
the tree line or hidden in the garage, the need for the other 
modalities will ensure the model engages in data fusion. 

 

3.3 Explainable AI and Fusion Model 

While in prior research our group has utilized saliency maps 
and greedy algorithms to estimate each modality’s impact on 
decision making [25, 26], on a local and global scale, for the 
purposes of this paper the use of Diverse Counterfactual 

Explanations (DiCE) is implemented to evaluate modality 
impact. The direct performance of the models for vehicle 
detection will also be compared using F1 score as a reference 
to each of the five models. The feature weights indicate the 
relative impact on the model’s decision-making process, where 
values closer to 1 have a greater impact, while values closer to 
0 respectively have a lower impact.  
 
For the purposes of training, each CNN model is trained on the 
same number of epochs, with the only modifications in terms 
of layers and architecture being to accommodate the different 
number of modalities being input into the CNN. The objectives 
for each CNN remain the same, having the same labels for each 
model. Each model has three hidden layers and is trained on 50 
epochs before being evaluated and having the weights of each 
model saved in order to implement DiCE. The P-RF Histogram 
data was originally included but later removed owing to its poor 
performance and lack of useful XAI insights that could be 
provided by DiCE.  

TABLE I.  SUMMARY OF MODELS TRAINED 

Model Input Modalities 

#1 

#2 

#3 

#4 

#5 

EO (DOF), All Five P-RF features 

EO (DOF), P-RF (CWT), P-RF (WVD) 

EO (DOF), P-RF (CQB), P-RF (STFT) 

EO (DOF), P-RF (CWT), P-RF (STFT) 

EO (DOF), P-RF (CQB), P-RF (WVD) 

 
The five models tested are summarized in Table 1. The first 
model will serve as a baseline model which has all six modality 
features including one EO feature and five P-RF features. For 
the second to fifth models, these models will compare the 
impact of three different features, one of which will always be 
the EO (DOF) input, excluding the P-RF (Histogram) features. 
These five models are discussed further below in the results 
section. 

IV. RESULTS 

4.1 Baseline Model (#1) 

As a baseline for the other four models tested, model #1 uses 
all six sources of information in its data fusion. In order to 
underline the strongest impact values provided by SHAP across 
the five models, the highest and lowest values are highlighted 
within Tables 2-6. The lowest local and global impact 
respectively for each different type of modality tested in the five 
models are marked in italics. Similarly, the highest local and 
global impact for each modality tested (across all five models) 

is marked in bold.  
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TABLE II.  MODEL #1 (F1 SCORE: 0.97) 

Modality Local Global 

EO (DOF) 

P-RF (CQB) 

P-RF (CWT) 

P-RF (Histogram) 

P-RF (STFT) 

P-RF (WVD) 

0.79 

0.38 

0.33 

0.14 

0.43 

0.49 

0.66 

0.43 

0.42 

0.29 

0.46 

0.57 

 

As seen in Table 2, Model #1 performs relatively well, having 
the second highest F1 score compared to the other five models. 
The model follows the trend of placing the largest feature 
impact on the EO (DOF) data. This is unsurprising, as previous 
research [26] had similar results. The P-RF data impact results 
for Model #1 provided via SHAP indicate that the WVD and 
STFT modalities perform the strongest locally for the P-RF 
modalities in baseline Model #1, with the CQB coming in a 
close third. The P-RF (Histogram) results are notably lower 
than even the CWT’s local impact. Owing to the poor 
performance of the P-RF (Histogram) modality, the histogram 
data was excluded in models #2-5 for fusion and SHAP testing. 

 

4.2 P-RF Modality Comparison (Models #2-5) 

As seen in below in Table 3, Model #2 compares the P-RF 
impacts of CWT and WVD as well as showing the EO (DOF) 
results. The CWT had a greater increase in local impact for 
Model #2 compared to the baseline Model #1 while the WVD 
has a noticeably larger increase in global impact. The EO 
(DOF) also had an increase in local and global impact, 

especially with respect to the global impact of Model #2. 

TABLE III.  MODEL #2 (F1 SCORE: 0.96) 

Modality Local Global 

EO (DOF) 

P-RF (CWT) 

P-RF (WVD) 

0.81 

0.37 

0.51 

0.71 

0.44 

0.53 

 

There is a minor drop in F1 score for Model #2 when compared 
to baseline Model #1; however, this is to be expected as there 
is only half as much data for the model to work with. While not 
a direct indicator of a neural network’s performance, having 
sufficient data to train the model on is an important 
consideration. Model #2 has the distinction of also having the 
highest global impact of the EO (DOF) input, as well as the 
highest P-RF (CWT) local impact with respect to the model 
(barely surpassing Model #4’s local impact), and the highest 
WVD local impact and lowest global impact (as opposed to 
Model #5’s 0.58 and Model #1’s 0.57). While the SHAP values 
indicate a relatively higher reliance on EO data, the results 
indicate a high reliance on P-RF (CWT) data and stronger 
reliance on the P-RF (WVD) data. 

 

 

TABLE IV.  MODEL #3 (F1 SCORE: 0.92) 

Modality Local Global 

EO (DOF) 

P-RF (CQB) 

P-RF (STFT) 

0.83 

0.37 

0.45 

0.68 

0.39 

0.51 

 

As seen above in Table 4, Model #3 suffers from the largest 
drop in performance after reducing the number of sources of 
fusion data. CQB sees a drop in local and global use, while 
STFT sees an increase, especially in global impact for Model 
#3 compared to the baseline Model #1. This model has the 
distinction of also having the highest local impact of the EO 
(DOF) and P-RF (STFT), as well as having the lowest local and 
global impact of CQB. Model #3 is an outlier, as only Model 
#1 has lower local and global scores for CQB, but these results 
are to be expected given that model #3 has the lowest F1 score 
and that the model impacts largely increased when fewer 
modalities are used.  

TABLE V.  MODEL #4 (F1 SCORE: 0.95) 

Modality Local Global 

EO (DOF) 

P-RF (CWT) 

P-RF (STFT) 

0.8 

0.36 

0.47 

0.63 

0.43 

0.49 

 

As seen above in Table 5, Model #4 has the second lowest F1 
score, but noticeably is where STFT reaches its highest local 
impact for its respective model, compared to the other five. The 
CWT modality has a notable increase in local impact compared 
to the baseline Model #1 and also is at its highest globally 
among the five models.  

TABLE VI.  MODEL #5 (F1 SCORE: 0.98) 

Modality Local Global 

EO (DOF) 

P-RF (CQB) 

P-RF (WVD) 

0.77 

0.41 

0.5 

0.64 

0.47 

0.58 

 

As seen above in Table 6, Model #5 manages to narrowly 
outperform the other models in terms of F1 score, including the 
baseline Model #1. The SHAP values indicate the EO modality 
is noticeably at its lowest local and second lowest global 
impact, while both the CQB and WVD have their highest global 
impact scores between the five models, along with CQB also 
reaching its highest local impact score.  

 

4.3 P-RF Results Overview  

Based on the SHAP results, Model #5 makes the most use 
globally of the WVD, as well as the most use globally and 
locally for the CQB. The results of the SHAP values indicate a 
general trend for Model #1 having the majority of the lowest 
local and global impact scores, likely owing to having all six 
features extracted from the two different types of modalities 
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used. Only Model #3 comes close to the baseline Model #1, 
with the lowest CQB local and global impact, followed by 
Model #5 with the lowest EO local impact, Model #4 with the 
lowest EO global impact, followed by Model #2 with the lowest 
WVD global impact.  
 
By comparing the baseline Model #1’s SHAP results and 
looking at different combinations of EO with different P-RF 
features, we can better explore the impact of the different 
methods of extracting P-RF data. In previous research [25, 26], 
the impact of the P-RF data was always based on which vehicle 
target was being tracked, where the vehicle target was with 
respect to the source of EO data, and if similar targets were in 
the field of view for the EO data. The results of this experiment 
indicate that by expanding on different P-RF features to exploit, 
the impact of the P-RF data can be further enhanced, thereby 
reducing the model’s reliance on EO data. 

V. CONCLUSION 

This paper presents explainable fusion by comparing different 
P-RF features for the purposes of vehicle detection using the 
ESCAPE data. The initial results indicate that CQB and WVD 
P-RF features provide the best synergy with the EO (DOF) 
feature, for vehicle detection. While we are uncertain if it is the 
added benefit of both a frequency domain and time-frequency 
analysis that the model exploits, future research will need to be 
conducted to make that determination. This combination of 
modalities managed to achieve a higher F1 score as well as 
having the least dependence on the EO (DOF) data on a local 
level and second lowest globally of the five models based on 
the SHAP results. In future research, our group aims to increase 
the number of P-RF processing methods and explore the use of 
other XAI methods implemented accompanied by visualization 
for user understanding. 

ACKNOWLEDGMENTS 

This research was supported in part by the AFRL Summer 
Fellows program and grant FA9550-21-1-0224. The views and 
conclusions contained herein are those of the authors and 
should not be interpreted as necessarily representing the 
official policies or endorsements, either expressed or implied, 
of the Air Force Research Laboratory or the U.S. government.  

REFERENCES 

[1] E. Blasch, T. Pham, C. Chong, W. Koch, et al., “Machine 
Learning/Artificial Intelligence for Sensor Data Fusion–Opportunities 
and Challenges," IEEE Aero. and Elec. Sys. Mag., 36(7):80-93, 2021. 

[2] R. V. Yampolskiy, "Predicting future AI failures from historic examples," 
Foresight, 21(1): 138-152, 2019. 

[3] L. Jones, "A Philosophical Analysis of AI and Racism," Stance: An 
International Undergraduate Philosophy Journal, 13: 36-46, 2020. 

[4] M. Nauta, R. Walsh, A. Dubowski and C. Seifert, "Uncovering and 
Correcting Shortcut Learning in Machine Learning Models for Skin 
Cancer Diagnosis," Diagnostics, 12(1): 40, 2021. 

[5] T. Shaik, X. Tao, L. Li, H. Xie, J. D. Velásquez, “A survey of multimodal 
information fusion for smart healthcare: Mapping the journey from data 
to wisdom,Information Fusion, 102040, 2023. 

[6] A. Munir, A. Aved, et a., “Situational Awareness: Techniques, 
Challenges, and Prospects,” AI, 3, 55–77, 2022. 

[7] N. Kassem, A. E. Kosba and M. Youssef, "RF-Based Vehicle Detection 
and Speed Estimation," in 2012 IEEE 75th Vehicular Technology 
Conference (VTC Spring), Yokohama, Japan, 2012. 

[8] D. Roy, Y. Li, T. Jian, P. Tian, K. Chowdhury and S. Ioannidis, "Multi-
Modality Sensing and Data Fusion for Multi-Vehicle Detection," IEEE 
Transactions on Multimedia, pp. 2280-2295, 2023. 

[9] C. Li, "Automatic vehicle identification (AVI) system based on RFID," 
in International Conference on Anti-Counterfeiting, Security and 
Identification, Chengdu, China, 2010. 

[10] O. Javaid, F. R. Yu and J. S. Huang, "Autonomous Vehicle Navigation 
and Communication by Passive Radio Frequency (RFID) Tags," in 
DIVANet '21: Proceedings of the 11th ACM Symposium on Design and 
Analysis of Intelligent Vehicular Networks and Applications, New York, 
USA, 2021. 

[11] R. Niu, P. Zulch, M. Distasio, E. Blasch, G. Chen, D. Shen, Z. Wang and 
J. Lu, "Joint sparsity based heterogeneous data-level fusion for multi-
target discovery," in IEEE Aerospace Conference, Big Sky, MT, 2018. 

[12] B. Kahler and E. Blasch, "Sensor Management Fusion Using Operating 
Conditions," in IEEE National Aerospace and Electronics Conference, 
Dayton, OH, 2008. 

[13] A. Vakil, J. Liu, P. Zulch, E. Blasch, R. Ewing and J. Li, "A Survey of 
Multimodal Sensor Fusion for Passive RF and EO Information 
Integration," IEEE Aerospace and Electronic Systems Magazine, 36(7): 
44-61, 2021.  

[14] D. Shen, P. Zulch, M. Disasio, E. Blasch, G. Chen, Z. Wang, J. Lu and R. 
Niu, "Manifold learning algorithms for sensor fusion of image and radio-
frequency data," in IEEE Aerospace Conference, Big Sky, MT, 2018.  

[15] M. A. Shukoor, S. S. Mukeshbhai and S. Dey, "12-Bit Multiresonator 
Based Chipless RFID System for Low-Cost Item Tracking," in IEEE 
International Conference on RFID Technology and Applications (RFID-
TA), Delhi, India, 2021.  

[16] R. Shahbazian and I. Trubitsyna, "Human Sensing by Using Radio 
Frequency Signals: A Survey on Occupancy and Activity Detection," 
IEEE Access, vol. 11, pp. 40878-40904, 2023. 

[17] J. Liu, A. Vakil, R. Ewing, X. Shen and J. Li, "Human Presence Detection 
via Deep Learning of Passive Radio Frequency Data," in IEEE National 
Aerospace and Electronics Conference (NAECON), Dayton, OH, 2019. 

[18] E. Blasch, Y. Zheng, S. Liu, Z. Liu,” Multi-modal Video Fusion for 
Context-aided Tracking,” Int’l. Conf. on Information Fusion, 2020. 

[19] Y. Zhang, X. Gong, K. Liu and S. Zhang, "Localization and Tracking of 
an Indoor Autonomous Vehicle Based on the Phase Difference of Passive 
UHF RFID Signals," Sensors, 21(9), 3286, 2021. 

[20] W. D. Van Eeden, J.P. de Villiers, R.J. Berndt, W. A. J. Nel, “Micro-
Doppler radar classification of humans and animals in an operational 
environment,” Expert Systems With Applications, Vol. 102, 15 July 2018. 

[21]  J. Liu, H. Mu, et al., “Human Occupancy Detection via Passive Cognitive 
Radio,” 20, 4248; Sensors, 2020. 

[22] L. Yuan, H. Chen, et al., "3-D Indoor Positioning Based on Passive Radio 
Frequency Signal Strength Distribution," IEEE Internet of Things 
Journal, 10(15): 13933-13944, 2023. 

[23] A. K. Koupai, M. J. Bocus, R. Santos‐Rodriguez, R. J. Piechocki, R. 
McConvill, “Self‐supervised multimodal fusion transformer for passive 
activity recognition,” IET Wireless Sens. Syst. 12:149–160, 2022. 

[24] M. Cominelli, F. Gringoli, L. Kaplan, M. Srivastava, F. Cerutti, “Accurate 
Passive Radar via an Uncertainty-Aware Fusion of Wi-Fi Sensing Data,” 
Int’l. Conf. on Information Fusion, 2023. 

[25] A. Vakil, E. Blasch, R. Ewing and J. Li, "MVI-DCGAN Insights into 
Heterogenous EO and Passive RF Fusion," in 9th International 
Conference on Soft Computing & Machine Intelligence (ISCMI), Toronto, 
Canada, 2022. 

[26] A. Vakil, E. Blasch, R. Ewing and J. Li, "Finding Explanations in AI 
Fusion of Electro-Optical/Passive Radio-Frequency Data," Sensors, 
23(3): 1489, 2023. 

[27] A-L. Jousselme, P. de Villiers, A. de Freitas, et al., “Uncertain about 
ChatGPT: enabling the uncertainty evaluation of large language models,” 
Int’l. Conf. on Information Fusion, 2023. 

110

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on March 19,2025 at 15:26:04 UTC from IEEE Xplore.  Restrictions apply. 



[28] E. Blasch, J. Sung, T. Nguyen, “Multisource AI Scorecard Table for 
System Evaluation,” AAAI FSS-20: Artificial Intelligence in Government 
and Public Sector, Washington, DC, USA, 2020. 

[29] E. Blasch, P. de Villiers, G. Pavlin, A-L. Jousselme, P. C. G. Costa, K. B. 
Laskey, J. Ziegler, “Use of the URREF towards Information Fusion 
Accountability Evaluation,” Int.l Conf. on Information Fusion, 2021. 

[30] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, et al., 
“Explainable Artificial Intelligence (XAI): Concepts, taxonomies, 
opportunities and challenges toward responsible AI,” Information Fusion, 
Vol. 58, Pages 82-115, 2020. 

[31] M. Ribeiro, S. Singh and C. Guestrin, ""Why Should I Trust You?”: 
Explaining the Predictions of Any Classifier.," Conference of North 
American Chapter of the Association for Computational Linguistics, San 
Diego, CA, 2016. 

[32] S. Lundberg and S.-I. Lee, "A unified approach to interpreting model 
predictions," NIPS'17: Proc. of the 31st International Conference on 
Neural Information Processing Systems, New York, USA, 2017. 

[33] K. S. Gurumoorthy, A. Dhurandhar, G. Cecchi and C. Aggarwal, 
"Efficient Data Representation by Selecting Prototypes with Importance 
Weights," in International Conference on Data Mining, 2019. 

[34] S. A. Tariq, T. Zia and M. Ghafoor, "Towards counterfactual and 
contrastive explainability and transparency of DCNN image classifiers," 
Knowledge-Based Systems, vol. 257, no. 5, p. 109901, 2022. 

[35] R. K. Mothilal, A. Sharma and C. Tan, "Explaining Machine Learning 
Classifiers through Diverse Counterfactual Explanations," in arXiv, 
arXiv, 2019. 

[36] P. Zulch, M. Distasio, T. Cushman, B. Wilson, B. Hart and E. Blasch, 
"ESCAPE Data Collection for Multi-Modal Data Fusion Research," in 
IEEE Aerospace Conference, Big Sky, MT, 2019. 

[37] D. Shen, E. Blasch, P. Zulch, M. Distasio, Ruixin Niu, J. Lu, Z. Wang, G. 
Chen, “A Joint Manifold Leaning-Based Framework for Heterogeneous 
Upstream Data Fusion,” Journal of Algorithms and Computational 
Technology (JACT), 12(4): 311-332, 2018. 

[38] D. Garagić, D. Pelgrift, J. Peskoe, R. D. Hagan, P. Zulch and B. J. Rhodes, 
"Machine Learning Multi-Modality Fusion Approaches Outperform 
Single-Modality & Traditional Approaches," IEEE Aerospace 
Conference, Big Sky, MT, USA, 2021. 

[39] D. Garagic, R. Ravier, J. Peskoe, T. Galoppo and P. Zulch, "Submodular 
Optimization via Reinforcement Learning for Active Control of Sensor 
Networks," IEEE Aerospace Conference, Big Sky, MT, USA, 2022. 

[40] D. Roy, Y. Li, T. Jian, P. Tian, K. Chowdhury and S. Ioannidis, "Multi-
Modality Sensing and Data Fusion for Multi-Vehicle Detection," IEEE 
Transactions on Multimedia, vol. 25, pp. 2280-2295, 2023. 

[41] J. P. Grossman, G. F. Margrave, M. P. Lamoureux R. Aggarwala, “A 
robust algorithm for constant‐Q wavelet estimation using Gabor analysis” 
SEG Int’l Exposition and 72nd Ann Mtg, Salt Lake, UT, 2002. 

 

 
 

 
 

 

111

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on March 19,2025 at 15:26:04 UTC from IEEE Xplore.  Restrictions apply. 



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 12.60 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20170126085122
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     322
     Fixed
     Up
     12.6000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     7
     6
     7
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 5.40 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Up
     5.4000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     7
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     7
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



