®

Check for
updates

Explainable Diffusion Model
via Schrodinger Bridge in Multimodal
Image Translation

Zhengyi Lu'®, Robert Ewing?®™®), Erik Blasch®®™®), and Jia Li'(®)

! Oakland University, Rochester, MI 48309, USA
{zhengyilu,li4}@oakland.edu
2 Air Force Research Laboratory, WPAFB, Dayton, OH 45433, USA
3 Air Force Research Laboratory, Rome, NY 13441, USA

Abstract. In this paper, we introduce a novel framework for multimodal
image translation utilizing the Diffusion Schrodinger Bridge (DSB). By
integrating diffusion models with the Schrédinger Bridge problem, our
approach addresses stability and interpretability challenges in image
translation tasks. Explainable Diffusion Model via Schrédinger Bridge
Multimodal Image Translation (xDSBMIT) leverages the unique dis-
tribution characteristics of different modalities, achieving high-quality
translations with limited datasets. The DSB framework enhances inter-
pretability by elucidating the diffusion process between paired images,
providing insights into how the translation is achieved. Specifically, we
apply our framework to the translation of Synthetic Aperture Radar
(SAR) images to Infrared (IR) and Electro-Optical (EO) images, demon-
strating its effectiveness in remote sensing applications. Experimental
results show that xDSBMIT framework outperforms established methods
such as pix2pix, significantly enhancing image translation performance
and model interpretability while requiring fewer training data.

Keywords: Image-to-Image Translation - Diffusion Models -
Schrédinger Bridge - DDDAS - Dynamic Data Driven Applications
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1 Introduction

Image-to-Image (I2I) translation involves converting images from one domain
to another, leveraging techniques like style transfer, image colorization, super-
resolution, and image synthesis [14,15,17]. Recently, this field has extended to
multimodal learning, enabling translations across different modalities by training
on extensive datasets [23]. These advancements have applications in artistic cre-
ation, medical imaging, and satellite image analysis, broadening the spectrum of
image translation and enhancing the interpretation of visual data across various
contexts.
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Dynamic Data Driven Applications Systems (DDDAS) integrate instrumen-
tation data with models in real-time, allowing these models to dynamically man-
age the use and acquisition of data. DDDAS-based methods adapt to the ever-
changing nature of real-world systems, providing a robust and flexible framework
for various applications that demand real-time data integration and dynamic sys-
tem adaptability. Generative Adversarial Networks (GANs) are extensively used
for image translation in dynamic data-driven applications systems (DDDAS) to
generate augmented data for near-real support to deployed systems [1|. Notable
techniques include pix2pix for paired image translation and CycleGAN for
unpaired image translation [10,24]. GAN-based methods use continuous feed-
back from the discriminator to produce realistic images closely approximating
the ground truth, significantly advancing the field of image translation [2,4,20].
However, GANs face challenges like training difficulties, vanishing gradients, and
poor interpretability.

To overcome these issues, diffusion-based methods for image translation have
been explored [25|. Traditional diffusion models progressively denoise an image
until it transforms into Gaussian noise, learning the reverse process to generate
new images [7,8|. However, these models struggle with paired image translation.
To address this, the Diffusion Schrédinger Bridge (DSB) has been proposed as an
innovative generative model, combining the Schrédinger Bridge framework with
the diffusion process to transition smoothly between distributions and generate
high-quality images.

DSB has shown promising results in various applications. De Bortoli explored
its use in score-based generative modeling, demonstrating its versatility [5]. Liu
demonstrated its effectiveness in 12I translation [13|, and Chen highlighted its
superiority in text-to-speech synthesis compared to traditional diffusion models
[3]. However, previous applications of DSB have focused on image restoration
and colorization, not on cross-modal image translation tasks. Additionally, there
has been no practical implementation of DSB in the field of satellite imagery.

Paired Image Diffusion Schrodinger Bridge

Fig. 1. Diffusion Process of Paired Images

To address the cross-modal image translation gap, and achieve stable, highly
interpretable image translation, we propose the application of the diffusion
Schrodinger bridge in multimodal image translation tasks. As shown in Fig. 1,
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the red arrows in the figure represent the sampling process, the Paired Image
Diffusion Schrédinger Bridge (DSB) can transform a noisy image at ¢ = 1 into
a clear image at ¢ = 0 through intermediate states. In addition to denoising, we
have accomplished translation between paired SAR and IR, as well as SAR and
EO images, based on the diffusion Schrodinger bridge framework. These tasks
are crucial because they enable the fusion of complementary information from
different sensor modalities, improving overall situational awareness and enhanc-
ing the quality of remote sensing applications. Remarkably, with only 500 pairs
of data, yielding results comparable to those of pix2pix trained on a significantly
larger dataset. Our main contributions are as follows:

1. Introducing the Diffusion Schrédinger Bridge to Multimodal Image
Translation: Our framework uniquely combines diffusion models with the
Schrédinger Bridge, enhancing the stability and interpretability of image
translation across complex modalities.

2. Efficient Learning from Limited Data: By focusing on the distribution
characteristics between different modalities, the Diffusion Schrodinger Bridge
enables our method to achieve high-quality image translation with signifi-
cantly fewer data pairs, thereby reducing dependency on large datasets.

3. Validation Across Modalities: Our approach is robustly tested across
diverse imaging modalities such as SAR, IR, and EO, showcasing its adapt-
ability and effectiveness.

This paper is organized as follows. The next section reviews the existing lit-
erature on diffusion models and the Schrodinger Bridge problem, providing con-
text and background for our proposed method. The Method section introduces
the Explainable Diffusion Model via Schrédinger Bridge in Multimodal Image
Translation framework, detailing its formulation, optimization, and implemen-
tation. The Experiment section describes the datasets used, experimental setup,
and results of our image translation tasks, comparing the performance of our
approach with existing methods. The last section concludes with a summary
of the findings, highlighting the contributions and potential future work in this
domain.

2 Related Work

The field of image translation has seen significant advancements with the devel-
opment of various generative models. Among these, diffusion models and score-
based generative models have gained prominence due to their effectiveness in
producing high-fidelity images. This section reviews the key contributions in
these areas, setting the stage for our proposed Explainable Diffusion Model via
Schrodinger Bridge in Multimodal Image Translation framework.

2.1 Diffusion Model

A diffusion model is a class of generative models that simulates the process of
gradually adding noise to data until it becomes indistinguishable from random
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noise, and then learns to reverse this process to generate data from noise [20].
The concept is insmured by the physical process of diffusion, where particles
move from areas of higher concentration to lower concentration, leading to an
equilibrium state. In the context of machine learning, diffusion models are trained
through a sequence of forward steps that progressively corrupt the data with
noise, followed by a learned reverse process that aims to reconstruct the original
data from the noisy state. The reverse process is tymucally achieved through a
neural network that is trained to predict earlier, less noisy states of the data given
its current state. Diffusion models have shown remarkable success in generating
high-quality, diverse samples in various domains such as images, audio, and text,
distinguishing themselves by their ability to model complex data distributions
and produce outputs with high fidelity and variation [7,8].

2.2 Schrodinger Bridge

The Schrodinger Bridge (SB), dating back to Schrédinger [18] and revisited by
Léonard [12|, is conceptualized as an entropy-regularized variant of the clas-
sical optimal transport problem. This framework encompasses the subsequent
stochastic differential equations (SDEs):

dX; = [fi + B:VIogv(Xy, t)] dt + \/BedW; (1)
dX; = [ft — BV log U(Xt,t)] dt + \/BidW, (2)

where f is the drift term, W is the Wiener process, # is a constant, X, ~
pa and X7 ~ pp are distributed according to the boundary conditions in two
discrete domains. The potentials v and u, belonging to the space C*?(R? x
[0, 1]), are dynamic entities governed by the ensuing coupled partial differential
equations (PDEs). Here, the superscript 1,2 indicates that the functions have
continuous first-order derivatives with respect to time and continuous second-
order derivatives with respect to spatial variables.

8”5;’ ) ==V - (fiv) + %ﬁtAU (3)
% = -V (fiu) + %&Au (4)

subject to the initial and terminal distribution conditions:

U(l‘, O) = pA(m)v u<x7 1) = DB (m) (5)

In the formulation Egs. (1) to (5), the path probability measures induced by
the SDEs in (3) and (4) coincide almost surely, reminiscent of the equivalence
established in the earlier SDEs. Consequently, the marginal probability densities,
hereinafter denoted by ¢(-,t), are correspondingly equivalent.
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The insights from existing diffusion models, score-based generative models,
and the Schrodinger Bridge problem will inform the development of xDSB-
MIT. By integrating the stability and interpretability features of the Schrédinger
Bridge with the robust image generation capabilities of diffusion models, our app-
roach aims to enhance multimodal image translation. The related works provide
foundational principles and techniques that are crucial in formulating and opti-
mizing the Explainable Diffusion Model via Schrédinger Bridge in Multimodal
Image Translation framework, which we detail in the subsequent method section.

3 Method

In this section, we describe the proposed Explainable Diffusion Model via
Schrodinger Bridge (xDSB) for multimodal image translation. xDSBMIT inte-
grates the diffusion process with the Schrédinger Bridge framework to enhance
the stability and interpretability of image translations across different modali-
ties. We will incorporate linking statements between sections and include rele-
vant theories on multimodal image distributions. Because the Schrodinger Bridge
framework provides a clear mathematical formulation of the transport process,
making the transformation from source to target distributions more transpar-
ent,so we refer this as an explainable diffusion model. This approach allows for
better understanding and interpretability of how the model transitions between
different imaging modalities, addressing concerns about the “black-box” nature
of traditional deep learning models.

3.1 Preliminaries

We begin by introducing the fundamental principles underlying our approach.
The xDSB leverages the probabilistic nature of diffusion models to transition
between image distributions. Specifically, xDSB models the distribution of paired
images in the source and target domains, ensuring that essential features of the
source images are preserved in the translation process. This is achieved through
the Schrédinger Bridge problem, which formulates a continuous path between
two probability distributions. The path minimizes the Kullback-Leibler (KL)
divergence between the distributions, leading to an optimal transport solution.
To formalize this, let © € Pn41 represent the distribution sequence of dif-
fusion paths, with po = pa and uny = pp indicating the source and target
distributions, respectively. The objective is to find p* that satisfies:

pr = arg mgn{KL(,uH,uref) pt € PNy1, o = PA, UN = DB} (6)

In multimodal contexts, the distribution of paired images involves diverse
modalities [9,11], such as SAR and IR, ensuring the translation preserves the
modality-specific features.
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3.2 Training Algorithm

The xDSB training algorithm follows the iterative proportional fitting procedure
(IPF) [6] to refine the distribution sequence . The goal is to adjust u iteratively
until convergence, ensuring that pug ~ pa and uy ~ pg. The IPF updates are
given by:

,LL2n+1 = arg mﬁn{KL(,uH,u%) v c PN—I—l) UN = pB} (7)

2n+2

pe = argmin{KL(u|| )

i€ PNy, fio = paj- (8)

Each iteration alternates between optimizing the distribution at the source
and target ends, gradually refining the transition path to minimize the overall
divergence. This method accounts for the multimodal nature of image distribu-
tions by considering the unique characteristics of each modality in the optimiza-
tion process.

3.3 Static Schrodinger Bridge

For a static version of the problem, we consider the entropy-regularized optimal
transport, which links the Schrodinger Bridge problem with traditional optimal
transport theory. The SB approach ensures the convergence of the distribution
sequence by balancing the entropy terms with the transport cost:

Hatatic = al"gﬂbin {E, [llwo — zn|I’] —20% H(u) : € Pa, pio = pa, kN = DPB} -

(9)

3.4 Diffusion Schrédinger Bridge

The Diffusion Schrédinger Bridge (DSB) combines the dynamic aspects of diffu-
sion processes with the optimal transport properties of the Schréodinger Bridge.
In DSB, the forward and backward transition probabilities are updated itera-
tively to ensure convergence towards the equilibrium state [22]. The forward and
backward passes are given by:

Pev1jt(@e1|we) = N(wep1; o + ye fr(@e), 20 1), (10)

Q41 (Te|Te 1) = N(w; 0041 + Yebey1(Te41), 27 1). (11)

where 7; is a constant and I is the identity matrix. The training loss functions
for DSB are defined to minimize the discrepancies between the forward and
backward transitions:

LY, = Elayii o)~y , (1B 1 (1) — (@1 + F (@) — F (@) 1P], (12)
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Livs = Ewyaiimar, o (1F (@) = (@0 + Bl (w1) = B (@)[IP] . (13)

where B and F are two learnable neural networks. The diffusion process of DSB
optimizes towards a static goal.

3.5 Algorithm Design

The Explainable Diffusion Model via Schrédinger Bridge (xDSB) integrates dif-
fusion models with the Schrédinger Bridge framework to enhance the stability
and interpretability of multimodal image translation. Diffusion models simu-
late the gradual addition of noise and learn to reverse this process through
denoising steps, generating high-quality images. Score-based generative models
iteratively refine samples using the score function, the gradient of the log prob-
ability density. The Schrodinger Bridge provides an optimal transport solution
by creating a continuous path between two probability distributions, minimizing
the Kullback-Leibler divergence. In xDSB, iterative proportional fitting (IPF)
refines the distribution sequence to ensure convergence towards an optimal trans-
port path [16]. The model combines static entropy-regularized optimal transport
with dynamic diffusion processes, optimizing transitions using neural networks.
This approach ensures equilibrium states, enhancing the quality and efficiency of
image translations across different modalities. The algorithm design is as follows:

Algorithm 1. Training the xDSB Model

1: Input: pa(-) and pp(-|Xo) datasets

2: Initialization: Initialize ¢ and model parameters 6

3: repeat

4 Sampleth([O, 1]), Xo NpA(X()), Xi NpB<X1|X0)

5: Compute X ~ q(X¢|Xo, X1) according to the Schrodinger Bridge formulation
6 Update p using iterative proportional fitting (IPF)

7 Perform gradient descent step on (X, t;0)

8: until convergence

Algorithm 2. Generating Images with the Trained xDSB Model
1: Input: Xy ~ pp(Xn), trained €(-, -;0)

2: forn= N to1ldo

3 Predict X§ using (X, tn;6)
4: Sample X,,_1 ~ p(X,,—1]|X§, X») according to the trained model
5)
6

: end for
: Output: Xy
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4 Experiment
4.1 Model Training and Testing

Using an NVIDIA RTX8000 GPU, xDSBMIT demonstrated significant efficiency
compared to DDPM. During the training phase, xDSBMIT had notably lower
runtimes, as shown in Fig. 2a, it took 4.3 h to train on 1000 data points, whereas
DDPM required 7.5h. Similarly, in the testing phase, as shown in Fig 2b, xDS-
BMIT completed testing in 2.5h for 1000 data points, compared to 3.8h for
DDPM. Overall, xDSBMIT exhibited superior efficiency in both training and
testing, highlighting its advantages for real-world applications.

4.2 Dataset

In our study, we utilize a comprehensive collection of datasets spanning different
imaging modalities to support our research on multi-modal image translation.
Synthetic Aperture Radar (SAR) images capture radar signal representations
of the Earth’s surface, providing valuable data under conditions where optical
sensors might fail, such as in adverse weather. Infrared (IR) images offer critical
insights into thermal properties of the landscape, important for environmental
monitoring. Electro-optical (EO) sensors contribute images in the visible spec-
trum, including both RGB and grayscale images, which are predominantly used
in computer vision applications due to their detailed representation of visible
light information. Lastly, the RGB images provide high-resolution, color imagery
of agricultural and urban landscapes. The data in our experiments are sourced
from the UNICORN dataset and the PBVS 2024 public competition. The UNI-
CORN dataset comprises paired SAR and EO data, while the dataset provided
in the PBVS 2024 open competition includes paired SAR, IR, and RGB data,
as illustrated in Fig. 2c. These datasets form a robust foundation for exploring
and enhancing techniques in image translation across various modalities.

4.3 SAR2IR

The SAR2IR task utilizes the dataset provided in the PBVS 2024 open compe-
tition. As shown in Fig.2, we demonstrated the feasibility of translating Syn-
thetic Aperture Radar (SAR) images into Infrared (IR) imagery. The translated
IR images effectively reconstructed the primary contours and structural details
present in the original SAR data, as evidenced by the image sequence in the
middle column of Fig. 2(d). However, despite these promising results, the trans-
lated images exhibited diminished brightness and were unable to capture some
finer details compared to the original IR images. These observations suggest that
while the approach is effective in capturing major features, further refinement
is needed to enhance the detail fidelity and brightness levels of the translated
images, thus improving their utility for practical applications in remote sensing.
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Fig. 2. Combined Figures: (a) Training runtime, (b)Testing runtime, (c) Paired Images:
SAR, IR and RGB, (d) SAR2IR translation. Left: SAR. Middle: IR generated via
translation. Right: Ground Truth of IR.

4.4 SAR2EO

In the subsequent SAR2EOQO translation experiment, notable advancements were
achieved using a relatively modest dataset of only 500 training images from
UNICORN dataset. Despite the limited data, our approach surpassed the
performance benchmarks set by well-established frameworks such as pix2pix,
pix2pixHD, and traditional GAN models. The results indicate a significant
improvement not only in the accuracy of the translated EO images but also
in the clarity and color fidelity. This breakthrough demonstrates the potential of
our model to efficiently learn and generalize from sparse datasets, outperforming
existing methods in both qualitative and quantitative evaluations. The success-
ful application with minimal training data underscores our model’s robustness
and efficiency, suggesting it as a highly effective tool for enhancing EO image
generation in remote sensing technologies. Table 1 provides a performance com-
parison of different image translation methods for SAR2EO. Our model, referred
to as EDSB-500, exhibits superior performance across both LPIPS and FID met-
rics. Specifically, EDSB-500 achieved an LPIPS score of 0.35 and an FID score
of 0.10, outperforming the GAN-500, pix2pix-500, and pix2pixHD-500 models,
which recorded higher LPIPS and FID scores. LPIPS (Learned Perceptual Image
Patch Similarity) measures the perceptual similarity between generated and real
images. The LPIPS is constructed based on the VGG-16 [19] architecture. Lower
LPIPS scores indicate higher perceptual quality, as the generated images are
closer to the real ones in terms of human visual perception. In our experiment,
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the EDSB-500 model achieved the lowest LPIPS score, suggesting that it pro-
duces more perceptually accurate images compared to the other models. FID
(Fréchet Inception Distance) evaluates the quality of generated images by com-
paring the distributions of real and generated image features extracted by a
pre-trained Inception network [21]. Lower FID scores indicate that the gener-
ated images have a distribution closer to the real images, thus reflecting higher
quality. The EDSB-500 model achieved the lowest FID score, indicating a sig-
nificant improvement in image quality and fidelity over the other models. These
results highlight the effectiveness of our model in generating high-quality EO
images from SAR data, even with a limited training dataset.

Table 1. Performance comparison of different image translation methods for SAR2EO

LPIPSFID
GAN-500 0.52 1]0.44
pix2pix-500 0.48 10.27

pix2pixHD-500 |0.45 |0.18
xDSBMIT-500 |0.35 |0.10

5 Conclusion

This study introduces the Explainable Diffusion Model via Schrédinger Bridge
for Multimodal Image Translation (xDSBMIT'). Our method integrates diffusion
models with the Schrodinger Bridge to enhance the stability and interpretability
in image translation, achieving superior performance with limited datasets. Our
experimental results demonstrate the effectiveness of xDSBMIT in translating
between various image modalities, such as Synthetic Aperture Radar (SAR),
Infrared (IR), and Electro-Optical (EO) images.

A key contribution is the application of DSB to the multimodal domain,
offering clear insights into the image translation process, crucial for remote sens-
ing and medical imaging. Our method also demonstrates robust performance
with fewer training pairs compared to methods like pix2pix, making it valuable
where large datasets are impractical. Comprehensive evaluations reveal xDSB-
MIT’s adaptability across imaging modalities, producing high-fidelity, coherent
results.

Furthermore, xDSBMIT aligns with the Dynamic Data Driven Applications
Systems (DDDAS) paradigm by dynamically integrating runtime data into the
models. This dynamic integration, which is applicable across different modal-
ities, enhances the system’s adaptability and responsiveness, epitomizing the
core principles of DDDAS. By supporting advanced systems-analytics capabili-
ties, xDSBMIT addresses the limitations of traditional diffusion approaches that
often overlook dynamic system conditions.
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In conclusion, xDSBMIT combines stability, interpretability, and efficiency,

showing potential for advancing remote sensing and image translation across
various domains. Future work will explore further enhancements and applications
of this approach.
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