
Explainable Hybrid Decision Level Fusion for 
Heterogenous EO and Passive RF Fusion via xLFER 

Asad Vakil 
Department of Electrical and 

Computer Engineering 
Oakland University 

Rochester, MI 
avakil@oakland.edu 

Erik Blasch 
Air Force Research Laboratory 

Arlington, VA 
erik.blasch.1@us.af.mil 

 

Robert Ewing 
Sensors Directorate 

Air Force Research Laboratory 
Dayton, OH 

robert.ewing.2@us.af.mil  
 
 

Jia Li 
Department of Electrical and 

Computer Engineering 
Oakland University 

Rochester, MI 
li4@oakland.edu 

Abstract— This paper presents an explainable late-stage 

decision fusion model for Electro-Optical (EO) and Passive Radio 

Frequency (P-RF) target detection via hybrid Explainable AI 

model. Explainable insights that are intuitive and empirical are 

provided by counterfactual explanations at the early stage of 

data flow, with a traditional algorithm, decision tree (DT), 

handling late-stage fusion. Results show that at both the local and 

global level, the DT explainability of fusion methods provides 

insights for EO and P-RF fusion methods at each level of fusion 

The usage of Histograms, Wigner-Ville Distribution (WVD) and 

Continuous Wavelet Transform (CWT) for the novel use of P-RF 

data provided insights into the eXplainable Late-stage Fusion of 

Electro-optical and Radio-Frequency (xLFER) usage of the 

modality for target detection. While WVD and CWT have been 

used extensively in RF signal processing, their use in P-RF data 

for target detection feature extraction has not been documented 

to our knowledge, nor with a hybrid Explainable AI model. 

Keywords—Explainable Artificial Intelligence, Heterogenous 

Sensor Fusion, EO, P-RF, Continuous Wavelet Transform, 

Wigner-Ville Distribution 

I. INTRODUCTION 

As the push for automation continues, the use of artificial 
intelligence (AI) becomes more prevalent across multiple 
industries and applications. While traditional signal processing 
classification methods are transparent and understandable, 
current deep learning (DL) classification algorithms lack 
explainability when handling nonlinear applications. An 
example is the trend for applications like autonomous driving 
where tasks include a neural network’s ability to closely 
approximate detection of hazardous objects. As a result, the 
promised use of DL blackbox algorithms (e.g., internal 
operations not accessible) has become more prevalent in 
aspects of everyday life. Such blackbox algorithms; however, 
come with the disadvantage of not being inherently 
understandable. Most of these models will require vast 
amounts of data and find features to exploit based on the 
available data. This is not a problem in and of itself, but rather 
becomes one if the features learned are fundamentally 
incorrect. And being able to make the determination as to if it 
has been trained correctly is difficult in a blackbox system. 

Understanding the explainability of automatic target 
detection is important for many applications such as medical 
diagnoses. Irrelevant details to diagnoses, for example, can 
prop up from unforeseen training data choices, such as 
correlating the appearance of a ruler with malignant tumors [1]. 

While it’s certainly true that images of biological growths with 
a ruler next to them are really likely to be malignant, that’s not 
likely the intended features that the model’s creator wanted it 
to pick up on from the training data. Of course, such problems 
with blackbox DL methods do not stop there. Other issues from 
blackbox algorithms can include bias from what should ideally 
be an impartial judge [2], incorrect diagnoses of disease [3], or 
major general disfunction in its desired application [4]. It is one 
thing if the application is for something trivial. However, for 
more important applications, such as automated driving [5], 
financial, medical, or first-responder use, which carry grave 
consequences if poorly managed or trained, the need for 
explainability is clear. 

 Approved for Public Release; Distribution Unlimited: To 
that end, as deep learning (DL) methods and other blackbox 
algorithms continue being used, it is important now, more than 
ever, to provide explainability of such models. Both from a 
moral perspective and from a design perspective, explainability 
allows for better understanding of the model’s shortcomings 
and potential flaws. The blackbox problem will always exist on 
some level, but striving to provide explainability will ensure 
that some level of understanding can be gained from the 
model’s decision-making process.  

This paper presents an explainable late-stage fusion of EO 
and RF (xLFER) data. The proposed xLFER framework is 
divided into individual models which independently process 
data in the earlier stages of fusion and output their decisions for 
decision-level fusion. While models in the early-stage fusion 
using blackbox methods to independently process the input 
data from single modalities, the decision level model uses a 
traditional model, decision tree, in order to provide a final 
decision based on the earlier model’s outputs. Explanations 
from the early models include heatmaps and counterfactual 
explanations which afford traditional algorithms insights into 
the model’s early-stage decision-making process. Comparison 
research was conducted with an early-stage fusion model and 
different traditional models (detailed further in Section III) that 
implement the decision level fusion.  

To the best of our knowledge, no research involving target 
detection with EO and P-RF data has been conducted using 
counterfactual explanations. In the research presented, our 
counterfactual explanations are generated using DiCE [6] 
(Diverse Counterfactual Explanations). Our previous research 
using explainable AI involved greedy algorithms and saliency 
maps, without hybrid models for additional levels of 
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explainability. The rest of the paper is as follows. Section II 
includes a literature review. Section III overviews the 
experimental design. Section IV describes the results and 
Section V provides conclusions drawn from the experiment.  

II. LITERATURE REVIEW 

A. EO/RF Sensor Fusion 

The desired application for the xLFER model is the ability 
to accurately detect and track vehicle targets using EO and P-
RF sensor inputs. The fusion of EO and RF data for the 
purposes of tracking has been used extensively in many similar 
applications [7] [8] [9]. However, the use of passive RF data is 
challenging to implement without conventional methods, such 
as Doppler radar. While the research focus has traditionally 
been on active RF sensors, the use of P-RF data comes with 
logistical and economic benefits, as it requires less power, is 
considerably harder to detect than active RF methods, and 
requires less hardware.  

RF modalities excel in providing detail in the form of 
range, angular, and spectral resolution of collected information 
[10]. The many benefits of combining RF data with higher 
spatial resolution of EO based sensors make the fusion of the 
two sources of data extremely desirable for the applications of 
detection and tracking [11]. There are many RF-based 
approaches that are used in a wide variety of applications. 
These include the fields of tracking [12], human sensing [13], 
proximity [14], localization [15], and detection [16].  

The major issues with using P-RF data come from the fact 
that there is no signal, generally speaking, that can be filtered 
out using available methods. The preprocessing of the P-RF 
data, along with ensuring the synchronization and correct 
sampling is an important factor for P-RF data exploitation. 
However, when correctly used in synch with another sensor, 
the resulting model can yield performance greater than what 
the sources of data can do so independently of one another.  

While fusion with active RF modalities such as Radar with 
EO modalities is common, it is rare that P-RF and EO 
modalities are fused together. Passive RF as a modality comes 
with many benefits, such as reduced energy requirements and 
costs, and being inherently harder for countermeasures to be 
used against it for sensing. Moreover, it is even rarer that non-
blackbox models are capable of effectively processing the P-
RF data, and providing explanations related to its decision-
making process are even rarer.  

B. Explainable AI 

With AI being popular in the year with ChatGPT’s release, 
the importance of having interpretability and understanding of 
the many deep learning models cannot be understated. As 
explainable AI (xAI) is still an emerging concept, there has yet 
to be any uniform adoption of interpretability assessment 
criteria for xAI. There are many different criteria used to 
describe different approaches for providing explainability. 
These include (1) post and ante-hoc methods, which describe 
when the method itself is implemented in the model, (2) local 
or global, which describe what level of interpretability is being 
provided, or (3) model agnostic or model specific, which 
describe how versatile the method is. Some examples include 

Bayesian Rule List, which is an ante-hoc explanation, LIME 
(Local Interpretable Model-Agnostic Explanations) and SHAP 
(SHapley Additive exPlanations) which are model-agnostic 
explanations, and partial dependence plots, which are global 
and model-agnostic in nature.  

  The type of explanations desired and what types can be 
applied are dependent on the model and desired application. 
For image processing, visualizations can be highly desirable. 
Visualizations are post-hoc xAI methods that include gradients, 
activation maximizations, deconvolutions, and decompositions. 
These techniques use tools such as generative models or 
saliency maps in order to determine activations produced on 
the last layer of a deep convolutional neural network (DCNN). 
From these activations, DCNNs can form a pixel-by-pixel 
mapping that highlights what factors provided the highest level 
of confidence in that decision, which then can be overlaid on 
top of the original sample. 

The explanation insights are different based on the 
application; some might be more quantifiable while others 
might be more intuitive based for data scientists. In the case of 
visualization methods, they can provide a more user-oriented 
explanation that human users can understand. In most cases, 
visualization insight is hard to quantify, though metrics such as 
Fréchet inception distance can be used to quantify similarities 
between different images. There are other types of visual 
insights provided which are more easily shown in empirical 
form, using algorithms such as LIME, Counterfactual 
Explanations [17], or SHAP, that compare what data sources 
are more relied upon on at both local and global level, or to 
gain understanding from a human user. 

C. Hybrid Blackbox Algorithms 

The combination of deep learning models and more 
traditional models has been pursued for a number of reasons. 
While different algorithms have their uses, being able to 
combine the ability to fully utilize a blackbox model’s learning 
capabilities with the explainability of a traditional model 
comes with a variety of different benefits. Being able to extract 
a decision tree [18] for example, from an otherwise blackbox 
approach is extremely desirable, as it makes ensuring the 
comprehensibility and reliability of such a model easier. While 
traditional methods might have issues with nonlinear data, if 
the decisions can be recreated using decision trees, it becomes 
extremely desirable for the purposes of explainability. The 
hybrid use of blackbox systems can take many forms, such as 
using decision tree pruning as backpropagation [19], 
generating decision trees from backpropagation [20], rule 
extraction via decision tree induction [21], and sensor-
classification fusion methods [22]. Being able to combine deep 
learning’s ability to approximate complex relationships for 
problems with the explainability of decision trees allows for 
greater understanding of the hybrid model’s decision-making 
process. 

III. EXPERIMENT DESIGN 

A. The ESCAPE Dataset 

The ESCAPE [23] dataset was published back in 2019 by 
the Air Force Research Laboratory (AFRL) Information 
Directory in order to enable multi-modal signature data-fusion 
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research. In this dataset, the Experiments Scenarios Operations 
and Protype Engineering (ESCAPE) dataset combines a vast 
variety of different sensors, including EO, P-RF, radar, 
acoustic, and seismic data in a common scenario for the 
application of advanced fusion. Within the scenarios provided, 
there are a number of vehicle targets which attempt to avoid 
detection, and therefore “escape”, providing any model using 
the data an incentive to use more than just the EO sensors.   

The ESCAPE data has been analyzed for different data 
fusion and learning techniques such as feature-level fusion 
[24]. Building on popular data sets such as the moving and 
stationary target recognition (MSTAR) synthetic aperture radar 
(SAR), many developments have used the data set with 
advances in deep learning [25]. Likewise, the data fusion 
community has advanced to utilize the deep learning methods 
for joint multimodal fusion analytics [26]. Recently, efforts 
have been developed using the ESCAPE data for explanation 
analysis [27], with comprehensive comparisons over novel 
deep learning methods [28].  Another example is from an EO 
and SAR fusion dataset that affords comparisons of deep 
learning methods that emphasize explainability in performance 
improvements [29, 30].   

For the purposes of the scenarios and sensor data chosen 
from the ESCAPE data, the three that were used in this 
research are designated as Scenarios 1, 2, and 3, which 
correspond to the ESCAPE dataset’s Scenarios 1, 2C, and 2D 
respectively. The number of vehicle targets between the three 
scenarios totals 10, and each scenario deals with a different 
number of targets. The overall purpose of the dataset is that all 
the targets are designed to “evade” detection, by employing a 
number of different tactics that incentivize the fusion model to 
use different modality data input. The evasive scenarios comes 
with the benefit of thereby challenging any model or algorithm 
meant to differentiate between potential targets when engaging 
in tracking, as similar targets being moved in a manner that 
even human users might have difficulty in differentiating 
between them with only visual information. The three 
scenarios all involve multiple vehicles entering and exiting a 
garage, with multiple vehicles of similar make and build are 
combined with dissimilar vehicles. The movements of the 
vehicles are also varied to present challenging discrimination 
opportunities that confuse tracking differentiation. 

 

Figure 1: Scenario 1 

Scenario 1 has two possible vehicle targets, both of which 
are of the same build and color as each other. For each of these 
scenarios, only one source of EO data was used, in order to 
maximize the need for the model to utilize the RF data rather 
than ignoring the P-RF input. The scenario starts as vehicle #2 
travels into the garage in plain view of the EO sensors. As this 
happens, vehicle #2 travels into the garage from behind the tree 

line. While doing so, from the EO sensor’s point of view, 
vehicle #1 is “hidden” due to visual obscuration that prevents 
the model from detecting its movements most of the time. 
Once vehicle #2 enters the garage, vehicle #1 then exits the 
garage, and the objective of the first scenario is to successfully 
determine when the “switch” is made. If the model incorrectly 
identifies the vehicle exiting as #2, then that means the model 
has failed and the vehicle has successfully “evaded” detection. 

 

Figure 2: Scenario 2 

Scenario 2 is nominally more complicated than scenario 1 
by comparison. In this scenario, there are three total vehicles 
and essentially follow the same pattern as Scenario 1, but only 
two of the three look visually similar. The difference is that 
rather than vehicle #3, which is visible, or vehicle #1, which is 
not possible to obtain at the video angle chosen switching in 
the garage, is that vehicle #3 that was parked in the garage the 
entire time. This makes it appear that vehicle #1 enters and 
exits when in fact it is hidden inside of the garage, thus 
“escaping” detection successfully. The EO input is insufficient 
on its own to make that determination, as the difference 
between similar vehicles, incentivizing the use of P-RF data. 
 

 

Figure 3: Scenario 3 

Scenario 3 is the most complicated of the three and chosen 
due to the complexity of the five vehicle targets, all traveling at 
different speeds and with different makes. Four of these 
vehicles arrive out of the front of the garage, while the fifth 
vehicle arriving from out of view, thereby making the tracking 
at the end of the video input, linearly speaking, extremely 
difficult to conduct with only the EO input for that time frame. 
The variable speeds displayed by the five vehicle targets also 
presents an additional dimension of complexity with respect to 
tracking as the vehicles that are similar in design will overtake 
the other at different points within the scenario, making 
tracking a challenging process for Scenario 3. 

B. Early Level Fusion and Preprocessing 

 The two sources of data are preprocessed in a number of 
different ways, with EO being preprocessed with Dense 
Optical Flow (DOF) and thresholding, P-RF data being 
preprocessed into histograms and with a Fast Fourier 
Transform (FFT) over the original I/Q data. As the primary 
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focus is on the P-RF data, a less intensive form of EO 
preprocessing, thresholding, is chosen as an alternative for 
xLFER to use. While different sources of data enhancement 
have been tested in previous research [9], the usage of different 
interpretations of the same data is ideal for the purposes of 
gaining insights with the decision level fusion. 

 In order to extract more useful features from the P-RF data, 
the implementation of Wigner-Ville Distribution (WVD) and 
Continuous Wavelet Transform (CWT) are implemented. 
WVD has been used for the better half of the century and 
provides a high-resolution time-frequency representation of the 
background P-RF data as shown in Figures 4 and 5. CWT 
provides an overcomplete representation of the RF signal. 
Expanding on the uses of P-RF data provides more features for 
the model to utilize when EO sources alone are incapable of 
determining and locating the target vehicle. 

 

Figure 4: Wigner-Vile Distribution sample of P-RF data in Scenario 1 

 The generation of the WVD and CWT samples is taken 
from averaged bin files hosting the data in python. SciPy and 
the Time-Frequency analysis modules are utilized in order to 
process the P-RF data. From there, the rest of the data is 
independently processed for each modality, with the results 
being sent downstream for decision level fusion. 

 

Figure 5: Continuous Wavelet Transform sample of P-RF data in Scenario 1 

 For the purpose of gaining explanations for the blackbox 
algorithms that will be used for the data, the use of 
Counterfactual Explanations is implemented. The performance 
of the models is kept separate from each other, with only the 
decisions the independent model’s output being used to feed 
the decision-level fusion model. The decision-level fusion 
model from there uses the decisions made by the downstream 
models as training data.  

C. Late Fusion Design 

 With the preprocessing completed and early models 
training is completed, the next stage is the late-stage decision 
level fusion. The xLFER model takes five separate sources of 
decisions (Histogram, CWT, WVD, DOF, and Thresholding as 
seen in Figure 6) and inputs them into the decision-level 
model. The late decision-level model, a decision tree, provides 
further insights using the generated decision tree’s usage of the 
five inputs. The DT model’s weights explain the model’s 
decision-making process and thereby provide greater 
explainability than relying solely on visualization methods. 

 

Figure 6: Late Fusion Model 

One of the most useful features of this dataset, that our 
group has not been able to ideally capitalize on in previous 
research, is that the ground targets emit 13 frequency channels 
over a 4 MHz frequency band [23]. While it would be possible 
to preprocess the RF data, looking for those specific signals is 
not a part of the tracking and differentiation of different targets. 
Rather it is a signal of opportunity which potentially aids in 
differentiating between different targets. As this system is 
passive in nature, the system cannot focus on those exact 
signals, but it can process the RF data further to provide better 
visibility of the existence of these features, for the model to 
then utilize. In any real-life scenario, target vehicles will likely 
have some level of RF component; for example, emitted by 
wireless communication systems, mobile phones, and 
potentially self-driving car systems in the future, etc. 

D. Comparison Research 

With the usage of decision-level fusion, naturally the 
comparison research for this data will not be limited to just the 
initial Decision tree based fusion model. The comparison of the 
same input training data using Logistic Regression (LR), 
Support Vector Machines (SVM), K-Nearest Neighbors 
(KNN), Gaussian Naïve Bayes (GNB), and a convolutional 
neural network (CNN) will be used to compare the results. 
Evaluation will be conducted via F1 Score to gain a better 
insight into the performances of each model. An F1 Score is 
calculated as the harmonic mean of both the precision and 
recall measurements. Precision measures how many retrieved 
values were relevant (Positive Predictive Value). Recall is a 
measurement of the completeness of the positive predictions 
(aka sensitivity). 

IV. RESULTS 

A. Early Level Fusion 

 While the standalone P-RF modalities could be processed 
better, the EO based modalities, as seen below in Table 1, are 
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able to achieve relative success independently. It is impossible 
for the EO modality on its own to achieve a perfect score, 
owing to how the ESCAPE dataset is designed, with several 
parts of the scenario purposefully obscuring the sight of the 
target. However, having a higher score is promising with 
respect to the information and its level of accuracy that it will 
provide to the decision-level model. 

TABLE I.  EARLY LEVEL FUSION COMPARISON 

Base Modality Preprocessing F1 Score 

EO Thresholding 0.73 
EO Dense Optical Flow 0.88 

P-RF Histogram 0.27 
P-RF CWT 0.41 
P-RF WVD 0.56   

 As seen in Table I, there is a considerable improvement in 
the processing of the P-RF data. In previous research with P-
RF data impact, the histograms were only able to achieve a 
modest amount of impact and accuracy. However, the usage of 
CWT and WVD has led to a drastic increase in the model’s 
accuracy on the standalone models. This is reflected in the 
local and global impact, as described in later in part C. 

B. Comparison with Similar Models 

 The comparison of Decision tree algorithm with Logistic 
Regression (LR), Support Vector Machines (SVM), K-Nearest 
Neighbors (KNN), and Gaussian Naïve Bayes (GNB) is used 
to showcase its performance with respect to other traditional 
methods, using the information from the EO (DOF), EO 
(Thresholding), PRF (Histograms), PRF (CWT), and PRF 
(WVD) models. While previous research has shown better 
results with earlier level fusion, the results overall were 
favorable for the decision level fusion approaches that were 
tested. 

TABLE II.  COMPARISON OF LATE DECISION LEVEL FUSION MODELS 

Model: F1 Score: 

CNN 0.98 

DT 0.92 

LR 0.93 

SVM 0.91 

KNN 0.89 

GNB 0.94    

 The Decision tree’s (DT) performance aside, the 
improvement that the two other PRF models provide can be 
seen in the increased F1 scores. The KNN model had the least 
impact, with the SVM model showing a decent performance, 
while the LR and GNB were able to outperform the Decision 
tree’s performance entirely, as seen above in Table II. The 
Decision tree’s decision making was unsurprisingly focused on 
the EO sources, with Thresholding predictably having the 
lower impact of the two. The P-RF sources for CWT and WVD 
also predictably had a bigger impact than the decision-making 
process than the Histograms did, but otherwise is more or less 
in line with the weights the counterfactuals. While the DT 
model didn’t fare as well as the LR and GNB models, the 
insights the tree weights provided were useful comparisons for 
the counterfactuals. While the baseline traditional models did 
not perform as well as the decision level fusion CNN, their 

performance was considerably improved from prior research 
with only P-RF histogram input. 

C. Explainable AI 

 In order to gain explanations from the models tested, 
counterfactual explanations are generated using DiCE [13] 
(Diverse Counterfactual Explanations). Counterfactual 
explanations provide this information by showing feature-
perturbed versions of the same sample based on different 
features, and thereby gaining insights into the model. This 
makes it possible to generate feature importance scores using a 
summary of the counterfactuals generated, determining its 
impact on both a local and global level. 

TABLE III.  COMPARISON OF EARLY LEVEL FUSION IMPACT 

Modality Local Global 

EO (Thresholding) 0.76 0.61 

EO (DOF) 0.83 0.68 

P-RF (Histogram) 0.16 0.32 

P-RF (CWT) 0.37 0.41 

P-RF (WVD) 0.53 0.57   

 The global importance scores per feature are estimated by 
aggregating the scores over individual inputs, while the local 
feature importance scores are computed for a given instance by 
summarizing a set of counterfactual examples around the point. 
As seen above in Table 3, the early-level fusion feature 
importance scores largely favor the EO modality. The results 
are largely in line with previous research with a greedy 
algorithm that assigned local and global feature impact scores 
[20], with the general trend being stronger EO impact than P-
RF but with P-RF having a much larger impact on the global 
scale. Unlike the aforementioned research with ExplainX.ai, 
the use of counterfactuals relies on the model’s decisions as 
opposed to approximating the original model via Greedy 
Algorithm. 

V. CONCLUSION 

 In this work, we present a late-stage decision-level model 
that provides explanations for both early and later stages of 
data fusion. The usage of CWT and WVD for preprocessing 
provided noticeable improvements in the model’s ability to 
utilize the P-RF data. With the improved accuracy of the P-RF 
models, the results indicate the models were able to exploit the 
preexisting signals to differentiate between different targets. 
The counterfactual explanations confirmed previous research 
into local and global impact with regards to behavior the fusion 
model used. Coupled with the results of the decision level 
fusion of the decision tree model, greater insights into the 
usage of P-RF data for target detection and differentiation is 
provided in this paper. While the decision tree model was not 
able to perform as well as our baseline, the decision-level 
fusion CNN, the traditional models were able to achieve a 
relatively close performance to the CNN. In future research, we 
would like to conduct further experimentation of other P-RF 
preprocessing methods and compare their impact on the fusion. 
It would further explore the explainability methods with 
visualizations for the explainability that can leverage the 
analysis from decision trees. With the determination of the 
features and sensor use, the methods can be explored for fog 
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and edge paradigms [31] as well as hierarchal sensor 
management strategies such as with visual transformers [32].  
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