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Abstract—Multimodal sentiment analysis (MSA) has
gained prominence for its ability to more comprehensively
capture human emotions by leveraging different data
sources. In this paper, we propose Adaptive Deep
Canonical Correlation Analysis (Adaptive DCCA), a
novel framework that integrates electroencephalography
(EEG) and eye movement signals for improved sentiment
classification. Unlike traditional DCCA, our approach
incorporates an attention-based adaptive weighting
mechanism, allowing each modality to dynamically
contribute according to its relative importance. We
evaluate the proposed model on two standard datasets,
SEED-IV and SEED-V, under both subject-dependent
and subject-independent conditions. Experimental
results demonstrate that Adaptive DCCA substantially
outperforms existing methods, achieving high accuracy
and robustness across varying emotional categories.
Notably, the adaptive weighting proves especially
beneficial in exploiting the complementary information
embedded in EEG and eye movement data, although eye
movement signals remain more susceptible to cross-subject
variability. The comprehensive confusion matrix analysis
further corroborates the effectiveness of our approach
in distinguishing fine-grained emotional states. Overall,
this work highlights the untapped potential of combining
physiological signals for emotion recognition and offers
a flexible, high-performance framework that can be
extended to other affective computing applications.

Index Terms—Multimodal sentiment analysis; EEG;
Eye Movement; Deep Canonical Correlation Analysis;
Attention-based fusion; Physiological data

I. INTRODUCTION

The study of human emotions and sentiments forms
a foundational aspect of affective computing and
human-computer interaction. While traditional sentiment
analysis has predominantly focused on unimodal
data, such as text or speech, the emergence of
multimodal sentiment analysis (MSA) has highlighted
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the importance of integrating diverse data sources,
including audio, video, and physiological signals [1].
This evolution reflects the inherent complexity of
human emotions, which are expressed through intricate
combinations of verbal, acoustic, and behavioral cues.
By exploiting the complementary strengths of these
modalities, multimodal analysis provides a more nuanced
and holistic understanding of sentiments compared to
unimodal approaches.

However, the integration and effective representation
of heterogeneous modalities present significant
challenges within the domain of MSA. Text-based
features often dominate due to the advanced state of
natural language processing models, whereas audio
and visual features frequently suffer from noise and
variability. Moreover, physiological signals, such as
electroencephalography (EEG) and eye movements,
have garnered increasing attention for their ability
to capture subconscious emotional states [2]. These
signals offer a robust alternative as they are less
susceptible to intentional modulation, making them
particularly valuable in diverse and dynamic application
scenarios. Despite their promise, the integration of
such physiological data into MSA frameworks remains
underexplored.

A deeper look into the field of affective computing
reveals several real-world applications that necessitate
robust emotional state detection. For instance, in
healthcare and mental wellness monitoring, continuous
emotion tracking can provide insight into the onset
of stress or depression, allowing timely interventions.
In education, adaptive learning systems can benefit
from real-time feedback on students’ engagement levels,
enabling personalized teaching approaches. Similarly,
in marketing or entertainment analytics, understanding
audience sentiment through physiological cues helps
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creators optimize content delivery. These expanding
areas underscore the need for MSA techniques that can
effectively unify diverse signal types, including EEG and
eye movements, in a manner that remains stable across
different individuals and contexts.

To address these challenges, DCCA has emerged as
a transformative approach for Ilearning correlated
representations of multimodal data [3]. Unlike
traditional canonical correlation analysis (CCA), DCCA
leverages deep neural networks to extract nonlinear
transformations for each modality, thereby maximizing
their correlations in a shared latent space. While
effective, traditional DCCA treats all modalities equally
without accounting for their varying contributions,
potentially overlooking critical inter-modal dynamics
and the unique characteristics of specific modalities.

Building upon these advancements, this paper
introduces Adaptive DCCA, a novel extension of the
DCCA framework designed specifically for multimodal
sentiment analysis using physiological data [4]. Unlike
traditional DCCA, our model uses an attention-based
adaptive weighting mechanism to fuse features more
effectively. This mechanism dynamically adjusts the
contributions of each modality, allowing the framework
to prioritize the most informative features from EEG and
eye movement signals. By doing so, Adaptive DCCA
effectively captures modality-specific and cross-modal
relationships, ensuring a more robust and accurate
representation of the data. The framework follows
a three-stage architecture: feature extraction, feature
fusion, and sentiment classification. During feature
extraction, EEG signals are processed using Long
Short-Term Memory (LSTM) [5] networks, while eye
movement data is analyzed using Fully Connected
Networks (FCNs) [6]. These features are then integrated
using the attention-enhanced CCA constraints, where the
adaptive mechanism plays a pivotal role in optimizing
the fusion process. Finally, the fused features are passed
through a neural network for sentiment classification
into emotional categories such as Happy, Sad, Neutral,
Disgust, and Fear.

The remainder of this paper is structured as follows.
Section 2 provides an in-depth review of related work
in multimodal sentiment analysis and the integration
of physiological data. Section 3 elaborates on the
proposed Adaptive DCCA framework, detailing its
architectural components and optimization strategies.
Section 4 presents experimental results on benchmark
datasets, illustrating the effectiveness and robustness of
the proposed approach. Finally, Section 5 concludes the

paper and discusses potential avenues for future research.

II. RELATED WORK

The field of MSA has gained significant attention in
recent years due to its potential to provide comprehensive
insights into human emotions by leveraging multiple
modalities such as text, audio, video, and physiological
signals. This section reviews key advancements in MSA,
focusing on traditional approaches, the integration of
physiological signals, and recent developments in feature
fusion techniques, including DCCA.

A. Traditional Approaches to Multimodal Sentiment
Analysis

Early efforts in MSA primarily relied on unimodal
data, such as text or audio, with each modality
analyzed in isolation. However, the inherent limitations
of unimodal analysis, including its inability to capture
the richness of emotional expressions, spurred interest
in multimodal approaches. Studies such as those by
Zadeh et al. introduced tensor-based fusion methods,
which combined modalities at the feature level to
improve sentiment classification accuracy [7]. Other
works explored attention mechanisms and graph-based
fusion models, enabling more sophisticated integration
of text, audio, and visual features.

Despite these advancements, text-based features often
dominated due to the availability of large pre-trained
language models like BERT. In contrast, audio and video
features frequently suffered from noise and variability,
highlighting the need for robust fusion methods that
can effectively balance the contributions of different
modalities [8].

B. Physiological Signals in Multimodal Sentiment

Analysis

Physiological signals, such as electroencephalography
(EEG) and eye movements, have gained traction in
MSA due to their ability to capture subconscious
emotional states. Unlike behavioral cues, physiological
signals are less prone to deliberate manipulation, making
them particularly useful for applications requiring robust
sentiment detection. For instance, studies on the SEED-V
and DREAMER datasets demonstrated the effectiveness
of EEG in emotion recognition tasks, achieving high
accuracy rates through feature-level and decision-level
fusion methods [9].

Eye movements, which provide complementary
information about cognitive and emotional states, have
also been integrated into multimodal frameworks.
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Zheng et al. proposed a multimodal framework
that combines EEG and eye movement features,
revealing their complementary characteristics in emotion
recognition tasks [10]. However, the integration of
physiological data into multimodal systems remains
underexplored, particularly in the context of balancing
their contributions with more traditional modalities like
text and audio.

C. Deep Canonical Correlation Analysis for Multimodal
Fusion

DCCA has emerged as a powerful tool for multimodal
fusion by learning nonlinear transformations of multiple
modalities to maximize their correlations in a shared
latent space. Unlike traditional CCA, DCCA leverages
deep neural networks to handle the complex relationships
inherent in multimodal data [11]. Recent works have
demonstrated the superiority of DCCA over traditional
fusion methods, achieving state-of-the-art performance
on datasets such as CMU-MOSI and CMU-MOSEL

Furthermore, certain variants of DCCA have begun to
incorporate constraints tailored to each modality, aiming
to preserve unique characteristics while maximizing
shared features. For example, domain adaptation layers
and modality-specific dropout have been introduced to
accommodate noise and missing data in signals like
EEG or audio. These techniques allow for more flexible
architectures that retain meaningful modality-specific
nuances without compromising the fused representation.
Nevertheless, many of these methods still treat each
modality’s importance as fixed throughout training,
an assumption that may not hold when dealing
with variable-quality signals or dynamically changing
experimental conditions.

D. Contributions of Adaptive DCCA

Building on these advancements, Adaptive DCCA
extends the traditional DCCA framework by introducing
an attention-driven adaptive weighting mechanism. This
mechanism dynamically adjusts the contributions of
EEG and eye movement signals during the feature
fusion stage, ensuring a robust and context-aware
representation of the data. By addressing the limitations
of existing DCCA models, Adaptive DCCA represents
a significant step forward in the integration of
physiological signals for multimodal sentiment analysis.
The proposed framework is evaluated on benchmark
datasets, demonstrating its ability to achieve superior
robustness and accuracy compared to state-of-the-art
methods.

III. PROPOSED FRAMEWORK

This section introduces the Adaptive DCCA
framework for multimodal sentiment analysis. This
framework integrates EEG and eye movement signals to
leverage their complementary characteristics for more
accurate sentiment classification. The methodology
is structured into three main parts: introduction to
the method, framework description, and algorithmic
process.

A. Method Overview

Adaptive DCCA aims to jointly extract and fuse
features from two distinct modalities—EEG signals and
eye movement signals—to enhance sentiment analysis.
The framework utilizes a Long Short-Term Memory
(LSTM) network for EEG feature extraction, as it is
well-suited for processing sequential data, and a Fully
Convolutional Network (FCN) for eye movement signals,
which excels at capturing spatial and temporal features.
The features extracted, denoted as fggg for EEG and
fem for eye movements, are subsequently aligned using a
Deep Canonical Correlation Analysis (DCCA) network.
This alignment ensures that the features from both
modalities are correlated and capture complementary
aspects of the input data.

To refine this fusion, an adaptive attention mechanism
is applied to dynamically adjust the contribution of each
modality based on their relative importance in the given
context. The attention weights guide how the features
are fused, enabling the model to adaptively weigh each
modality for optimal performance. Finally, the fused
representation is fed into a fully connected network
for sentiment classification, enabling the prediction of
emotional states such as happiness, sadness, neutrality,
disgust, and fear.

B. Framework

The Adaptive DCCA framework, illustrated in
Fig. 1, consists of three interconnected stages: feature
extraction, feature fusion, and sentiment analysis. EEG
signals (Xggg) are processed through an LSTM network
to capture sequential patterns, resulting in the extracted
features fgpg. Similarly, eye movement signals (Xgm)
are processed using a FCN to capture spatial and
temporal correlations, resulting in the extracted features

fem.
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Fig. 1: Overview of the proposed Adaptive DCCA
Framework. EEG and Eye movement features are
extracted using LSTM and FCN respectively. The
adaptive weight mechanism dynamically adjusts each
modality’s contribution during fusion, enhancing
sentiment classification performance by prioritizing
informative features.

In our experiments, we also incorporate a simple but
effective data preprocessing step. For EEG signals, we
apply a band-pass filter in the range of 1-50 Hz to
remove high-frequency noise and baseline drift. Eye
movement data undergoes a normalization procedure that
scales raw gaze coordinates and pupil size metrics into
a consistent range. This ensures that outliers or abrupt
changes in fixation do not disproportionately affect the
downstream fusion process. By harmonizing the input
representations of these two modalities, the proposed
framework can better learn consistent embeddings during
the DCCA alignment stage.

The extracted features fgrg and fgvm are aligned in a
shared latent space using a Deep Canonical Correlation
Analysis (DCCA) network. The alignment is optimized
by minimizing the canonical correlation loss:

Leca = = corr(Ogxc, Opu ) (M

To refine the fusion process, an adaptive attention
mechanism dynamically adjusts the contributions of each
modality. The final fused feature representation is:

Ofusion = - Attel’ltiOl’lEEG . OEEG + ﬁ . AttentionEM . OEM
2)
where a and 3 are learnable parameters balancing the
contributions of EEG and eye movement features.
Finally, the fused features Ogygion are passed through a
fully connected network C for sentiment classification.
The predicted sentiment label Y is computed as:

Y/ = C(Ofusion) (3)

Rather than relying on simple weighted addition, our
attention mechanism uses a soft alignment strategy: each

latent representation Oggg and Ogy is first projected into
an attention space using a small multi-layer perceptron,
which outputs modality-specific attention scores. These
scores are then normalized via a softmax function
before multiplying each modality’s representation. This
approach allows the network to focus on salient features
within each modality and to suppress less informative
aspects, especially when facing noisy or incomplete
inputs.

IV. EXPERIMENTS

In order to validate the effectiveness and robustness
of our proposed Adaptive DCCA framework, we
conducted extensive experiments on two widely-used
multimodal sentiment analysis datasets, SEED-IV [10]
and SEED-V [12]. These datasets provide EEG
and eye movement data collected under controlled
emotional stimuli, making them ideal benchmarks to
comprehensively assess the capability of our model

in both subject-dependent and subject-independent
scenarios.
A. Dataset Description

The SEED-IV dataset contains four emotional

categories—Happy, Sad, Neutral, and Fear—with
physiological signals including EEG and eye movement
data collected during the experiment. SEED-V extends
this framework to five emotional states: Happy, Sad,
Neutral, Disgust, and Fear. Both datasets include
sessions recorded over multiple days to account for
variability in emotional responses.

B. Experimental Setup

For both datasets, we utilized EEG features extracted
using LSTM networks and eye movement features
processed by FCNs. These modality-specific features
were fused using the attention-based adaptive mechanism
in Adaptive DCCA.

C. Results on SEED-1V

The performance of Adaptive DCCA on SEED-IV
is summarized in Table I. For the subject-dependent
scenario, Adaptive DCCA achieved the highest mean
accuracy of 87.5% with a standard deviation of
10.2%, outperforming state-of-the-art methods such
as Bimodal Deep AutoEncoder (BDAE) (85.1%)
and Pyramidal Graph Convolutional Network (PGCN)
(82.2%). In the subject-independent setup, Adaptive
DCCA also demonstrated competitive performance,
achieving 70.7% mean accuracy compared to 73.7% for
PGCN, highlighting the robustness of our approach.
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TABLE I: SEED-IV Subject-Dependent

Method Mean Acc. (%) Std. Dev. (%)
Concatenation [13] 77.6 16.4
MAX [13] 60.0 17.1
FuzzylIntegral [13] 73.6 16.7
BDAE [14] 85.1 11.8
PGCN [15] 82.2 14.9
Adaptive DCCA 87.5 10.2

TABLE II: SEED-IV Subject-Independent

Method Mean Acc. (%) Std. Dev. (%)
DGCNN [16] 52.8 9.2
BiDANN-S [17] 65.6 10.4
BiHDM [18] 69.0 8.7
PGCN [15] 73.7 7.2
Adaptive DCCA 70.7 8.9
D. Results on SEED-V
Table III presents the results of experiments

on SEED-V. Adaptive DCCA achieved a mean
accuracy of 88.4% with a standard deviation of
7.3% in the subject-dependent scenario, outperforming
traditional DCCA (85.4%) and other baseline methods.
In the subject-independent setup, Adaptive DCCA
demonstrated its robustness with a mean accuracy

of 55.23%, showing competitive performance against
PGCN (61.78%).

TABLE III: SEED-V Subject-Dependent

Method Mean Acc. (%) Std. Dev. (%)
DCCA [9] 85.4 7.1
Adaptive DCCA 88.4 7.3

TABLE IV: SEED-V Subject-Independent

Method Mean Acc. (%) Std. Dev. (%)
PGCN [15] 61.78 8.59
Adaptive DCCA 55.23 10.87
The experimental results on SEED-V reveal
an  interesting  observation:  while  Adaptive
DCCA demonstrates superior performance in the

subject-dependent  scenario, it struggles in the
subject-independent  setting, achieving a mean
accuracy of 55.23%, lower than PGCN (61.78%).
This discrepancy suggests that eye movement signals
contribute effectively in subject-dependent experiments
but exhibit limited generalizability across subjects.

Unlike EEG, which captures intrinsic physiological
responses to emotions, eye movement patterns are
highly influenced by individual habits and visual
attention biases, making them less consistent across
different participants. The reduced effectiveness of eye
movement features in cross-subject settings highlights
the challenge of modeling visual attention variability.
Future improvements could involve domain adaptation
techniques or personalized feature normalization to
enhance the robustness of eye movement signals in
subject-independent sentiment analysis.

E. Confusion Matrix Analysis on SEED-V

To further evaluate the performance of Adaptive
DCCA, we analyzed the confusion matrices generated

during the experiments on SEED-V under the
subject-dependent setup. The confusion matrices
for EEG-only, eye movement-only, BDAE, and

Adaptive DCCA reveal important insights. EEG features
performed well in identifying Fear and Disgust, but
showed confusion in distinguishing Happy and Neutral.
Similarly, eye movement features were effective for
Fear but struggled with Sad and Disgust, resulting in
lower precision for these categories. BDAE, which
combines both modalities, demonstrated improvements
in classifying Neutral and Disgust but was unable to
fully leverage the complementary nature of EEG and
eye movement features.
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Fig. 2: Confusion matrices comparison for
multimodal emotion recognition on SEED-V dataset
(subject-dependent setting). Adaptive DCCA effectively
reduces confusion by adaptively weighting EEG and
eye movement signals.
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Adaptive DCCA, however, outperformed these
methods by significantly reducing misclassification
rates across all emotion categories. The dynamic
attention mechanism in Adaptive DCCA allowed the
model to prioritize the most informative features from
each modality, thereby enhancing overall precision
and recall. Notably, Happy and Neutral—categories
that were challenging for other methods—achieved
much higher classification accuracy, highlighting the
effectiveness of the adaptive fusion strategy. These
results demonstrate the robustness and adaptability of
Adaptive DCCA in integrating physiological modalities
for emotion recognition.

V. CONCLUSION

In this study, we introduced Adaptive DCCA, a
novel framework for multimodal sentiment analysis
that integrates EEG and eye movement signals through
an attention-based adaptive weighting mechanism.
The proposed framework ef- fectively addresses
the limitations of traditional DCCA by dynamically
weighting the contributions of each modality, resulting
in more robust and accurate feature fusion. Extensive
experiments conducted on SEED-IV and SEED-V
demon- strated the superiority of Adaptive DCCA
under both subject- dependent and subject-independent
conditions. Particularly, Adaptive DCCA achieved
state-of-the-art performance by sig- nificantly enhancing
classification accuracy and effectively reducing
misclassification rates compared to baseline methods.

Looking ahead, several directions can further
strengthen the capabilities of Adaptive DCCA. First,
incorporating additional physiological signals—such as
galvanic skin response (GSR) or photoplethysmography
(PPG)——could potentially yield a more comprehensive
picture of emotional states. Second, future work may
explore meta-learning or transfer learning approaches,
enabling models trained on one cohort of subjects to
better generalize to others, especially in the context of
variable eye movement patterns. Finally, a more detailed
investigation into modality-specific attention patterns
could reveal how attention weights shift in real time,
offering deeper insight into individual differences and
paving the way for personalized affective computing
solutions.

The results emphasize the practical value of
incorporating physiological signals, such as EEG and
eye movement data, into sentiment analysis. Notably,
our method opens avenues for numerous real-world
affective computing applications, including improved

human-computer interaction, adaptive user interfaces,
emotional state monitoring in healthcare, and im-
mersive virtual reality experiences. The demonstrated
effec- tiveness in handling physiological data highlights
potential extensions of Adaptive DCCA to other affective
computing tasks requiring multimodal fusion.
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