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Abstract— Human presence detection is a critical field in 
certain circumstances such as natural disasters and surveillance 
systems. This paper presents a new approach that utilizes software 
defined radio to passively collect radio frequency data and 
applying deep learning neural network to detect human presence. 
It provides a low cost and environment friendly solution. The long 
term goal of this study is to develop a deep learning based 
spectrum monitoring system. 

Keywords—human presence, deep learning, passive radio 
frequency, software defined radio 

I. INTRODUCTION 

For thousands of years, our ancestors have been 
continuously exploring and innovating human detection 
technology. The field of human detection has many important 
applications, ranging from surveillance to security and is a 
critical component in the fields such as disaster relief. Even in 
less extreme applications, such as assisted living, hospitals, or 
smart homes, simply detecting the presence of a person is almost 
always the first step to any monitoring system. Human detection 
technology increases the efficiency of these systems, which can 
be lifesaving in many situations. For any form of security 
application, the ability to contact police sooner is crucial for the 
users and for assisted living applications, providing medical 
treatment sooner can be lifesaving.  During any kind of natural 
disaster, the faster survivors are located and rescued, the higher 
chance of survival for the rescuee. While for that particular 
application, there are other analog methods that can be applied 
to the problem, this does not mean that the ability to 
autonomously detect human presence is not an integral 
technology.  

In other applications human detection is an indispensable 
part of most forms of security and surveillance systems. As 
actual sentries being used for human detection is not practical 
from a cost standpoint, most home security systems are 
traditionally reliant on autonomous systems. The system 
becomes vulnerable when human detection is not reliable, and 
such vulnerabilities are exploitable. This however becomes 

more difficult when the structure and preexisting detection 
architecture is damaged or destroyed, and normal 
communication methods are broken off or facing interference. 
Dependable human detection is a key technology to actively 
protect and save lives, both privately and nationally.  

Many solutions have been implemented to solve the age old 
problem of human detection. However, existing human presence 
detection technologies such as camera, lidar, radar, and 
ultrasonic sensors, all have their individual strengths and 
weaknesses. Cameras, for example, can provide visualized 
images, which are easier to process with existing methods, but 
can be restricted by factors such as  lighting. In addition to that, 
optical modalities like cameras can be considered invasive 
which is less desirable in private applications. Lidar and radar 
systems both require signal emitters, which can be expensive 
and can cause interference with the existing wireless system. 
Ultrasonic sensors and all the technologies mentioned above are 
constrained by factors such as installation angle and position. 
These modalities can also be blocked or disabled by physical 
interference or jamming. An environment friendly, passive, and 
low cost human presence detection solution is required to 
compensate for the deficiencies of these exiting technologies. 

This paper explores feasibility of identifying the presence of 
one or more people inside a closed space by using passive radio 
frequency (RF) signals via deep learning neural network, which 
to the best of our knowledge, is the initial research in this aspect. 
The main contributions of this paper are: a new environment 
friendly and low cost approach to detect human presence in a 
closed space by collecting passive RF wireless signals from 
surrounding environment, description of a system built during 
the experiment to implement our idea, and a convolutional 
neural network (CNN) model to classify human presence that 
takes wireless RF raw data as input and produces detection 
results, and experimental results as an illustration of the 
feasibility of our proposed approach.  

In the following sections, Section II introduces related 
researches had been done and the advantages of our proposal. 
Section III explains our technical approach and experimental 
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design. Section IV demonstrates the experimental results. 
Conclusion and future research are discussed in Section V.  

II. BACKGROUND 

A. Related work 

Deep learning has shown its effectiveness in many fields 
such as automatic speech recognition, image recognition, visual 
art processing, natural language processing, customer 
relationship management, recommendation systems, financial 
fraud detection, etc. Recently, some researchers have initialized 
the study of radio signal modulation recognition and wireless 
interference identification by using convolutional neural 
network (CNN) through the collected passive RF data. In [1],  
experiment was conducted to classify different modulation 
formats. Paper [2] presented the research work of deep learning 
based radio signal classification by comparing CNN and 
residual neural network (RNN). However the studies in [1] and 
[2] primarily focused on the characteristics of wireless signals 
themselves instead of their applications. Authors of [3]  
introduced an approach to detect and identify a specific radio 
transmitter uniquely among other similar devices by using 
software defined radio (SDR) and CNN. Researchers of [4] have 
also conducted an experiment to classify the emitter of the 
wireless signal. Article [5] depicted the experiments of using 
CNN and deep neural network (DNN) to identify rogue RF 
transmitters. But[3], [4] and [5] focused on the scope of the 
wireless system. The study conducted in [6] showed a CNN 
system being used to assess the quality of human actions via RF 
wireless signals. However, the research in [6] used an active 
emitter to send wireless signals rather than using passive RF. 
Human presence detection is addressed by research work in [7] 
where RFID tags were used in the experiment for human 
detection and behavior classification instead of passive RF. The 
research of [8] and [9] are focused on the analysis of human 
activities by using deep learning to process wireless RF signals. 
However, active radio signals were still used in these 
experiments. Passive RF data was utilized to detect objects in 
paper [10] but deep learning was not used in this study. By 
utilizing a deep learning neural network for wireless signals 
classification, the network can potentially achieve better 
performance in a complex wireless signal environment. None of 
the studies mentioned above and papers mentioned in [11] used 
wireless passive RF signals to classify the human presence 
inside a closed space through a deep learning neural network. 
Based on the existing research, the feasibility of using deep 
learning to analyze passive RF data to detect human presence in 
an area of concern, is addressed in this paper. 

B. Advantages 

The proposed approach has several benefits. Firstly, the 
usage of passive RF data shares some of the same traits with 
passive radar systems in which no actively transmitted signals 
are required, and the object is detected through third party 
emitters. In addition to that, both passive radar and the proposed 
solution have low power consumption and are difficult to detect. 
Both solutions can be used to find a moving target and monitor 
an air space when the target is not visually observable. Because 
the solutions do not use an active emitter and only collect 
passive RF signals from the surrounding environment, the 
solution does not introduce radio spectrum pollution into the 

increasingly crowded wireless space. This approach does not 
generate any interference with the existing wireless system due 
to only collecting passive RF data. A desirable trait as wireless 
signals transmission is restricted in certain areas.  

Due to the nature of the modality, the system possesses a 
larger detection coverage and is not as limited by factors such as 
installation angle and position, unlike other methods. Because 
the solution is reliant on passive RF, the installation costs and 
complexity are greatly reduced. Ambient RF signals exist 
everywhere, which can be utilized for human subject detection. 
Therefore, this approach is not limited by location. Nor is it 
limited by factors such as light or weather conditions either. 
Further investigation of the impact of  extreme weather 
conditions such as thunder and lightning to the system is still 
required. In addition, the solution also costs less without active 
emitter present. 

III. TECHNICAL APPROACH AND EXPERIMENT DESIGN 

This research is conducted under assumption that human 
subjects will produce signatures in the collected RF signals of 
the corresponding location. The presence of human subjects, the 
size and the speed of the subjects will alter the RF signals, and 
the subtle variation can be detected by the neural network. In 
this experiment, the presence of one or more people in a closed 
space such as an office room or a home study room is addressed. 

Traditional signal processing algorithms are not suited for 
processing very complex patterns; no existing formula or 
algorithm has been attested to solve this problem; there is no 
evidence to prove this is a linear problem. Deep learning is noted 
for having excellent pattern recognition capabilities and  
excellent performance for solving nonlinear problems with 
unknown relationships. Motivated by recent advances and the 
remarkable success of CNN, this research focuses on applying 
convolutional neural network to solve this problem. Shared 
weights and biases greatly reduce the number of parameters 
involved in a convolutional neural network. The convolutional 
layer will reduce the number of parameters it needs to get the 
same performance as the fully-connected model. It will result in 
faster training for the convolutional model, and ultimately help 
to build deeper networks. The pooling layers simplify the 
information in the output from the convolutional layer. In detail, 
a pooling layer takes each feature map output from the 
convolutional layer and prepares a condensed feature map. With 
the computation capability of CNN, it can be trained with 
enormous data by consuming less time comparing to the fully 
connected deep neural network [12]. 

In order to teach CNN model to detect human presence, 
adequate training data needs to be collected. Software defined 
radio (SDR) is adopted by our research to collect passive RF 
signals. SDR is a radio communication system where 
components that have been implemented in hardware are 
implemented by software on a personal computer or embedded 
system. SDR defines a collection of hardware and software 
technologies where some or all the radio’s operating functions 
are implemented through modifiable software or firmware 
operating on programmable processing technologies. There are 
several benefits of using SDR to collect the RF raw data, such 
as being easy to process with software programs, having a wide 
range of utility, and providing a cost effective means of 
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implementing software upgrades [13]. SDR has been 
successfully used for RF monitoring systems that use kurtosis 
and energy based spectrum detection [14]. In [15], an 
inexpensive and generic spectrum alerting system based on SDR 
is designed and implemented to discover rogue or unidentified 
RF signals. 

Passive RF signal human presence detection system was 
developed during our experiment and is described in Figure 1. It 
is composed of three subsystems: data acquisition, data 
preprocessing, and classification. The antenna collects the 
passive RF signals in a closed space sent by opportunistic 
transmitters. These signals are in turn preprocessed by software 
defined radio (SDR) and then converted from analog signals to 
digital raw stream data. From there, the raw stream data is then 
preprocessed before it is fed into CNN model. Finally, the 
person presence probability is calculated by CNN model and the 
classification result is sent through the output layer. The details 
of the experiment are given in the following subsections, 
including RF signal acquisition, RF signal pre-processing, 
experimental scenarios design, CNN model training and human 
presence detection. 

A. RF signal acquisition 

Passive RF raw data collection is described in Table 1. 
RTL2832U is used to collect RF raw data at two separate 
locations, a home study room and an office, with and without 
human presence. Labels are assigned to RF raw data 
automatically during data collection. The SDR continuously 
scans the spectrum from the lowest frequency 24MHz to the 
highest frequency 1760MHz. RF raw data is collected, with and 
without known primary signals such as FM, TV, and cellular 
passive signals, at the locations of interest. Selective frequency 
band and full frequency band RF raw data is collected. A total 
of 197 selective bands are chosen by adaptive step, meaning that 
small scan steps are used for active bands and large scan steps 
are used for inactive bands. Step size is set based on FCC Table 
of Frequency Allocations [16], observation of frequency 
spectrum at collecting location through SDR and local radio 
station frequency list. Full band includes all frequency bands 
with an even step size of 1.2MHz. Both selective bands and full 
band is scanned with the same setting of sample rate, duration 
and period as listed in Table 1.  

TABLE 1. PASSIVE RF DATA COLLECTION 

Items Description 

Collection Device RTL2832U 

Location 
 

Closed space: an office and a home 
study room 

Human Presence 
 

0: No person is in a closed space 
1: One or more person are in a closed 
space 

Data Labelling 
Automatically assign scenario ID (0 
or 1) and location ID to collected RF 
raw data 

Frequency Range From 24MHz to 1760MHz 

Frequency Band Selection 
Selective Band: small step for active 
bands, large step for inactive bands 
Full band: even step 1.2 MHZ 

Sample Rate 2.4MHz 

Period 
Continually collecting for a few hours 
each time 

Duration 2 milliseconds per frequency band 

B. RF signal pre-processing. 

The RF raw data collected at the 197 selective bands is fed 
to neural network directly with required format and no further 
frequency band data extraction is needed. Data preprocessing is 
then applied on full band RF raw data to extract band data of 
interest. These extraction bands are: active bands including and 
excluding cell network bands, inactive frequency bands 
including and excluding cell network bands, and random 
frequency bands. The number of each frequency band is listed 
in Table 2 and the extraction method is described as below.  

TABLE 2. FREQUENCY BAND SELECTION 

Frequency Band Group # of Band 

Selective Band 197 

Active Band 76 

Active Band Excluding Cell Network Band 53 

Inactive Band 137 

Inactive Band  Excluding Cell Network Band 94 

Random Band 128 

 

In order to determine what bands are active and inactive, a 
continuous 48 hours full band RF raw data is collected at home 
study room and this data is used to calculate average power in 
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the spectrum. Sample rate is 2.4MHz and one collection duration 
per frequency band is 2 milliseconds. So, the number of samples 
per frequency band, noted by 𝑁, is 4800. 𝑝௙is the notation of 
average power per frequency band per collection duration and it 
is calculated as below. 𝑠௜ is raw data sample value received by 
SDR. 

𝑝௙ = 10 ∗

௟௢௚భబቌ෎ ቀ
ೞ೔

భమళ.ఱ
ିଵቁ

మ
ಿ

೔సభ

ቍ

ಿ

మ

  (1) 

Let 𝑀  be the number of collections per frequency band 
within these 48 hours. 𝑝௔, which is the average power value per 
frequency over 𝑀 collection, is calculated by 𝑝௔ = (∑ 𝑝୤୧

ெ
௜ୀଵ )/

𝑀. The average frequency band power in the spectrum ranges 
from 24MHz to 1760MHz, within these 48 hours as shown in 
Figure 2. 

Frequency bands with peak average power in the spectrum 
are selected as active bands. Frequency bands with valley 
average power in the spectrum are selected as inactive bands. 
AMPD algorithm [17] is then used to automatically detect the 
peaks and valleys in the spectrum. Active and inactive bands are 
selected according to the detection results. Cell network bands 
are then excluded from the active bands and inactive bands to 
form active bands excluding cell network bands and inactive 
bands excluding cell network bands. Random bands consist of 
128 randomly selected bands from full band.  

Figure 2. Average frequency band power in the spectrum 

C. Experimental scenarios design 

A total number of 12 experimental scenarios are designed 
and listed in Table 3. 

TABLE 3. EXPERIMENTAL  SCENARIO  DESIGN 

Name Bands Location Time 

ActH Active Band   Home - 

ActHNCell 
Active Band Excluding 
Cell Network Band  

Home - 

InH Inactive Band  Home  

InHNCell 
Inactive Band  Excluding 
Cell Network Band  

Home - 

RndH Random Band  Home - 

RndO Random Band  Office - 

Name Bands Location Time 

SelHO Selective Band  Home & Office - 

SelH Selective Band  Home - 

SelO Selective Band  Office - 

ActHT1 Active Band  
Home 6AM to 

12PM 

ActHT2 Active Band  
Home 12PM to 

6PM 

ActHT3 Active Band  
Home 6PM to 

12AM 
 

These scenarios cover human presence detection, accuracy 
and sensitivity tests against band selection, location diversity, 
and time difference. The scenarios are then categorized into 3 
groups as listed in Table 4, band, location and time. These band 
sensitivity tests consist of 6 scenarios listed under the Band 
category. ActH is designed to train and test the CNN model with 
76 active frequency bands RF raw data collected at home. 
Scenario ActHNCell is designed to train and tests the CNN 
model with 53 active frequency band data excluding cell 
network band data collected at home. Scenario InH is designed 
to train and test CNN model with 137 inactive frequency bands 
RF raw data collected at home. Scenario InHNCell is designed 
to train and test CNN model with 94 inactive frequency bands 
data excluding cell network bands data collected at home. 
Scenario RndH uses randomly selected 128 band RF raw data 
collected at home to train and test CNN model. Scenario RndO 
uses the same 128 frequency band to extract RF raw data 
collected at office. Location sensitivity test consists 3 scenarios 
listed under Location category. The 197 selected bands RF raw 
data collected at home and office are used to train and test CNN 
model. SelHO consists raw data of home and office, SelH only 
uses data of home and SelO only uses data of office. Time 
sensitivity test consists 3 scenarios listed under Time category. 
76 active band RF raw data collected at home is used to train 
CNN model. ActHT1 uses RF raw collected from 6am to 12pm 
to test CNN model, ActHT2 uses data from 12pm to 6pm for 
testing and ActHT3 uses data from 6pm to 12am for testing. 

TABLE 4. NUMBER OF BANDS USED IN DIFFERENT SCENARIOS 

Category Experimental Scenarios # of Band 

Band 

ActH 76 

ActHNCell 53 

InH 137 

InHNCell 94 

RndH 128 

RndO 128 

Location 

SelHO 197 

SelH 197 

SelO 197 

Time 

ActHT1 76 

ActHT2 76 

ActHT3 76 
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D. Training Data 

RF raw data is split into training dataset, validation dataset, 
and test dataset. The number of training, validation and test 
samples of each scenario is listed below in Table 5. 

TABLE 5. DATASET 

Experimental Scenarios 
# of 

Training 
Samples 

# of 
Validation 
Samples 

# of  
Test 

Samples 

ActH 2400 600 170 

ActHNCell 2400 600 170 

InH 2400 600 170 

InHNCell 2400 600 170 

RndH 2400 600 170 

RndO 1200 300 92 

SelHO 12480 3120 820 

SelH 4560 1140 300 

SelO 7920 1980 520 

ActHT1 2512 327 86 

ActHT2 2512 327 86 

ActHT3 2512 327 86 

E. CNN Architecture and training 

The CNN consists of one 2D input layer, four 2D 
convolutional layers, one flatten layer, one fully connected layer 
and one output layer. The same CNN structure is used across all 
experimental scenarios except for the input layer row number. 
The input  matrix consists 𝐾  rows, which corresponds to 
frequency band number listed on Table 2, and 4800 columns, 
which is the sample number per frequency per one collection 
duration. The value of input matrix is RF raw data collected by 
SDR. 

1D vector kernel is used to extract features from the 
frequency band raw data. The same 1D kernel shape 
[1 4 8 8]  is then used across these four convolutional 
layers along with the same stride step [1 1 1 1]. ReLU 
activation function 𝑓(𝑥) = max (0, 𝑥) is used across all these 
four convolutional layer and fully connected layer. After the 
convolutional layers is the flatten layer. Connected to the flatten 
layer is the fully connected layer. The output layer has two 
perceptron which represents the human presence status. The 
values of the two binary numbers, indicate if human presence is 
detected or not. Other CNN architectures have been designed, 
trained and tested as well. But they did not achieve better 
performance than the one described above.  

The CNN model is trained and evaluated for each 
experimental scenario listed in Table 3. The trained CNN model 
is used to process RF raw test data and detects the human 
presence in the closed space.  

IV. EXPERIMENTAL RESULT 

The expected overall experiment result of the initial phase is 
that CNN can distinguish human presence in a closed space by 

collected passive RF signals. In order to determine if this is the 
case, an F1 Score needs to be calculated in order to quantify the 
overall accuracy of the neural network, measuring the precision 
and recall of the results. The actual performance is evaluated by 
a confusion matrix with the equations below. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
்ிା்ே

்௉ାிேା்ேାி௉
    (2) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

்௉ାி௉
     (3) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
்௉

்௉ାிே
      (4) 

𝐹1 =
ଶ×௣௥௘௖௜௦௜௢௡×௥௘௖௔௟௟

௣௥௘௖௜௦௜௢௡ା௥௘
     (5) 

The overall experimental accuracy is shown in Figure 3. 
Both accuracy and F1 score from 10 experiments out of 12 is 
more than 90%. The accuracy and F1 score corresponding to the 
scenarios of ActH, ActHNCell, SelO and ActHT1 are higher 
than 95%. 

 
Figure 3. Overall Accuracy and F1 Score 

The band sensitivity test results are shown in Figure 4. The 
experiments compare scenarios without cell network band data 
vs with cell network band data. Both scenarios achieve relatively 
close performances. For example, both accuracy and F1 score 
differences between ActH and ActHNCell is 1.2%. However 
further research is required to determine why the inactive band 
scenarios InH and InHNCell achieve similar performance as the 
active band scenarios ActH and ActHNCell. 

 
Figure 4. Band Sensitivity 
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The location sensitivity test result is shown in Figure 5. It 
can be seen the performance of SelH is slightly lower than the 
other two scenarios. The performance difference among 
locational test scenarios is less than 6%, which means the system 
is not very sensitive to location difference. 

 
Figure 5. Location Sensitivity. 

The time sensitivity test result is shown in Figure 6. The 
performance is the best in the 6am to 12pm time period and the 
worst in the 6pm to 12am time period. The cause of the 
difference is not clear at the moment. It might be due to the small 
test sample size or the variation of noise level with time. Further 
investigation is needed to improve the robustness over time. 

 
Figure 6. Time Sensitivity. 

V. CONCLUSION 

The results of this experiment indicate that human presence 
can be detected by passive RF wireless signals via deep learning 
neural network in a closed space. Robustness is verified by 
testing against different frequency bands, locations and time 
periods. Further studies such as finding out what the human 
signatures are in the RF data,  experiment with different RF data 
features such as spectrum, doppler, amplitude and phase, and 
data collection on higher frequency bands, will be experimented 
with in the near future. Research into the detection of human 
presence in an open space, target differentiation, and speed 
estimation will proceed in the following phases. 
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