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Abstract. In this paper, we introduce a novel framework for multimodal 
image translation utilizing the Diffusion Schrödinger Bridge (DSB). By 
integrating diffusion models with the Schrödinger Bridge problem, our 
approach addresses stability and interpretability challenges in image 
translation tasks. Explainable Diffusion Model via Schrödinger Bridge 
Multimodal Image Translation (xDSBMIT) leverages the unique dis-
tribution characteristics of different modalities, achieving high-quality 
translations with limited datasets. The DSB framework enhances inter-
pretability by elucidating the diffusion process between paired images, 
providing insights into how the translation is achieved. Specifically, we 
apply our framework to the translation of Synthetic Aperture Radar 
(SAR) images to Infrared (IR) and Electro-Optical (EO) images, demon-
strating its effectiveness in remote sensing applications. Experimental 
results show that xDSBMIT framework outperforms established methods 
such as pix2pix, significantly enhancing image translation performance 
and model interpretability while requiring fewer training data. 
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1 Introduction 

Image-to-Image (I2I) translation involves converting images from one domain 
to another, leveraging techniques like style transfer, image colorization, super-
resolution, and image synthesis [ 14, 15, 17]. Recently, this field has extended to 
multimodal learning, enabling translations across different modalities by training 
on extensive datasets [ 23]. These advancements have applications in artistic cre-
ation, medical imaging, and satellite image analysis, broadening the spectrum of 
image translation and enhancing the interpretation of visual data across various 
contexts. 

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026 
E. Blasch et al. (Eds.): DDDAS/Infosymbiotics for Reliable AI 2024, LNCS 15514, pp. 391–402, 2026. 
https://doi.org/10.1007/978-3-031-94895-4_41



392 Z. Lu et al.

Dynamic Data Driven Applications Systems (DDDAS) integrate instrumen-
tation data with models in real-time, allowing these models to dynamically man-
age the use and acquisition of data. DDDAS-based methods adapt to the ever-
changing nature of real-world systems, providing a robust and flexible framework 
for various applications that demand real-time data integration and dynamic sys-
tem adaptability. Generative Adversarial Networks (GANs) are extensively used 
for image translation in dynamic data-driven applications systems (DDDAS) to 
generate augmented data for near-real support to deployed systems [ 1]. Notable 
techniques include pix2pix for paired image translation and CycleGAN for 
unpaired image translation [ 10, 24]. GAN-based methods use continuous feed-
back from the discriminator to produce realistic images closely approximating 
the ground truth, significantly advancing the field of image translation [ 2, 4, 20]. 
However, GANs face challenges like training difficulties, vanishing gradients, and 
poor interpretability. 

To overcome these issues, diffusion-based methods for image translation have 
been explored [ 25]. Traditional diffusion models progressively denoise an image 
until it transforms into Gaussian noise, learning the reverse process to generate 
new images [ 7, 8]. However, these models struggle with paired image translation. 
To address this, the Diffusion Schrödinger Bridge (DSB) has been proposed as an 
innovative generative model, combining the Schrödinger Bridge framework with 
the diffusion process to transition smoothly between distributions and generate 
high-quality images. 

DSB has shown promising results in various applications. De Bortoli explored 
its use in score-based generative modeling, demonstrating its versatility [ 5]. Liu 
demonstrated its effectiveness in I2I translation [ 13], and Chen highlighted its 
superiority in text-to-speech synthesis compared to traditional diffusion models 
[ 3]. However, previous applications of DSB have focused on image restoration 
and colorization, not on cross-modal image translation tasks. Additionally, there 
has been no practical implementation of DSB in the field of satellite imagery. 

Fig. 1. Diffusion Process of Paired Images 

To address the cross-modal image translation gap, and achieve stable, highly 
interpretable image translation, we propose the application of the diffusion 
Schrödinger bridge in multimodal image translation tasks. As shown in Fig. 1,
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the red arrows in the figure represent the sampling process, the Paired Image 
Diffusion Schrödinger Bridge (DSB) can transform a noisy image at .t = 1 into 
a clear image at .t = 0 through intermediate states. In addition to denoising, we 
have accomplished translation between paired SAR and IR, as well as SAR and 
EO images, based on the diffusion Schrödinger bridge framework. These tasks 
are crucial because they enable the fusion of complementary information from 
different sensor modalities, improving overall situational awareness and enhanc-
ing the quality of remote sensing applications. Remarkably, with only 500 pairs 
of data, yielding results comparable to those of pix2pix trained on a significantly 
larger dataset. Our main contributions are as follows: 

1. Introducing the Diffusion Schrödinger Bridge to Multimodal Image 
Translation: Our framework uniquely combines diffusion models with the 
Schrödinger Bridge, enhancing the stability and interpretability of image 
translation across complex modalities. 

2. Efficient Learning from Limited Data: By focusing on the distribution 
characteristics between different modalities, the Diffusion Schrödinger Bridge 
enables our method to achieve high-quality image translation with signifi-
cantly fewer data pairs, thereby reducing dependency on large datasets. 

3. Validation Across Modalities: Our approach is robustly tested across 
diverse imaging modalities such as SAR, IR, and EO, showcasing its adapt-
ability and effectiveness. 

This paper is organized as follows. The next section reviews the existing lit-
erature on diffusion models and the Schrödinger Bridge problem, providing con-
text and background for our proposed method. The Method section introduces 
the Explainable Diffusion Model via Schrödinger Bridge in Multimodal Image 
Translation framework, detailing its formulation, optimization, and implemen-
tation. The Experiment section describes the datasets used, experimental setup, 
and results of our image translation tasks, comparing the performance of our 
approach with existing methods. The last section concludes with a summary 
of the findings, highlighting the contributions and potential future work in this 
domain. 

2 Related Work 

The field of image translation has seen significant advancements with the devel-
opment of various generative models. Among these, diffusion models and score-
based generative models have gained prominence due to their effectiveness in 
producing high-fidelity images. This section reviews the key contributions in 
these areas, setting the stage for our proposed Explainable Diffusion Model via 
Schrödinger Bridge in Multimodal Image Translation framework. 

2.1 Diffusion Model 

A diffusion model is a class of generative models that simulates the process of 
gradually adding noise to data until it becomes indistinguishable from random
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noise, and then learns to reverse this process to generate data from noise [ 20]. 
The concept is insmured by the physical process of diffusion, where particles 
move from areas of higher concentration to lower concentration, leading to an 
equilibrium state. In the context of machine learning, diffusion models are trained 
through a sequence of forward steps that progressively corrupt the data with 
noise, followed by a learned reverse process that aims to reconstruct the original 
data from the noisy state. The reverse process is tymucally achieved through a 
neural network that is trained to predict earlier, less noisy states of the data given 
its current state. Diffusion models have shown remarkable success in generating 
high-quality, diverse samples in various domains such as images, audio, and text, 
distinguishing themselves by their ability to model complex data distributions 
and produce outputs with high fidelity and variation [ 7, 8]. 

2.2 Schrödinger Bridge 

The Schrödinger Bridge (SB), dating back to Schrödinger [ 18] and  revisited by  
Léonard [ 12], is conceptualized as an entropy-regularized variant of the clas-
sical optimal transport problem. This framework encompasses the subsequent 
stochastic differential equations (SDEs): 

.dXt = [ft + βt∇ log v(Xt, t)] dt +
√

βtdWt (1) 

.dX̃t =
[
f̃t − βt∇ log u(X̃t, t)

]
dt +

√
βtdW̃t (2) 

where . f is the drift term, .W is the Wiener process, . β is a constant, . X0 ∼
pA and .X1 ∼ pB are distributed according to the boundary conditions in two 
discrete domains. The potentials . v and . u, belonging to the space . C1,2(Rd ×
[0, 1]), are dynamic entities governed by the ensuing coupled partial differential 
equations (PDEs). Here, the superscript .1, 2 indicates that the functions have 
continuous first-order derivatives with respect to time and continuous second-
order derivatives with respect to spatial variables. 

.
∂v(x, t)

∂t
= −∇ · (ftv) +

1
2
βtΔv (3) 

.
∂u(x, t)

∂t
= −∇ · (f̃tu) +

1
2
βtΔu (4) 

subject to the initial and terminal distribution conditions: 

.v(x, 0) = pA(x), u(x, 1) = pB(x) (5) 

In the formulation Eqs. (1) to (5), the path probability measures induced by 
the SDEs in (3) and  (4) coincide almost surely, reminiscent of the equivalence 
established in the earlier SDEs. Consequently, the marginal probability densities, 
hereinafter denoted by .q(·, t), are correspondingly equivalent.
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The insights from existing diffusion models, score-based generative models, 
and the Schrödinger Bridge problem will inform the development of xDSB-
MIT. By integrating the stability and interpretability features of the Schrödinger 
Bridge with the robust image generation capabilities of diffusion models, our app-
roach aims to enhance multimodal image translation. The related works provide 
foundational principles and techniques that are crucial in formulating and opti-
mizing the Explainable Diffusion Model via Schrödinger Bridge in Multimodal 
Image Translation framework, which we detail in the subsequent method section. 

3 Method 

In this section, we describe the proposed Explainable Diffusion Model via 
Schrödinger Bridge (xDSB) for multimodal image translation. xDSBMIT inte-
grates the diffusion process with the Schrödinger Bridge framework to enhance 
the stability and interpretability of image translations across different modali-
ties. We will incorporate linking statements between sections and include rele-
vant theories on multimodal image distributions. Because the Schrödinger Bridge 
framework provides a clear mathematical formulation of the transport process, 
making the transformation from source to target distributions more transpar-
ent,so we refer this as an explainable diffusion model. This approach allows for 
better understanding and interpretability of how the model transitions between 
different imaging modalities, addressing concerns about the “black-box” nature 
of traditional deep learning models. 

3.1 Preliminaries 

We begin by introducing the fundamental principles underlying our approach. 
The xDSB leverages the probabilistic nature of diffusion models to transition 
between image distributions. Specifically, xDSB models the distribution of paired 
images in the source and target domains, ensuring that essential features of the 
source images are preserved in the translation process. This is achieved through 
the Schrödinger Bridge problem, which formulates a continuous path between 
two probability distributions. The path minimizes the Kullback-Leibler (KL) 
divergence between the distributions, leading to an optimal transport solution. 

To formalize this, let .μ ∈ PN+1 represent the distribution sequence of dif-
fusion paths, with .μ0 = pA and .μN = pB indicating the source and target 
distributions, respectively. The objective is to find .μ∗ that satisfies: 

.μ∗ = arg min
μ

{KL(μ‖μref) : μ ∈ PN+1, μ0 = pA, μN = pB}. (6) 

In multimodal contexts, the distribution of paired images involves diverse 
modalities [ 9, 11], such as SAR and IR, ensuring the translation preserves the 
modality-specific features.
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3.2 Training Algorithm 

The xDSB training algorithm follows the iterative proportional fitting procedure 
(IPF) [ 6] to refine the distribution sequence . μ. The goal is to adjust . μ iteratively 
until convergence, ensuring that .μ0 ≈ pA and .μN ≈ pB . The IPF updates are 
given by: 

.μ2n+1 = arg min
μ

{KL(μ‖μ2n) : μ ∈ PN+1, μN = pB} (7) 

.μ2n+2 = arg min
μ

{KL(μ‖μ2n+1) : μ ∈ PN+1, μ0 = pA}. (8) 

Each iteration alternates between optimizing the distribution at the source 
and target ends, gradually refining the transition path to minimize the overall 
divergence. This method accounts for the multimodal nature of image distribu-
tions by considering the unique characteristics of each modality in the optimiza-
tion process. 

3.3 Static Schrödinger Bridge 

For a static version of the problem, we consider the entropy-regularized optimal 
transport, which links the Schrödinger Bridge problem with traditional optimal 
transport theory. The SB approach ensures the convergence of the distribution 
sequence by balancing the entropy terms with the transport cost: 

. μ∗
static = arg min

μ

{
Eμ

[‖x0 − xN‖2
] − 2σ2 H(μ) : μ ∈ P2, μ0 = pA, μN = pB

}
.

(9) 

3.4 Diffusion Schrödinger Bridge 

The Diffusion Schrödinger Bridge (DSB) combines the dynamic aspects of diffu-
sion processes with the optimal transport properties of the Schrödinger Bridge. 
In DSB, the forward and backward transition probabilities are updated itera-
tively to ensure convergence towards the equilibrium state [ 22]. The forward and 
backward passes are given by: 

.pt+1|t(xt+1|xt) = N(xt+1;xt + γtft(xt), 2γtI), (10) 

.qt|t+1(xt|xt+1) = N(xt;xt+1 + γtbt+1(xt+1), 2γtI). (11) 

where .γt is a constant and . I is the identity matrix. The training loss functions 
for DSB are defined to minimize the discrepancies between the forward and 
backward transitions: 

.LB
t+1 = E(xt+1,xt)∼pn

t+1,t

[‖Bn
t+1(xt+1) − (xt+1 + Fn

t (xt) − Fn
t (xt+1))‖2

]
, (12)
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.LF
t+1 = E(xt,xt+1)∼qn

t,t+1

[‖Fn
t (xt) − (xt + Bn

t+1(xt+1) − Bn
t+1(x))‖2

]
. (13) 

where B and F are two learnable neural networks. The diffusion process of DSB 
optimizes towards a static goal. 

3.5 Algorithm Design 

The Explainable Diffusion Model via Schrödinger Bridge (xDSB) integrates dif-
fusion models with the Schrödinger Bridge framework to enhance the stability 
and interpretability of multimodal image translation. Diffusion models simu-
late the gradual addition of noise and learn to reverse this process through 
denoising steps, generating high-quality images. Score-based generative models 
iteratively refine samples using the score function, the gradient of the log prob-
ability density. The Schrödinger Bridge provides an optimal transport solution 
by creating a continuous path between two probability distributions, minimizing 
the Kullback-Leibler divergence. In xDSB, iterative proportional fitting (IPF) 
refines the distribution sequence to ensure convergence towards an optimal trans-
port path [ 16]. The model combines static entropy-regularized optimal transport 
with dynamic diffusion processes, optimizing transitions using neural networks. 
This approach ensures equilibrium states, enhancing the quality and efficiency of 
image translations across different modalities. The algorithm design is as follows: 

Algorithm 1. Training the xDSB Model 
1: Input: pA(·) and pB(·|X0) datasets 
2: Initialization: Initialize μ and model parameters θ 
3: repeat 
4: Sample t ∼ U([0, 1]), X0 ∼ pA(X0), X1 ∼ pB(X1|X0) 
5: Compute Xt ∼ q(Xt|X0, X1) according to the Schrödinger Bridge formulation 
6: Update μ using iterative proportional fitting (IPF) 
7: Perform gradient descent step on ε(Xt, t; θ) 
8: until convergence 

Algorithm 2. Generating Images with the Trained xDSB Model 
1: Input: XN ∼ pB(XN ), trained ε(·, ·; θ) 
2: for n = N to 1 do 
3: Predict Xε

0 using ε(Xn, tn; θ) 
4: Sample Xn−1 ∼ p(Xn−1|Xε

0, Xn) according to the trained model 
5: end for 
6: Output: X0
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4 Experiment 

4.1 Model Training and Testing 

Using an NVIDIA RTX8000 GPU, xDSBMIT demonstrated significant efficiency 
compared to DDPM. During the training phase, xDSBMIT had notably lower 
runtimes, as shown in Fig. 2a, it took 4.3 h to train on 1000 data points, whereas 
DDPM required 7.5 h. Similarly, in the testing phase, as shown in Fig 2b, xDS-
BMIT completed testing in 2.5 h for 1000 data points, compared to 3.8 h for 
DDPM. Overall, xDSBMIT exhibited superior efficiency in both training and 
testing, highlighting its advantages for real-world applications. 

4.2 Dataset 

In our study, we utilize a comprehensive collection of datasets spanning different 
imaging modalities to support our research on multi-modal image translation. 
Synthetic Aperture Radar (SAR) images capture radar signal representations 
of the Earth’s surface, providing valuable data under conditions where optical 
sensors might fail, such as in adverse weather. Infrared (IR) images offer critical 
insights into thermal properties of the landscape, important for environmental 
monitoring. Electro-optical (EO) sensors contribute images in the visible spec-
trum, including both RGB and grayscale images, which are predominantly used 
in computer vision applications due to their detailed representation of visible 
light information. Lastly, the RGB images provide high-resolution, color imagery 
of agricultural and urban landscapes. The data in our experiments are sourced 
from the UNICORN dataset and the PBVS 2024 public competition. The UNI-
CORN dataset comprises paired SAR and EO data, while the dataset provided 
in the PBVS 2024 open competition includes paired SAR, IR, and RGB data, 
as illustrated in Fig. 2c. These datasets form a robust foundation for exploring 
and enhancing techniques in image translation across various modalities. 

4.3 SAR2IR 

The SAR2IR task utilizes the dataset provided in the PBVS 2024 open compe-
tition. As shown in Fig. 2, we demonstrated the feasibility of translating Syn-
thetic Aperture Radar (SAR) images into Infrared (IR) imagery. The translated 
IR images effectively reconstructed the primary contours and structural details 
present in the original SAR data, as evidenced by the image sequence in the 
middle column of Fig. 2(d). However, despite these promising results, the trans-
lated images exhibited diminished brightness and were unable to capture some 
finer details compared to the original IR images. These observations suggest that 
while the approach is effective in capturing major features, further refinement 
is needed to enhance the detail fidelity and brightness levels of the translated 
images, thus improving their utility for practical applications in remote sensing.
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Fig. 2. Combined Figures: (a) Training runtime, (b)Testing runtime, (c) Paired Images: 
SAR, IR and RGB, (d) SAR2IR translation. Left: SAR. Middle: IR generated via 
translation. Right: Ground Truth of IR. 

4.4 SAR2EO 

In the subsequent SAR2EO translation experiment, notable advancements were 
achieved using a relatively modest dataset of only 500 training images from 
UNICORN dataset. Despite the limited data, our approach surpassed the 
performance benchmarks set by well-established frameworks such as pix2pix, 
pix2pixHD, and traditional GAN models. The results indicate a significant 
improvement not only in the accuracy of the translated EO images but also 
in the clarity and color fidelity. This breakthrough demonstrates the potential of 
our model to efficiently learn and generalize from sparse datasets, outperforming 
existing methods in both qualitative and quantitative evaluations. The success-
ful application with minimal training data underscores our model’s robustness 
and efficiency, suggesting it as a highly effective tool for enhancing EO image 
generation in remote sensing technologies. Table 1 provides a performance com-
parison of different image translation methods for SAR2EO. Our model, referred 
to as EDSB-500, exhibits superior performance across both LPIPS and FID met-
rics. Specifically, EDSB-500 achieved an LPIPS score of 0.35 and an FID score 
of 0.10, outperforming the GAN-500, pix2pix-500, and pix2pixHD-500 models, 
which recorded higher LPIPS and FID scores. LPIPS (Learned Perceptual Image 
Patch Similarity) measures the perceptual similarity between generated and real 
images. The LPIPS is constructed based on the VGG-16 [ 19] architecture. Lower 
LPIPS scores indicate higher perceptual quality, as the generated images are 
closer to the real ones in terms of human visual perception. In our experiment,
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the EDSB-500 model achieved the lowest LPIPS score, suggesting that it pro-
duces more perceptually accurate images compared to the other models. FID 
(Fréchet Inception Distance) evaluates the quality of generated images by com-
paring the distributions of real and generated image features extracted by a 
pre-trained Inception network [ 21]. Lower FID scores indicate that the gener-
ated images have a distribution closer to the real images, thus reflecting higher 
quality. The EDSB-500 model achieved the lowest FID score, indicating a sig-
nificant improvement in image quality and fidelity over the other models. These 
results highlight the effectiveness of our model in generating high-quality EO 
images from SAR data, even with a limited training dataset. 

Table 1. Performance comparison of different image translation methods for SAR2EO 

LPIPS FID 
GAN-500 0.52 0.44 
pix2pix-500 0.48 0.27 
pix2pixHD-500 0.45 0.18 
xDSBMIT-500 0.35 0.10 

5 Conclusion 

This study introduces the Explainable Diffusion Model via Schrödinger Bridge 
for Multimodal Image Translation (xDSBMIT). Our method integrates diffusion 
models with the Schrödinger Bridge to enhance the stability and interpretability 
in image translation, achieving superior performance with limited datasets. Our 
experimental results demonstrate the effectiveness of xDSBMIT in translating 
between various image modalities, such as Synthetic Aperture Radar (SAR), 
Infrared (IR), and Electro-Optical (EO) images. 

A key contribution is the application of DSB to the multimodal domain, 
offering clear insights into the image translation process, crucial for remote sens-
ing and medical imaging. Our method also demonstrates robust performance 
with fewer training pairs compared to methods like pix2pix, making it valuable 
where large datasets are impractical. Comprehensive evaluations reveal xDSB-
MIT’s adaptability across imaging modalities, producing high-fidelity, coherent 
results. 

Furthermore, xDSBMIT aligns with the Dynamic Data Driven Applications 
Systems (DDDAS) paradigm by dynamically integrating runtime data into the 
models. This dynamic integration, which is applicable across different modal-
ities, enhances the system’s adaptability and responsiveness, epitomizing the 
core principles of DDDAS. By supporting advanced systems-analytics capabili-
ties, xDSBMIT addresses the limitations of traditional diffusion approaches that 
often overlook dynamic system conditions.
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In conclusion, xDSBMIT combines stability, interpretability, and efficiency, 
showing potential for advancing remote sensing and image translation across 
various domains. Future work will explore further enhancements and applications 
of this approach. 

Acknowledgments. This work was supported by the Air Force Office of Scientific 
Research (AFOSR) under Grant FA9550-21-1-0224. 

References 

1. Blasch, E.P., Darema, F., Ravela, S., Aved, A.J. (eds.): Handbook of Dynamic 
Data Driven Applications Systems, vol. 1, 2nd edn. Springer (2022) 

2. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity 
natural image synthesis. In: International Conference on Learning Representations 
(2019) 

3. Chen, Z., He, G., Zheng, K., Tan, X., Zhu, J.: Schrödinger bridges beat diffusion 
models on text-to-speech synthesis. arXiv:2312.03491 (2023) 

4. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, 
A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 
35(1), 53–65 (2018) 

5. De Bortoli, V., Thornton, J., Heng, J., Doucet, A.: Diffusion schrödinger bridge 
with applications to score-based generative modeling. In: Advances in Neural Infor-
mation Processing Systems, vol. 34, pp. 17695–17709 (2021) 

6. Deming, W.E., Stephan, F.F.: On a least squares adjustment of a sampled fre-
quency table when the expected marginal totals are known. Ann. Math. Stat. 
11(4), 427–444 (1940). https://doi.org/10.1214/aoms/1177731829 

7. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: 
Advances in Neural Information Processing Systems (2021) 

8. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances 
in Neural Information Processing Systems (2020) 

9. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-
to-image translation. In: Proceedings of the European Conference on Computer 
Vision (ECCV), pp. 172–189 (2018) 

10. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition (2017) 

11. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain 
relations with generative adversarial networks. In: International Conference on 
Machine Learning, pp. 1857–1865 (2017) 

12. Léonard, C.: A survey of the schrödinger problem and some of its connections with 
optimal transport. Discrete Continuous Dyn. Syst. (2013) 

13. Liu, G.H., Vahdat, A., Huang, D.A., Theodorou, E.A., Nie, W., Anandkumar, A.: 
I2SB: image-to-image schrödinger bridge. arXiv:2302.05872 (2023) 

14. Liu, S., Gao, M., John, V., Liu, Z., Blasch, E.: Deep learning thermal image trans-
lation for night vision perception. ACM Trans. Intell. Syst. Technol. 12(1), 1–18 
(2020)



402 Z. Lu et al.

15. Low, S., Nina, O., Sappa, A.D., Blasch, E., Inkawhich, N.: Multi-modal aerial 
view image challenge: translation from synthetic aperture radar to electro-optical 
domain results-PBVS 2023. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops, pp. 515–522 (2023) 

16. Rüschendorf, L., Thomsen, W.: Note on the schrödinger equation and i-projections. 
Stat. Probab. Lett. 17(5), 369–375 (1993) 

17. Savakis, A., Taufique, A.M.N., Nagananda, N.: Advances in domain adaptation for 
aerial imagery. In: Darema, F., Blasch, E.P., Ravela, S., Aved, A.J. (eds.) Handbook 
of Dynamic Data Driven Applications Systems. Springer, Cham (2023) 

18. Schrödinger, E.: über die umkehrung der naturgesetze. Sitzungsberichte der 
Preussischen Akademie der Wissenschaften Physikalisch-Mathematische Klasse 
(1932) 

19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale 
image recognition. In: International Conference on Learning Representations 
(2015) 

20. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsuper-
vised learning using nonequilibrium thermodynamics. In: Proceedings of the Inter-
national Conference on Machine Learning (2015) 

21. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. CoRR (2015) 

22. Tang, Z., Hang, T., Gu, S., Chen, D., Guo, B.: Simplified diffusion schrödinger 
bridge. arXiv:2403.14623 (2024) 

23. Zheng, Y., Blasch, E., Liu, Z.: Multispectral Image Fusion and Colorization. SPIE 
Press (2018) 

24. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation 
using cycle-consistent adversarial networks. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision (2017) 

25. Özbey, M., et al.: Unsupervised medical image translation with adversarial diffusion 
models. IEEE Trans. Med. Imaging 42(12), 3524–3539 (2023)


