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ABSTRACT

Ellipsoid fitting is a widely used technique in 3D shape
modeling, which simultaneously estimate the center and
orientation of 3D object. This paper explores the limits
of performance for the ellipsoid-fitting center estimator. It
is shown that the noise in the surface sample data can be
approximated by a Gaussian distribution when the signal
to noise ratio is high. The Cramér-Rao lower bound is ap-
plied to yield a bound on the variance of unbiased ellipsoid-
fitting center estimator. The simulation results show that
the bound is approachable by the center estimator devel-
oped from Bookstein’s ellipsoid fitting method when the
noise level is low.
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1 Introduction

Fitting ellipse or ellipsoid to scattered data is widely em-
ployed in many applications of pattern recognition and
computer vision due to its ability to simultaneously esti-
mate the center and the orientation of an object [1]. For
example, a common shape modeling technique uses ba-
sis functions, such as spherical harmonics, B-splines, and
Fourier series to approximate the boundary of an object
[2, 3]. To use such basis functions efficiently and to com-
pute the shape parameters accurately, it is important to
properly choose the object center, such that the origin of the
coordinate system can be aligned with it. In some applica-
tions, we have prior information of the object geometry, or
the measurement system may define a natural geometry of
the object, and the optimum center of the object is well de-
fined. For example, when an object has symmetry relative
to a center, aligning the origin with the object symmetric
center is an optimum choice because many basis functions
are defined to be symmetric to the origin and some high
spatial frequencies can thus be avoided in shape modeling.
In the applications that no prior knowledge of the object ge-
ometry is available, the optimum center of the object may
vary with different assumptions and objectives. The object
gravity center is often a natural and reliable choice as the
center for shape modeling [3, 4]. However, if the surface is
not evenly sampled, it is hard to compute the gravity center
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of an object. And the noise in the surface sample data also
increases the difficulty in center estimation.

In many cases of pattern recognition and image regis-
tration, it is also necessary to extract information of an ob-
ject orientation based on principal axes. Given a set of sur-
face sample data, a commonly used method that can jointly
estimate the object center and the principal axes is ellipsoid
fitting [3]. The method fits an ellipsoid to the surface sam-
ple data. The symmetry axes of the ellipsoid are then used
as principal axes. For unevenly distributed sample data, it
is known that ellipsoid fitting method is more robust in es-
timating object center than computing the gravity center of
the sample data, and also has better performance than the
second moments method in estimating principal axes [3].

The existing methods for ellipsoid fitting are usually
based on the least-squares fitting of the scattered data, and
can be classified into two categories according to their error
definitions, i.e. algebraic fitting and geometric fitting, re-
spectively. It is well known that the quadric curves and sur-
faces can be represented by an implicit equation F'(v,x),
where v is the parameter vector and x is the surface point
coordinates. For a given point x;, if it is not on the curve
or surface, F(v,x;) # 0. In algebraic fitting, the func-
tional value of F'(v, x;) is regarded as the error distance or
algebraic distance, and the ellipsoid fitting is done through
minimizing Zf[F(v,xi)]Q, the square sum of the errors
[5, 6, 7]. In geometric fitting, the error is defined as the
shortest distance from the scattered data to the best fitting
curve or surface, so it is also known as orthogonal distance
fitting [8, 9]. The advantages of algebraic fitting lies on its
elegant analytical solution and low computing cost, while
geometric fitting claims advantages in accuracy with much
higher computing cost associated with its iterative solution.
In our study of articular cartilage deformations, the cen-
ter and orientation information of large amount of cells are
obtained by fitting ellipsoid to microscopic image segmen-
tation results. The computational cost consideration mo-
tivates us to choose algebraic fitting method to solve the
ellipsoid fitting problem. However, it is desirable to know
how well the curve and surface parameters can be estimated
for a given signal to noise ratio of the scattered data so that
the performance of algebraic fitting algorithms can be com-
pared to the limit and evaluated.

This paper develops a lower bound on the variance of
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unbiased ellipsoid-fitting center estimator based on a Gaus-
sian distribution model of the surface sample data. The rest
of this paper is organized as following: In section 2, the
ellipsoid fitting method is briefly described. In section 3, a
Gaussian noise model is set up for the surface sample data,
and then a lower bound on the variance of unbiased cen-
ter estimator is derived by applying the Cramér-Rao lower
bound. In section 4, the simulation results are presented
and compared with the developed lower bound.

2 Ellipsoid Fitting

The surface of an ellipsoid is a special case of quadric sur-
face which has a general expression F'(v, x) as:

Az’ +By’+C2?+Day+Exz+Fyz+Ga+Hy+I1z+J =

()
where x = (z, y, z) is the cartesian coordinates of the point
on the ellipsoid surface, v = (A4, B, C, ..., J) is the param-
eter vector which describes the location, size and orienta-
tion of the ellipsoid. There are nine degrees of freedom in
the description of an ellipsoid, which include three coordi-
nates of the centroid, the lengths of three symmetry axes
and three orientation angles. Since the above expression
has ten parameters, they must be constrained by some rela-
tions.

The 3D ellipsoid fitting method described here is gen-
eralized from the 2D ellipse fitting method proposed by
Bookstein [5]. And a constraint

A2+BQ+C’2+%(D2+E2+F2) =1, (2
which is in a similar format as proposed in [5], is adopted
so that the fitting result is invariant under equiform trans-
formations.

Let {x; = (x;,yi,2:),i = 1---k} be the set of scat-
tered surface samples to be fitted, where & is the total num-
ber of sample points in the data set. The algebraic error is
defined as e; = F'(v,x;), and fitting is done by searching
for v that can minimize Zf[F(v, x;)]? with the constraint
over v. Define the vector

@)

which is determined by the sample point x;, and the matrix

k
T
S:E m; m;,
i

2 2 2
m; = ($17y1 y %4y Liliy TiZiy YiZiy Liy Yiy Ziy 1)

(4)

the objective function Zf[F(v, x;)]? can be expressed as
vSvT,

To add the constraint (2) as Lagrangian, the vec-
tors v and m; can be decomposed into two parts so
that v = [Vl,Vg] and m; = [mil,mig], where
Vi = (A,B,C,D,E,F), Vo = (G,H,I,J), m;; =
(22,92, 22, 2iyi, w32, vizi), and mys = (4, vi, 24, 1).
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The matrix S can be written as
Sl2
S =
e

where S1; = Y, m]m;;, S12 = Y, m/im;, Sy =
>, mbm;q, and Soo = >, mLm;,. The objective func-
Sll SIZ

tion now becomes
vi
Sa1 Sao V2T

= VlsnvlT + 2V1812V%1 + V2822V§. (6)

Sll

Sy, ®)

vSvl = (Vl,V2)|:

Setting the derivative d(dv(iz)T ) to zero leads to vo =

—v1812S5, . Substituting it back into (6), we have

vSvT = vi(S)vT (7
where g =851 — 8128521821.
Let us define D = diag(1,1,1, 3,1, %), the con-

straint (2) can be described in the form v;Dvi = 1.
Therefore, the constrained minimization of vSvT has been
converted to the minimization of viSv{ — AviDv7. Tak-
ing the derivative over v; and setting it to zero, we obtain
2Sv] — 2ADv{ = 0. This indicates that the vector v
should be the eigenvector of S. In the implementation, the
eigenvector of best geometric fit is chosen to be the final
solution of parameter estimation. The center and principal
axes of an ellipsoid are completely determined by the pa-
rameter vector v. So the algebraic fitting method simplifies
the estimation problem to the problem of solving eigenvec-
tors of a generalized symmetric matrix.

3 Lower Bound on the variance of Ellipsoid-
fitting Center Estimator

To evaluate the performance of the ellipsoid fitting method
described in section 2, we develop a lower bound on the
variance of unbiased ellipsoid-fitting center estimators un-
der a Gaussian noise model. Our derivation of the lower
bound follows similar steps as the derivation of a Cramér-
Rao bound. The effectiveness of an unbiased estimator can
be characterized by its variance. Cramér-Rao bound, the
inverse of Fisher information matrix, describes the mini-
mum obtainable mean square error associated with a given
estimate of a set of parameters. The derivation of such a
bound for the ellipsoid parameter vector v is described as
follows.

First, we set up the noise model of the surface sample
data. Write equation (1) in the spherical coordinate system
and arrange it into a quadratic form of r:

Ay + Bir+ 01 =0 (8)



where

Ay = A(sin 0 cos ¢)? + B(sin 0 sin ¢)? 4 C(cos 0)*+

% [D(sin? @sin 2¢) 4+ E(sin 20 cos ¢) + F(sin 20 sin ¢)]

By =Gsinfcos¢ + Hsinfsing + I cos

Ci=J )

If we assume the origin of the spherical coordinate
system is inside the ellipsoid, the true radial value of the
ellipsoid in each direction (6, ¢) is determined by:

VBZ —4A,C; - B

24,

It has been proved in [5] that F(v,x;) =
F(V, Ti, 91', (;51) X (m)z -1, where R(é)l, (;51) is the
true radius in the sample direction (6;, ¢;) determined by
(10). Therefore, the ellipsoid fitting method implements a
maximum likelihood estimation of the parameter vector if
the noise in each direction (6;, ¢;) is uncorrelated and the
segmentation data follows the probability density function

R(ev ¢) =

(10)

r? 2
(32(9:7@) B 1) ]

D) r; >0

(11)
where «; is the normalization factor. If r; — R(6;, ¢;) <
R(0;, ¢;), we have (m 1)2 ~ 4(%) and
f(r;]v) can be approximated by

ri — R(0;, ¢;)

Notice that f(r;|v) is not a probability density function
with respect to r; € (—o0, 00) unless we modify the nor-
malization factor a; as

2
i = 1// epl= aR(0 z,@)) I = R(0s, pi)o/m

This approximation is illustrated in Figure 1.

f(rilv) = «; - exp[— -

f(n-|v) = oy -exp[—4( 2, >0 (12)

Figure 1. Approximation of f(r) by f(r) under the condi-
tionr — R < R. Here R = 5and o = 1. The solid line
represents f(r) and the dotted line represents f(r)

During the derivation of lower bound and the simula-
tion of the ellipsoid fitting performance, we adopt f(r|v)
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as the probability density function of the surface sample
data. This is equivalent to a Gaussian noise model. In the
following, we show an example of deriving the Fisher in-
formation for parameter A with such a noise model.
Taking the logarithm in both side of (12), we have

TR flanln(%%).

In f(rlv) = ~4(“

(13)

The expectation of 9 J(rlv) can be obtained as:

0A2
d%1n f(r|v) 8 OR DAL
E[ HA2 }__(O_QRQ ﬁ)(a—/h) <8A)
(14)
o /B}—4A1C1- By
where 2% = —(AM/B%_L%C1 + 2a7 ) and

941 = (sinf cos ¢)2.

With the assumption that noises over different direc-
tion (0;, ¢;) are independent, the joint probability density
function for the set of sample data is Hfil f(rs|v), where
f(r;|v) is the probability density function of the segmenta-
tion data in direction (6;, ¢;). Therefore, the Fisher infor-
mation for the parameter A is:

ne%n

Similarly, we can compute the other entries in the Fisher

information matrix of the ellipsoid parameter vector v.
Once we have estimated the parameter vector v

through ellipsoid fitting, the coordinates of the center

(z,y, z) can be determined by:
—1 a
H |. (16)
I

T
y | ==
z

Based on the inverse of the Fisher information matrix of
v, we can obtain a lower bound on the covariance of the

center estimator. Let X = (&,9,2)” represent the cen-
—1

9%1n f(r;|v)

oA (15)

2A° D E
D 2B F
E F 2C

24 D E
ter estimator, and define K = D 2B F and
E F 20

b = (G, H,I)T. We rewrite equation (16) in the form of
% = —Kb = —(K+K_.)(b+b,), where K and b are the
mean values of K and b, and K, and b, represent errors in
K and b. The lower bound for the covariance of the center
estimator can be obtained from following computation:

cov(x) = E [(KB — Kb)(Kb — KB)T}
= cov(Kb,) + cov(K.b) + cov(K.b.)
> KF!'(b)K” + cov(K.b) (17)
where F~1(b) denotes the inverse of Fisher information

matrix of the parameter vector (G, H,I). In the above
derivation, we have assumed that cov(K.b.) is much



smaller than cov(Kb,) and cov(K.b). KF~}(b)KT is
a Cramér-Rao lower bound of cov(Kb,). To further sim-
plify the computation of the lower bound, we let b equal
zero in our experiment so that the term cov(K.b) in (17)
can be ignored.

4 Simulation Results

To evaluate the performance of the ellipsoid-fitting center
estimator generalized from Bookstein’s method, we have
simulated noisy surface sample data and applied the ellip-
soid fitting method to estimate the object center. In the sim-
ulation, segmentation data in each sample direction (6;, ¢;)
has been generated independently with Gaussian distribu-
tion £ (rs|v) = é; -exp[—4(“s5h?5%0)2), where R(6;, ¢)
is the true radial value. Sampling direction (0, ¢) is evenly
distributed over a grid on [0, ] x [0, 27). The true surface
used in the simulation is an ellipsoid ;—z + g—i + g—i =L
One such simulated segmentation in a 2D cross section of
the ellipsoid is shown in Figure 2. We think that these sim-

Figure 2. Segmentation data on a cross section of the ellip-
soid, o = 0.2.

ulated noises are representative of errors incurred by auto-
matic segmentation of a noisy boundary. It is known that
the segmentation error can be modeled by a Gaussian ran-
dom variable in 1D edge detection. If we regard the 3D
surface segmentation as implemented through 1D edge de-
tection along each sampling direction and assume that sur-
face curvature has no significant influence over the detec-
tion, our noise model will simulate the segmentation error
very well. However, if the sampling density is relatively
high as compared to the object size, the segmentation noise
in neighborhood will be correlated.

For each noise level, 200 sets of simulated surface
sample data have been generated. Figure 3(a) shows the
bias of the center coordinate estimator x. Figure 3(b) com-
pares the variance of x with the developed lower bound.
When the noise level is low, the variance of x is very close
to the lower bound. This proves that this center estimator is
an efficient maximum likelihood estimator when the noise
level is low. We have also simulated the segmentation data
with o larger than 0.5 with the same ellipsoid used above.
The results show that the performances of the ellipsoid fit-
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Figure 3. Performance of the ellipsoid fitting center esti-
mator

ting center estimator is not stable because the method may
generate other types of quadric surfaces due to the outliers
in the segmentation data.

5 Conclusion

We established that the estimator of the ellipsoid param-
eter vector developed from Bookstein’s 2D ellipse fitting
method is a maximum likelihood estimator when the seg-
mentation noise level is low. A lower bound has been
derived for the variance of unbiased ellipsoid-fitting cen-
ter estimator with Gaussian noise model of the segmenta-
tion data. The simulated results show that the described
ellipsoid-fitting center estimator is efficient when the noise
level is low.
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