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Abstract—In machine learning, the ability to reliably 

determine potential pitfalls in the decision making process of an 

algorithm is essential. In previous research, the fusion of passive 

radio frequency (P-RF) histograms generated from in-phase 

quadrature component (I/Q) data and enhanced electro-optical 

(EO) data are fused together in order to implement classification 

and tracking of different vehicle targets using the AFRL’s 

ESCAPE dataset. In previous research, the impact of the P-RF 

data was confirmed to essential for achieving a higher 

performance when fused with EO data. This research, however, 

did not provide an intuitive means by which inferences and 

explanations for a human expert could interpret. In this paper, 

saliency maps are implemented in order to visualize the impact of 

P-RF data in the fusion model and thereby confirm the role the 

different modalities play in the heterogeneous sensor fusion in an 

intuitive manner. These visualizations provide context for which 

pixels activate neurons in the final layer of the model. Overlaying 

the two modality inputs with respect to time, the method presented 

in this paper is able to provide explainability for the fusion model 

while also achieving an F1 score of 0.9. The research in this paper 

uses the distribution and frequency of the appearance of different 

types of visualizations. Combined this with context from the 

scenarios with respect to the timeline of events, it becomes possible 

to draw inferences for how the two modalities are utilized by the 

fusion model.  

Keywords—Explainable AI, Heterogeneous Sensor Fusion, 

Electro-Optical, Passive Radio Frequency, Deep Learning, Feature 

Level Fusion, Histogram of In-phase and Quadrature Components, 

Overlayed Images, Visualization, Saliency Maps, Heat Maps 

I. INTRODUCTION  

The use of machine learning (ML) has considerably grown 
in both research and industrial application with the success of 
deep learning (DL) and neural networks (NN). Neural networks 
come with a variety of benefits, especially given the potential 
such blackbox algorithms have when it comes to end-to-end 
learning. Even with the potential such blackbox algorithms 
contain, it is critical to have an understanding or some level of 
transparency. When decision-making errors occur, it is 
imperative to have some understanding of how such mistakes 
were made, both for developmental and application reasons. A 
momentary mistake with a computer vision algorithm for an 
autonomous vehicle application could lead to a fatal accident. A 
decision-making error for a neural network that is used for a 
financial application could lead to a catastrophic loss of wealth. 

In the medical field, specifically in computer aided diagnosis, a 
false negative could lead to a fatal misdiagnosis.   

For this reason, interpretability and explainability of ML 
algorithms become an increasingly pressing issue. It is important 
for accountability when such decision-making errors happen, 
and more importantly determine how and why the error 
occurred. Even if the model performs well, it is imperative to 
determine that it has been trained properly, as opposed to 
exploiting features that are only exclusive to the training set. It 
is therefore desirable to have some level of transparency even 
for development purposes. There are many methods to either 
recreate the framework to capture interpretability or to at least 
illuminate or provide inferences to the decision-making process 
of an AI model [1]. The field of explainable AI (XAI) has 
become a hotspot of the ML research community. There have 
been many attempts to define the notions of important XAI 
terms such as interpretability, explainability, reliability, and 
trustworthiness, but not necessarily a clear notion of how to 
incorporate them into the wide array of diverse applications that 
machine learning includes. For this reason, in this paper, we will 
use the terms “explainability” and “interpretability” in an 
interchangeable manner.   

In previous research [2], it was determined that the impact of 
P-RF data in the fusion model was beneficial to its performance. 
However, compared to the more intuitive EO modality, the P-
RF impact presented a major challenge. With the usage of dense 
optical flow (DOF) any potential targets detected with the EO 
modality are clearly shown when fed to the model. The P-RF 
data on the other hand is largely ambiguous due to the noise in 
the histograms. Even if the fusion model’s performance is 
improved, determining why and how the P-RF data impacts the 
model is important.  

For the purposes of achieving explainability with the fusion 
of P-RF and EO data, visualizations and overlayed inputs are 
used. Visualization methods provide more intuitive explanations 
from which we can infer the behavior of the fusion model. Using 
the frequency and distribution of this data, combined with expert 
knowledge of the events occurring with respect to time, 
inferences on how the P-RF data is utilized by the fusion model 
can be made. These inferences are backed by the model’s 
performance and used as a means of confirming the impact by 
both modalities in the decision-making process. 
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II. LITERATURE REVIEW 

A. EO/P-RF Sensor Fusion and the ESCAPE Dataset 

For this research application, the goal was not to rely on 
active RF inputs, but to exploit the potentials of passive RF (P-
RF) sensors in an explainable manner. The approach is a low 
energy application of radar, and considerably more economical 
in value, and boasts of rapid updates compared to active RF 
modalities. Jamming and other countermeasures for traditional 
active RF modalities are also difficult to implement, making the 
modality significantly more reliable in terms of performance. 
With the modern computing power 21st century technology 
possesses and the sophisticated algorithms available, extracting 
meaningful information from background noise becomes a 
viable approach to gathering information.  

Information fusion with EO and passive RF modalities 
requires collecting and experimenting with such data. In 2019, 
Air Force Research Laboratory (AFRL) and Michigan Tech 
Research Institute (MTRI), released their Experiments, 
Scenarios, Concept of Operations, and Prototype Engineering 
data set (ESCAPE) [3]. The dataset is a versatile toolkit of 
different sensor modalities and scenarios that include, infrared 
(IR), full motion video (FMV), passive RF data, acoustic, 
seismic, and active radar imagery data.  

For the multimodal heterogeneous sensor fusion research 
presented in this paper, the raw RF data are preprocessed to 
obtain I/Q histograms with respect to time. The histograms are 
aligned with the simulated EO data for the purposes of detecting 
and classifying the number of vehicles. From previous 
experiments that had compared the single input vs the fused 
output with respect to the ground truth of the simulation, neither 
standalone modality was able to achieve a performance greater 
than an F1 score of 0.9, with the P-RF histogram data being 
incapable of exceeding even an F1 score of 0.6 when given more 
than one potential choice. But with the fusion of both the DOF-
EO image input and P-RF histogram inputs, the model could 
reach an F1 Score of 0.95.  

Using Machine Learning, specifically Neural networks (NN) 
and deep learning, was an obvious decision as such methods 
boast of powerful classification ability. Some neural networks 
even capable of achieving accurate classification with simply 
end-to-end learning. Given that their attainments for 
applications in RF related functions, such as cognitive radio and 
radio signal processing, using a NN to classify passive RF data 
is a reasonable choice. Processing the input data, and then 
approximating a solution, is more feasible than developing a 
series of first-principal physics equations that approximate the 
problem.  

B. Explainable AI 

As explainable AI is an emerging field in research and 
industry, there has yet to be a widely adopted standard for 
explaining models. These types of explanations come in a wide 
variety of types, such as ante-hoc and post-hoc; local or global; 
or model agnostic and model specific. Such terms are derived 
from what level the explanations originate from to how the 
method can be applied in terms of other models. Even discussing 
methods of how to quantify such approaches is quite a task in of 
itself, as there are a number of different classifications for such 

types of interpretability. To even begin discussing the topic of 
explainable AI, the most important thing to do is to define 
interpretability.  

There are a number of definitions of interpretability or 
explainability. For domains that deal heavily in images for 
example, interpretability might be defined as being able to map 
the predicted class into a domain that the human user might be 
able to make sense of. For non-image oriented inputs, being able 
to assign a weight to certain features might be a better way to 
provide transparency. In an ideal system, one might even define 
interpretability as a reasonable explanation as to why a 
collection of features contributed to the decision-making 
process, or at least determining how much weight the decision-
making process gave to said features [4]. Whichever definition 
of interpretability one might subscribe to, given the lack of a 
widely adopted standard, so long as the method provides 
insights that can answer questions regarding how and why the 
model performs in the way that it does, that is a method that 
provides some level of transparency. 

There are many means by which to divide different 
categories of XAI methods, such as the mechanism (sensitivity, 
decomposition, optimization, inversion [5], etc.), or procedure 
(ad-hoc, post-hoc, model specific, model agnostic [6], etc.). 
Regardless of the type of XAI method, the end results of such 
explanations traditionally can be broadly categorized into two 
types: analytical and intuitive explanations. Many approaches 
will provide analytical results, from the usage of LIME (local 
interpretable model-agnostic explanations) to SHAP (Shapely 
Additive exPlanations) [7]. Such methods can provide 
information such as determining the impact on the model output 
in a model-agnostic manner. As for intuitive explanations, while 
not as empirical in nature, with the knowledge of a human expert 
can be provide context for the decision making process. These 
include methods like visualization [8], such as Grad-CAM, 
which provides a post-hoc explanation for decision making 
process. Such methods typically work along with feature 
relevance techniques to provide the end result. 

In previous research [9], we had determined the weighted 
impact of the P-RF data for the fusion model. The results 
indicated that the fusion of P-RF data with EO inputs was 
necessary for achieving a higher performance score. While it 
indicated the P-RF had an impact on the decision making, it was 
not clear as to when and how the P-RF aspect of the Fusion 
helped in decision making. As such, the next logical step was to 
begin researching the impact of the modalities in an intuitive 
manner.  

C. Previous Research in XAI with respect to EO/P-RF Fusion 

The ESCAPE dataset contains a number of scenarios and 
different sensor input modalities. Three of these scenarios that 
are used as the focus of this research for the purposes of this 
paper. Scenario 1, scenario 2C and scenario 2D, which are 
designated in this paper as scenarios 1, 2, and 3 respectively. 
Each of these scenarios uses a different number of vehicles. But 
for the purposes of collecting data, the sources of sensor input 
collection remain MTRI 11, 12, and 13 for P-RF data collection 
and one sole source of electro-optical data, MTR-EO-04. The 
usage of a single EO input is to ensure the P-RF input is 
necessary for fusion to achieve a higher performance.  

AFOSR Grant FA9550-18-1-0287. AFOSR Grant FA9550-18-1-0287. 
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There are a total of five different types of ground vehicles 
used in the dataset, a gas motor Gator utility vehicle, a diesel 
motor Gator utility vehicle, a pickup truck, a panel van, and a 
stake rack truck. These five vehicles are the primary focus of the 
ESCAPE dataset, and by design are always the aforementioned 
targets of the dataset. As mentioned earlier, the scenarios are all 
made to “evade” detection, thereby challenging the models 
trained with this data set on their ability to differentiate between 
potential targets when engaging in tracking.  

 
Figure 1: Comparison of Scenario’s 1 (left), 2 (middle), 3(right) 

Scenario 1 has two targets, with vehicle #1 traveling into the 
garage as seen via the EO input, while vehicle #2 travels into the 
garage unseen due to visual obscuration that prevents the DOF 
EO processed data to be unable to pick up the image. Both 
vehicles are of the same model, as the intention is to “deceive” 
any viewers into believing that the same vehicle is traveling in 
and out of a garage when in fact they have “switched” entirely. 
When vehicle #1 enters the garage, vehicle #2 exits the garage, 
and the objective of the first scenario is to successfully 
determine if the model can tell if and when the “switch” is made. 

Scenario 2 has three vehicles and follows the same pattern 
as scenario 1. The difference is that rather than vehicle #1 which 
is visible or vehicle #2 which is not possible to obtain at the 
video angle chosen switching in the garage, it is vehicle #3 that 
was parked in the garage the entire time that arrives to the 
location of vehicle #3. The third target, vehicle #3, is of a 
completely different model than #1 and #2 but provides a 
potential false target that is actively moving to increase the 
complexity of the scenario. The DOF EO will not be sufficient 
to determine the difference between the three vehicles as the 
source selected does not have access to all of the data. 

Scenario 3 is the most complicated of the three and chosen 
due to the complexity of the five vehicle targets traveling at 
different speeds and with different models. Four targets (pickup 
truck, diesel motor, Gator motor vehicle, a gas motor utility 
vehicle) arrive out of the front of the garage while fifth vehicle 
(stake rack truck) arrives from out of view, thereby making the 
tracking at the end of the video input linearly speaking extremely 
difficult to conduct with only the EO input for that time frame. 
The variable speeds displayed by the five vehicle targets also 
presents an additional dimension of complexity with respect to 
tracking as the vehicles that are similar in design and appearance 
(diesel motor gator utility vehicle) will overtake the other at 
different points within the scenario, making tracking a 
challenging process for scenario 3. 

Owing to the number of experiments with the ESCAPE 
dataset, prior research [10] indicated that there was some value 
with the P-RF histogram data with respect to correlation of 
certain events. While previous work with simulation data had 
proven to process the information cleanly, the amount of noise 
in the P-RF histograms made the correlation of sensor inputs 

difficult to understand. Further research on this phenomenon 
would occur with the usage of a greedy algorithm [9], but even 
at that point of interest there were clear changes that are apparent 
to any human observer when the vehicle leaves the garage. 

The information provided by the EO modality, while highly 
efficient due to the application of dense optical flow, is not 
sufficient to accurately detect and categorize different vehicle 
targets by itself. The single view makes achieving a high level 
of performance impossible due to the periods of time in which 
the vehicle cannot be detected via the EO data input. Although 
there are more than one sources of EO data, only one input is 
used to promote the necessity of the P-RF histogram data. The 
P-RF data by itself, when used as the sole input for a model, is 
not sufficient for classification. That being the case, the P-RF 
histograms did host some key details that, while not always 
obvious to the human eye, did provide the neural network model 
with information needed to accurate train with respect to the 
ground truth of each of the scenarios tested. While the results 
and the weights of the P-RF data could be gauged, this still did 
not provide an intuitive insight into how and when the P-RF 
input was used. For this reason, it became imperative to conduct 
research into the use of visualizations with EO/P-RF sensor 
fusion. 

III. TECHNICAL APPROACH AND EXPERIMENT DESIGN 

A. Experiment Overview   

While the approach to the fusion of P-RF and EO data was 
successful, there existed a number of questions regarding the 
effectiveness of the P-RF input. During research using a greedy 
algorithm, we had discovered that the P-RF data still played a 
relevant part in the decision-making process of a canonical 
correlation analysis based long short-term memory (LSTM) 
model. While the greedy algorithm recreated the model and did 
provide a variety of insights into the model, the local and global 
impact of different data frame attributes did not provide as 
intuitive of an explanation for the model’s usage of the lowest 
weighted source of information, the P-RF histograms. 

In order to obtain a more meaningful insight into the impact 
that the P-RF data was having on the model, the use of a post-
hoc visualization method was implemented, specifically that of 
a Saliency Map. The issue of how to exploit the activated 
neurons with EO and P-RF data was initially something that had 
stumped our early research, as using multiple images within the 
same input made it difficult to implement available Saliency 
Map approaches. In most applications of visualization 
techniques that do include fusion, the melding of the two or more 
image sources being mapped together [11] but unfortunately 
such mapping would not be possible to implement with the P-
RF data. Visualization methods require the use of a single image 
input, making it impossible to keep the two sources of data 
separate. 

B. Overlay Preprocessing    

For this reason, and in order to prevent a disparity between 
different modalities with respect to the activations used by the 
two modalities if placed side by side in the same image input, 
the decision to overlay the images over each other was made. 
The image inputs were already synchronized with respect to 
time and image size in order to handle fusion. Once overlaying 
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was implemented, the data was ready to be processed through a 
Convolutional Neural Network. 

When attempts were made at processing the two inputs 
separately in earlier experiments, issues arose in the form of the 
P-RF data. While the saliency maps of the EO data would 
produce heatmaps that more or less matched the DOF input, the 
P-RF data would not produce any heatmaps. Owing to the 
performance of often less than an F1 score of 0.5, the model was 
essentially guessing and thereby did not rely on any features 
provided, producing a blank saliency map. As this made using 
the visualizations separately impossible, the next step was to 
determine how to better combine the two sources. 

Traditionally, when using saliency map visualizations, the 
method of fusion typically maps one or more features on a 
shared map [12] [13] [14]. This is not possible to do with the 
ESCAPE dataset with the P-RF and EO data, however. There is 
a wide array of information that the dataset contains but GPS 
data is not available, as that would defeat the purpose of the 
sensor fusion tracking application. As mapping spatially onto 
the EO aspect of the overlay is not possible, the next step to 
consider is whether or not the fusion overlay will interfere with 
the performance of the model. Using the two sets of inputs 
synchronized with respect to time and comparing with the 
performance of the fusion model yielded a difference of less than 
0.2 in F1 score. As the P-RF data cannot be mapped separately 
from the EO data, this left the only viable option to be overlaying 
the DOF EO and P-RF histogram inputs together. With the data 
overlayed with respect to time, and the histogram not interfering 
with the impact of the EO aspect of the overlay, the visualization 
maps could be produced. 

The results of the saliency map visualization provided 
different insights that indicated a close relationship with the 
usage of the P-RF histogram data when overlayed with the EO 
data. While the normal P-RF histogram data does not display 
any notable activations (owing to rarely exceeding an F1 score 
of 0.56 when there are only two outputs that exist within the 
possible outcomes), the EO data when used by itself would 
similarly be focused on the available information. The 
application of dense optical flow had initially been adopted in 
order to prevent the “false positives” that would occur when 
attempts at enhancing the EO modality would be implemented, 
such as edge detection. For this reason, the fusion view of 
overlaying the two inputs together solves the issue with regards 
to producing meaningful saliency maps. While the performance 
of this model was slightly lower than previous models, as 
opposed to the 1.0 F1 score the CCA fusion model possesses, 
the advantage is that the generation of the saliency maps would 
provide better insights into how and when the P-RF data is being 
used to produce a decision, as opposed to simply citing weights 
and differences in model performance with and without the P-
RF input.  

C. Visualization Categorizations  

 The three scenarios each produce a total of 1120 overlayed 
inputs, which contain the fused P-RF histogram and DOF EO 
information. This data is implemented in the training, and then 
heatmap visualizations are produced for each of the 
corresponding frames. The results of the application of saliency 
maps and the heat maps of the activated neurons provide a few 

useful insights, which vary based on points within each of the 
respective scenarios for the ESCAPE dataset. There are three 
major groupings by which the maps provide information, as one 
way or another the information needed to conduct supervised 
training to correlate the input data. One to five outputs are the 
level of complexity that this dataset goes through for the 
purposes of this experiment. 

 As visualizations are an inherently subjective and not 
qualitative method of explanations, they are categorized in this 
paper based on the focus of the produced heatmaps. The overlay 
avoids confusion with DOF EO aspects such as the treeline by 
the distribution of the P-RF aspect on the fused image. Thereby 
making differentiating between the EO aspect (vehicle 
movements) and the P-RF Histogram aspect of the overlay 
easier.  

 

Figure 2: EO focused Overlayed Heterogeneous Input 

The first of the three major categories are the activations that 
are inherently EO focused. These activations often occur in the 
simpler periods of data that can be found predominantly in all 
scenarios, due to the fact that there are large stretches of time in 
which the target vehicle can be seen in the overlayed frame. In 
scenarios 1 and 2, the switches between certain targets are 
considerably more linear, causing the focus to be on the EO 
aspect of the overlayed image rather than that of the P-RF 
histogram which has been overlayed on top of the DOF image 
whenever the appropriate vehicle in question is in plain view of 
the fusion model. When breaking down the movements of each 
of the three scenarios and training with respect to a particular 
vehicle, the overwhelming number of these EO focused 
activations were primarily when the vehicle being tracked 
occurred when the vehicle was visible on the DOF-EO data for 
the most part. 

  

Figure 3: P-RF focused Overlayed Heterogeneous Input 

The second of these three major categories are the 
activations that are inherently focused more on the P-RF 
activations. These activations are rarer, but only by virtue of the 
EO data predominantly capturing the majority of the vehicles’ 
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“screentime” on the EO data. As seen in Figure 3, the focus on 
the vehicle [#2 in scenario 2] that can be spotted in the middle 
left of the overlayed image is nowhere near as focused on 
activation wise as the aspects of the histogram that have been 
overlayed on the right side of the image. Because this vehicle 
that can be seen was not the objective of that training run of the 
data [vehicle #1 in scenario 2], the activation of the vehicle that 
is visibly obvious as a potential target is nowhere near as focused 
on. From the heatmap we can infer that the neurons are not 
simply focused on the EO aspect of the overlayed image 
compared to the P-RF aspects.  

  

Figure 4: Fusion focused Overlayed Heterogeneous Input 

The third of these three major categories are the activations 
that are focused on both the EO and the P-RF activations 
simultaneously. These were more common than the P-RF 
activations but not necessarily as common as the EO focused 
heatmaps within the three simulations. In situations where there 
is a potential target, but the actual target is not on screen, the 
model will use both sources of information on the overlayed 
input to attempt to determine the nature of the situation. scenario 
1 and scenario 2 did possess a number of these moments, but 
within scenario 3 this occurred in the training for three of the 
five vehicle targets. While scenario 3 has more potential 
outcomes to train for, these moments seemed to heavily 
correlate with the start of the scenarios, linearly speaking. The 
example shown above in Figure 4 is from scenario 1, trained 
specifically for the vehicle designated as #2, which is out of sight 
from the EO source of the data, but a potential target is still in 
sight of the overlayed input. 

IV. RESULTS AND DISCUSSION 

A. Scenario 1 Inferences 

While the results of the saliency map neuron activation 
heatmaps don’t provide anything that differs radically from the 
expected theoretical result, it does validate the expected 
outcomes based on the design of the supervised training. While 
the classification categories are considerably simple, it should 
be noted that the overlay network never peaked above a 0.9 F1 
score, as the results of the training were only ever in the low to 
mid 0.8s. While some performance was sacrificed, the 
inferences as to what aspects of the data are aiding the training, 
are more obvious than it would be when using a blackbox 
system. 

As is a major issue with any abstract XAI method, of course, 
the usage of terms such as fusion focused or P-RF focused or 
EO focused overlayed heterogeneous input. The classification 
of these saliency maps is subjective in nature and the 
classification of these saliency map overlays has to be done 

manually. Given the massive difference between a P-RF or 
fusion focused overlay compared to an EO focused overlay, as 
well as the rarity of P-RF focused overlays, that problem is 
mitigated to some degree. In order to attempt to evaluate the 
impact more objectively, and to avoid simply listing numbers 
without considering aspects such as time and the series of events 
that are occurring, the distribution of the scenario data is also 
graphed. To mitigate the effect of outliers and to better represent 
the data, the graph averages the values corresponding to their 
respective categories for each second. This comes with the 
advantage of viewing the changes with respect to time and to 
reduce the effect of outliers while still preserving the impact they 
have in terms of frequency. 

 

Figure 5: Scenario 1 Distribution of Saliency Maps for Vehicle #1 

 

Figure 6: Scenario 1 Distribution of Saliency Maps with for Vehicle #2 

During previous research with a greedy algorithm 
implementation, it was possible to determine that the EO input 
for vehicle #2 was relied upon more than it was for vehicle #1, 
which is now more intuitively explained with the saliency map 
results. With the visualizations we can confirm that vehicle #2, 
which spends more time in view of the scenario, does in fact 
have more EO focused activations than vehicle #1 does, and 
owing to the fact that vehicle #1 is not seen by the EO as much, 
the distribution of weights not being as reliant on the EO focused 
activations is something that is both supported by the 
distribution of saliency map activations and is an intuitive 
conclusion from the available data.  

There is some confusion of vehicle #2, as there are brief 
instances where the focus shifts onto the true vehicle #1. 
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Occurring because the vehicle very briefly does become visible, 
as well as some outliers in which the model appears to mistake 
vehicle #2 for vehicle #1. The fusion oriented view occurs for 
the activations for tracking vehicle #1 and vehicle #2 whenever 
the two are not in sight. As the two are visually similar even after 
the application of DOF. As such, from the results and from the 
distribution of weights, we can infer on how the model relies on 
the P-RF data with the large number of fusion focused heatmaps 
as there is a visually similar vehicle but also indications that the 
target is inside the garage and not outside from the P-RF 
features.  

B. Scenario 2 Inferences 

 As seen with scenario 2, the addition of a third vehicle, 
drastically changed some of the distributions of the types of 
saliency map activations. The distributions of figures 8 and 9 
differ drastically, from which we can infer that due to the 
differences in the appearance on the overlay, the “red herring” 
that is vehicle #1 in scenario 2, is almost exclusively tracked 
using the EO aspect of the overlay. The data also indicates that 
there are moments, similar to scenario 1, in which the two 
visually similar vehicles cause some confusion and force the 
model to focus on the fusion view of the overlay as opposed to 
relying on the EO aspects of the overlay. While there was 
considerable number of EO-focused visualizations, for the most 
part the vehicle #2 saliency maps were fusion-focused. 

 

Figure 7: Scenario 2 Distribution of Saliency Maps for Vehicle #1 

 

Figure 8: Scenario 2 Distribution of Saliency Maps with for Vehicle #2 

 

Figure 9: Scenario 2 Distribution of Saliency Maps with for Vehicle #3 

C. Scenario 3 Inferences 

As seen in figure 10, the distribution for scenario 3, vehicle 
#1 is predominantly focused on the EO focused saliency maps. 
The distribution of the P-RF to EO weights in previous research 
involving this vehicle in scenario 3 showed a distinctly higher 
dependency on the EO input, and that is reflected in the 
following figure. As vehicle #1 spends most of its time outside 
it is not surprising that the saliency map overlays produced are 
primarily EO based. There are a lot of P-RF and Fusion focused 
outputs once the vehicle enters the garage, with a focus on a 
Fusion saliency maps predominantly. 

 

Figure 10: Scenario 3 Distribution of Saliency Maps with for Vehicle #1 

 

Figure 11: Scenario 3 Distribution of Saliency Maps with for Vehicle #2 

Vehicle #2 does not provide any particularly interesting 
results, other than some scattered aspects that focus on P-RF and 
Fusion views. These come in brief frame instances when the 
vehicles are swapping but the majority of which are outliers. 
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One thing that remains constant between the distributions for 
scenario 3 is that the distributions tend towards P-RF differences 
once vehicle #4 enters the garage, most of the methods default 
from fused view to P-RF view.  

 

Figure 12: Scenario 3 Distribution of Saliency Maps with for Vehicle #3 

 

Figure 13: Scenario 3 Distribution of Saliency Maps with for Vehicle #4 

 

Figure 14: Scenario 3 Distribution of Saliency Maps with for Vehicle #5 

While the model was able to achieve an F1 score of 0.9, it 
should be noted as mentioned earlier that the classification of the 
fusion, EO, and P-RF focused heatmaps is subjective in nature 
and was accomplished manually. That being said, the usage of 
the visualizations appears to demonstrate an intuitive pattern for 
the utilization of the overlays provided. This, in turn, provides 
for us inferences for how the fusion model might prioritize or 
weigh different sources of information in the tracking 
application. Combined with the knowledge of the scenarios, 

when certain targets are visible to the sensor, and when similar 
targets are also in sight, this provides some inferences for how 
the model operates. 

It appears the fusion model utilizes the P-RF data sparingly, 
as after training the EO data is clearly the more reliable source 
of information. While DOF does occasionally pick up on very 
minor aspects of the EO data, such as trees moving, the clear 
indicator of a moving vehicle is much easier to pick up on each 
of the generated frames than the changes in the histogram. Once 
the situation becomes more complicated, the model tends 
towards relying on the fusion view. We can also infer that in the 
absence of reliable EO indicators of the vehicle’s presence, seen 
prevalently in scenario 2, that it then defaulting entirely to P-RF 
inputs. With occasional instances of attempting to discern if the 
vehicle is moving behind the treeline. in the case of the three 
scenarios chosen.   

V. CONCLUSION 

In this paper, we present our research using visualization 
methods to provide intuitive sources to infer fusion model 
behavior. Keeping in mind the context for these visualizations, 
with respect to decision making and the use of features from 
different modalities. Normally, the processing of I/Q data in the 
form of histograms may not provide the obvious inferences 
when used with the corresponding DOF EO input. However, 
from the saliency maps and neuron activation heat maps, it can 
be inferred that the model still relies on the P-RF data depending 
on the available information. As these insights are less 
quantitative and more intuitive, the use of a visualization 
technique combined with expert knowledge of the training set 
provided information that helps to better understand the 
relationship between the two sources of data in the fusion model. 
While the P-RF histogram data may not be as useful as the DOF-
EO image inputs, can be decisively used when the DOF-EO 
image inputs, which have by and far been shown to be a 
preference for the fusion model, are rendered less effective. The 
primary contribution of this paper is the combination of XAI 
visualizations to provide inferences on the P-RF/EO fusion 
model. Using the frequency in which these different types of 
visualizations appear to better understand the model as a whole. 

In future research, it is our goal to potentially implement 
event-based processing techniques. In order to assess and 
evaluate the effectiveness of the XAI results more objectively 
rather than rely only on post-hoc visualization. For the purposes 
of tracking, it would be beneficial to implement methods that 
can determine the selective relevance of input features. Another 
aspect of the evaluation that might be improved is the usage of 
an independent means of grouping visualizations. Such as crowd 
voting, to enable a less subjective labeling process for the 
saliency maps. Artificial training with a neural network 
approach is unlikely to be as beneficial given the temporal 
relationship between the different points in the scenario, and for 
that reason the other next logical step is returning to a model that 
can exploit the temporal aspect and implementing the 
visualization techniques there.  
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