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Abstract—As technology trends towards automation, deep 

neural network (DNN) based methods become more and more 

desirable from a technological, economical, and societal 

standpoint. However, owing to the way that these black box 

technologies operate, it can be difficult to troubleshoot potential 

errors, especially when dealing with data that the human mind 

cannot intuitively understand. For this reason, the use of 

explainable artificial intelligence (XAI) is integral to obtaining 

interpretability and understanding of these systems’ techniques. 

The paper explores some of the known uses of XAI in Generative 

Adversarial Networks (GANs); i.e., in processing electro-optical 

(EO) and passive radiofrequency (Passive RF) data to achieve 

heterogenous sensor fusion. GANs are capable of generating 

realistic images, music text, and other forms of data, and the use 

of deep convolutional generative adversarial networks (DCGANs) 

to process such information provides “richer” corrective 

feedback from which the model can train from. Using the 

DCGAN approach, tone can provide visualizations from different 

types of neural networks and use them as a training source for 

the multiple visualizations input (MVI) DCGAN. The MVI-

DCGAN uses these visualizations in order to track the vehicle 

target and further differentiate between other overlay 

visualization data and the generated overlay input visualizations. 

The paper demonstrates multiple sources of visualization input 

from different neural networks for the training of the MVI-

DCGAN for a more robust training and directing the 

discriminator towards focusing on the P-RF aspects of the 

visualizations. 

Keywords—explainable artificial intelligence, heterogenous 

sensor fusion, GAN, EO, passive RF 

I. INTRODUCTION 

In the information age, there exists a large amount of data 
that can be used for any number of applications. How this data 
can be used is a question that entails factors such as 
determining the most appropriate approach, assessing if a 
traditional algorithm would be sufficient for the application, 
comparing if a neural network (NN)-based approach would be 
better, and deciding if the data requires preprocessing in order 
to meet the objective in question. For some applications that 
are less complex, traditional machine learning (ML) algorithms 
such as support vector machines (SVM), decision trees (DT), 
or k-nearest neighbors (KNN) would be more desirable than 
any class of neural networks.  But for more complicated 
applications, such as automated driving, or data that could be 

better understood by unsupervised learning methods, the use of 
NN-based approaches from deep learning (DL) might be worth 
the tradeoffs in terms of training data requirements. The use of 
DL is especially beneficial for heterogeneous sensor fusion, as 
different modalities might provide radically different 
information, but the upstream fusion (e.g., processing data at 
sensor collection) of both modalities means a greater reduction 
in uncertainty. 

When using DL-based approaches one of the major issues 
becomes the matter of transparency (e.g., of source data inputs), 
interpretability (e.g., of how algorithm computes), and 
explainability (e.g., of output results). Owing to the nature of 
how Deep NN learn, these models inherently become a black 
box algorithm. The lack of interpretability becomes an issue 
for both users and field experts, as unlike conventional 
algorithms, it’s difficult to understand the decision-making 
process of the black box approach. Decision trees use the 
CART (Classification And Regression Trees) algorithm, 
random forest algorithms use bagging and feature randomness 
when building each individual tree to try and create an 
uncorrelated forest by prediction, and KNNs use clustering [1]. 
Hence, it is possible for a human user to see how these 
traditional algorithms have reached their decisions. For 
example, a decision tree can be plotted for a random forest 
algorithm, showing what factors are relevant to the decision-
making process. Clustering via KNN can be visualized to look 
for outliers and demonstrates how the local nonlinear data is 
used for regression and classification. 

The stakes of mistakes a NN can make are not high on an 
academic level, but when used in situations where the 
consequences can be grave, such as automated driving, medical 
applications, or even financial applications; having at least 
some level of understanding and interpretability is important. If 
not for any safety reason, then for the purposes of design and 
training it is important to have interpretability. On the design 
end, it is important to choose appropriate training data, the 
composition of which determines how the model learns. If 
designed incorrectly, the model might be trained on features 
irrelevant to the model’s desired application but still perform 
well on the dataset in question. Having interpretability 
becomes even more important when the model does make 
errors, as it otherwise becomes difficult to troubleshoot a black 
box system’s incorrect decision.  
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The issue of the black box problem, however, will still exist 
if one commits to using a DNN based approach. In order to 
provide a level of interpretability and understanding, the 
implementation of explainable AI (XAI) methods will be 
integral. This paper presents our findings in the use of EO and 
passive RF data for the purposes of heterogenous sensor fusion 
via MVI-DCGAN and XAI methods, with respect to 
generating a fused P-RF and EO overlay.  

II. LITERATURE REVIEW 

A. EO/RF Sensor Fusion 

A desired application for DL is to accurately detect and 
track vehicle targets using EO and P-RF sensor inputs. The 
fusion of EO and RF data for the purposes of tracking has been 
used extensively in similar applications [2] [3] [4], but the use 
of passive RF data is more challenging to implement without 
conventional methods such as Doppler radar. While the 
research focus has traditionally been on active RF sensors, the 
use of P-RF data comes with logistical and economic benefits, 
as it requires less power, is considerably harder to detect than 
active RF methods, and requires less hardware.  

RF modalities excel in providing range, angular, and 
spectral resolution of collected information [5]. The benefits of 
combining RF data with higher spatial resolution of EO based 
sensors are extremely desirable for detection and tracking. 
There are several RF-based approaches that are used in 
applications such as tracking [6], proximity [7], localization [8], 
and detection [9]. Most EO modalities are intuitively easier to 
implement and for humans to understand owing to a human’s 
reliance on sight, such as full motion video (FMV) and infrared 
(IR). RF-based sensors can also provide repetitive coverage 
over a wide geographical area, and in doing so, can determine 
the precise distance and velocity of a target. 

B. Explainable AI 

With the increase in deep learning and NNs in the research 
or industrial applications, the importance of having 
interpretability and understanding of these models cannot be 
understated. As explainable AI is an emerging concept, there 
has yet to be any uniform adoption of interpretability 
assessment criteria for XAI. There are several criteria used to 
describe different approaches for providing explainability. 
These include (1) post and ante-hoc methods, which describe 
when the method itself is implemented in the model, (2) local 
or global, which describe what level of interpretability is being 
provided, or (3) model agnostic or model specific, which 
describe how versatile the method is. Some examples include 
Bayesian Rule List, which is an ante-hoc explanation, LIME 
(Local Interpretable Model-Agnostic Explanations) and SHAP 
(SHapley Additive exPlanations) which are model-agnostic 
explanations, and partial dependence plots, which are global 
and model-agnostic in nature.  

  The type of explanations desired and what types can be 
applied are dependent on the model and desired application. 
For image processing, visualizations can be highly desirable. 
Visualizations are a post-hoc XAI methods that include 
gradients, activation maximizations, deconvolutions, and 
decompositions. These techniques use tools such as generative 

models or saliency maps in order to determine activations 
produced on the last layer of a deep convolutional neural 
network (DCNN). From these activations, DCNNs can form a 
pixel-by-pixel mapping that highlights what factors provided 
the highest level of confidence in that decision, which then can 
be overlaid on top of the original sample. 

The explanation insights are different based on the 
application. In the case of visualization methods, heat maps 
and feature highlights provide a more user-oriented explanation 
that a human can understand. Visualization explanations are 
not restricted to users who have expert knowledge but are 
intuitive owing to the visual information being presented. In 
most cases, visualization insight is hard to quantify, though 
metrics such as Fréchet inception distance can be used to 
quantify similarities between different images. The other types 
of visual insights provided are more easily shown in empirical 
form, using algorithms such as LIME or SHAP, which include 
a comparison of what data sources are more relied upon on 
both local and global level, or to gain understanding as a 
human user as to what the model views. 

C. DCGAN 

In 2016, Bengio and LeCun  [10] designed a deep 
convolutional neural networks Generative Adversarial Network 
(DCGAN) using two training techniques: feature matching and 
minibatch discrimination. In doing so, the DCGAN enhances 
its diversity of the discriminate network when discriminating 
samples. The idea behind DCGAN essentially aims at 
increasing the complexity of the generator network, in order to 
input it into a high dimensional tensor and add deconvolutional 
layers to go from the projected tensor to an output range. These 
deconvolutional layers will expand on the spatial dimensions, 
whereas a convolution layer will decrease the input spatial 
dimensions. 

The DCGAN architecture presents a strategy for using 
convolutional layers in the GAN framework to produce higher 
resolution images. The development of DCGAN-based models 
therefore expands traditional GAN methods from multi-layer 
perceptron (MLP) into using a CNN structure; allowing the 
GAN to retain its ability to generate excellent data but 
incorporating the advantages of CNN feature extraction for 
image processing. The enhanced CNN provides a high-
resolution image generation for applications in anything from 
the medical to the robotics fields, or for the creation of Deep 
Fakes. 

There will always be tradeoffs when implementing new 
algorithm. DCGANs, much like the DCNNs they’re based on, 
require large amounts of data [11] and can also run into issues 
with overfitting [12]. As the models are neural network based, 
it becomes possible to use XAI methods, such as LIME [13], 
SHAP [14], and saliency maps [15]. Combating the issue of 
overfitting and inefficiencies can take a number of different 
forms. Some models work to avoid mode collapse by using 
implicit variational learning or manifold-guided training [16]. 
For the problem of limited data, the generation of simulation 
data [17] can also be used as a solution. For the issue of 
overfitting, limiting the generator’s samples to provide “richer” 
corrective feedback to prevent overfitting or counterfactual 
image generation [18].  

AFOSR grant FA9550-18-1-0287. 
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III. EXPERIMENT DESIGN 

This Section covers a discussion of previous research and 
the implementation of the explainable DCGAN for tracking 
targets from multi-modal data. The model’s objective in these 
experiments is the tracking and identification of different 
potential vehicle targets using EO and P-RF data. Finally, the 
steps taken for the development and experimentation of the 
modified DCGAN for fusion of data as FuDCGAN are 
established. 

A. The Escape Dataset 

In previous research, our research group had carried out 
heterogenous sensor fusion using a combination of P-RF and 
EO modalities using the ESCAPE dataset [19]. The ESCAPE 
dataset contains a large number of different scenarios and a 
variety of different sensors, including modalities such as 
acoustic and seismic.  

For the purposes of the scenarios and sensor data chosen, 
the three that were used in this research are designated as 
Scenarios 1, 2, and 3, which correspond to the dataset’s 
Scenarios 1, 2C, and 2D respectively. The number of vehicle 
targets between the three scenarios totals 10, and each scenario 
deals with a different number of targets. The overall purpose of 
the dataset is that all the targets are designed to “evade” 
detection, by employing a number of different tactics that 
incentivize the fusion model to use different modality data 
input. This approach comes with the benefit of thereby 
challenging any model or algorithm meant to differentiate 
between potential targets when engaging in tracking, as similar 
targets being moved in a manner that even human users might 
have difficulty in differentiating between with only visual 
information. The three scenarios all involve multiple vehicles 
entering and exiting a garage, with multiple vehicles of similar 
make and build as well as more visually different vehicle 
targets.  

 

Fig. 1. Scenario 1 overview.  

Scenario 1 has two total vehicle targets, both of which look 
visually similar to the other. For each of these scenarios, only 
one source of EO data was used to maximize the need for the 
model to utilize the RF data rather than ignoring the P-RF input. 
Vehicle #1 travels into the garage, which is easily observed via 
the EO input. As this happens, vehicle #2 travels into the 
garage from behind the tree line. In doing so, from the EO 
sensor’s point of view it is “hidden” due to visual obscuration 
that prevents the model from detecting its movements most of 
the time. Once vehicle #1 enters the garage, vehicle #2 then 

exits the garage, and the objective of the first scenario is to 
successfully determine when the “switch” is made. If the 
model incorrectly determines that the vehicle exiting as #1, 
then that means the model has failed and the vehicle has 
successfully “evaded” detection. 

 

Fig. 2. Scenario 2 overview.  

Scenario 2 is nominally more complicated. It has three 
vehicles and essentially follows the same pattern as Scenario 1, 
but only two of the three look visually similar. The difference 
is that rather than vehicle #1, which is visible, or vehicle #2, 
which is not possible to obtain at the video angle chosen 
switching in the garage, is that vehicle #3 that was parked in 
the garage the entire time. This makes it appear that vehicle #1 
enters and exits when in fact it is hidden inside of the garage. 
The DOF EO input will not be sufficient on its own to 
determine the difference between the three vehicles, as the 
source selected does not have access to all of the different EO 
sensors. 

 

Fig. 3. Scenario 3 overview.  

Scenario 3 is the most complicated of the three and chosen 
due to the complexity of the five vehicle targets, all traveling at 
different speeds and with different makes. Four of these 
vehicles arrive out of the front of the garage, while the fifth 
vehicle arrives from out of view, thereby making the tracking 
at the end of the video input, linearly speaking, extremely 
difficult to conduct with only the EO input for that time frame. 
The variable speeds displayed by the five vehicle targets also 
presents an additional dimension of complexity with respect to 
tracking as the vehicles that are similar in design will overtake 
the other at different points within the scenario, making 
tracking a challenging process for Scenario 3. 
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 While it is possible to implement tracking by including all 
EO sensor sources in the experiment design, the sensors chosen 
are only limited to one EO sensor and the three sources of P-
RF sensors. By purposefully limiting the most intuitive sensor 
that provides the more reliable data, the model is incentivized 
to rely on the other source of information it possesses. From 
our findings with implementing explainable AI research via 
Saliency Maps, covered in the next section, we inferred several 
behaviors that the maps indicated of the model’s behavior and 
decision-making process [20], which are detailed below. 

B. Saliency Map Activation Research 

The data is first preprocessed by combining dense optical 
flow for the EO data, and then creating histograms of the P-RF 
data [21], in the form of in-phase quadrature component data 
(IQ data). This method of preprocessing then combines the two 
sources of data into an overlayed view [20] for the purposes of 
implementing explainable AI via saliency maps. While it 
would be more ideal to split the two sources of data and then 
feed utilize them simultaneously, our research found that the 
fused view performed better, owing to the less impactful P-RF 
data. On its own, the P-RF data cannot be used effectively, 
performing too poorly for the saliency maps to show anything 
as the model is essentially guessing and therefore has nothing 
to show on the visualizations. The poor explainability of P-RF 
is to be expected, as the majority of the histograms are rather 
noisy with the exception of several events in which a visually 
noticeable change in the histograms occurs, with respect to 
entering and exiting the garage. 

While it is possible to implement visualizations of the 
discriminator and use the resulting discriminator visualizations 
as a source of data for the generator, the resulting input would 
be radically different than the fused overlay input. Likewise, it 
is important to ensure the data being fed into the generator and 
discriminator are different in nature as they would otherwise 
not be useful for the discriminator to train on, by virtue of the 
generated images looking nothing like the generated 
visualizations. By feeding visualizations input from different 
deep learning models that use the same overlay input, a level of 
stability when feeding the insights of other models is ensured.  

TABLE I.  INPUT MODEL VISUALIZATIONS 

Deep Learning Model: Samples per Scenario: F1 Score: 

Convolutional Neural Network (CNN) 374 
0.96 

Feed Forward Neural Network (FFNN) 372 
0.93 

 

Deep Neural Network (DNN) 374 
0.95 

 
Each of the three scenarios has 1120 samples of fused 

overlay input for each target, and the visualizations from the 
three different deep learning models for each scenario were 
used as the input. The visualizations for each of the models 
used were shuffled randomly, to ensure the training data’s 
integrity. While the model’s individual performances were 
different, as seen in Table 1, the observations and overall 
heatmaps were similar with respect to the trends portrayed.  

While the exact distribution of sample visualizations for the 
DCGAN isn’t as ideal, the FFNN model’s samples were 
chosen to be the smallest by two samples by virtue of the 

relatively higher performance of the CNN and the DNN. The 
added benefit of this approach is that it confirms a shared 
direction and coherence with respect to the features used. The 
visualization categories observed remained within the EO 
focused, RF Focused and Fusion Focused [20] variants, with 
no noticeable outliers. The visualization categories describe 
what types of information from the fused view demonstrates 
the most neuron activations. EO focused visualizations will 
focus solely on the target (vehicle), RF focused visualizations 
will focus on different parts of the histogram portions of the 
sample, while Fusion focused visualizations will tend towards 
both types of data. The trends to when the visualizations were 
used matched based on the target vehicle, focusing on EO 
focused visualizations primarily until it became impossible to 
visually locate the target (RF focused) or until similar targets 
were in range (Fusion focused).  

C. MVI-DCGAN 

First described in 2016, the implementation of a DCGAN 
[10] has led to the use of deep convolutional generative 
adversarial networks (DCGANs). DCGANs come with a 
variety of benefits design wise, having a relatively lower 
sampling cost, and having state-of-the-art performance in 
image generation. This, however, comes at the cost of being 
unable to calculate likelihood p model(s) as there are no 
modeled probability distributions, nor can latent variables be 
inferred from a sample. However, they come with a variety of 
different benefits, especially for the purposes of image 
processing. 

 

Fig. 4. MVI-DCGAN model overview.  

For the purposes of implementing explainable AI via MVI-
DCGAN, the choice of DCGAN provides a DL-based 
approach that is capable of synthesizing data and 
differentiating between the produced data. Noting that the input 
of the MVI-DCGAN model is based in the randomly shuffled 
visualizations of a CNN, FFNN, and DNN. The distribution of 
the input frames from different visualization sources was 
conducted at random, and to ensure that what differences there 
are in the visualizations from different sources are better 
distributed. These visualizations are then fed as the samples for 
the discriminator, with the generator producing their own 
samples to input into the discriminator, as seen in Figure 4.  

Once the MVI-DCGAN receives these visualizations, it 
begins the adversarial training. The input overlay visualization 

data are read and then resized into 9696 images which are 
then fed into the discriminator. Both the discriminator and 
generator are CNNs. The discriminator and generator both 
have five layers, with the discriminator dense layers increasing 
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from 32 to 512. The generator uses the Tanh activation 
function, while the discriminator uses sigmoid. In order to gain 
visualizations from MVI-DCGAN, the models are saved and 
used to provide neuron activations. 

The performance of the MVI-DCGAN was evaluated using 
the Fréchet Inception Distance (FID), which measures the 
difference of distributions of feature vectors for different image 
datasets. A larger FID score indicates larger differences and a 
poorer performance by the generator. Conversely, a smaller 
FID score indicates a greater performance by the generator 
with respect to generating similar images. When it comes to 
applications that are image based, such as saliency maps and 
generated images, measuring the quality can be difficult, not to 
mention can be inherently subjective [22]. For the purposes of 
these experiments, different FID scores were evaluated with 
respect to each of the 10 total targets across the three scenarios 
used, as detailed in Table 2. 

TABLE II.  MVI-DCGAN  GENERATOR FRÉCHET INCEPTION DISTANCE 

(FID) SCORES 

Scenario: Target: FID Score: 

Scenario 1 

S1 Vehicle #1 57.29 

S1 Vehicle #2 
69.85 

 

Scenario 2 

S2 Vehicle #1 63.47 

S2 Vehicle #2 55.89 

S2 Vehicle #3 65.39 

Scenario 3 

S3 Vehicle #1 61.07 

S3 Vehicle #2 94.73 

S3 Vehicle #3 77.59 

S3 Vehicle #4 64.72 

S3 Vehicle #5 89.61 

 
As seen in Table 2, the most difficult scenario for MVI-

DCGAN to process was scenario 3. The scenario contains the 
most moving vehicles, with a total of five, and entails a large 
number of vehicle shuffling between the positions of the other 
vehicles. The similarity of the vehicles in terms of make and 
build are inherently removed by virtue of the preprocessing, as 
dense optical flow focuses on the target vehicle’s movement 
more than its appearance. Given the movements for different 
vehicles, the poorest performance by the generator was with 
respect to vehicles 2, 3, and 5, while vehicles 1 and 4 
performed comparable to the other vehicles in scenarios 1 and 
2. Scenario 3 was also the only major outlier in which lower 
FID didn’t correlate with a higher F1 score. Scenarios 2 and 1 
are similar in terms of vehicles and movements, though the 
highest FID score and thus the poorest performance between 
the two would be Scenario 1’s Vehicle #2. The visualizations 
for Scenario 1, Vehicle#2 are more focused on P-RF view 
visualizations and fused view visualizations but have less EO 
view visualizations.  

From the scenarios and vehicle targets tested, Scenario 2, 
Vehicle #2 maintained the best FID score. As seen above in 
Figure 2, the generated visualizations display all three 
categories of visualizations (EO focused, RF focused, Fusion 
focused) for the scenario. While the quality of the generated 
image is only befitting of a generated image with an FID score 

of over 50, the visualizations remain focused on their 
corresponding frames. It is clear from all of the generated 
visualizations that the features learned were more focused on 
the P-RF and Fusion view than the EO views. The majority of 
the inputs and generated visualizations for scenario 2 shown 
also correspond with the different model’s visualizations, 
focusing on the same types of neuron activation patterns. 

 

Fig. 5. Assorted generated overlay visualizations from the MVI-DCGAN 

Generator (Scenario 2, Vehicle #2) at different timeframes for Scenario 2.  

While the results of the highest performing MVI-DCGAN 
generator’s visualizations have a number of different variations, 
the discriminator’s ability to differentiate between the 
generated and original samples proved to be more interesting. 
To determine if the MVI-DCGAN’s training would be 
effective on the original overlayed EO/P-RF data, where the 
original overlay inputs were also used to test the 
discriminator’s performance. By using the discriminator and 
saliency map visualization on its last DL layer, it becomes 
possible to gain insights on the input image and the neuron 
activations from that generated image. 

 

Fig. 6. Comparison of overlay input and visualization of the MVI-DCGAN 

Discriminator (Scenario 2, Vehicle #2) . 

From Figure 6, it can be inferred that the discriminator 
focuses on the P-RF data for determining if an image is 
generated or a part of the training data. From the resulting 
visualizations, it appears that the discriminators neuron 
activations have an almost inverted insight into the overlay 
input, which even goes as far as to exclude the vehicle target 
#2, despite the vehicle in the overlay being its target. From the 
fusion neuron activations, it can be imitator has learned to 
focus on the P-RF features of the overlays and, for the 
purposes of this dataset, used that information in order to better 
differentiate from the generator’s inputs. The other frames for 
tracking vehicle #2 of the scenario also show similar levels of 
inversion, as it appears that the EO aspect of the visualizations 
becomes less reliable for the discriminator, and thus aren’t the 
focus features of these visualizations.  

IV. CONCLUSION 
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In order to improve the fusion and use of P-RF and EO data, 
this paper introduces Multiple Visualizations Input (MVI)-
DCGAN. The proposed MVI-DCGAN uses multiple sources 
of visualizations from other models that have been trained with 
fused overlay EO/PRF data, in order to utilize features to 
differentiate them from generated visualizations. The initial 
experimentation shows that while the model’s F1 score 
corresponds to the FID performance of the trained model, it is 
not always the case. When used to determine what features the 
discriminator focuses on, there was an overwhelming focus on 
the P-RF aspects of the overlay input, going as far as to ignore 
the majority of the target vehicle. From these results, it can be 
inferred that the MVI-DCGAN generator’s details with the 
edges of the vehicle target as well as the P-RF aspects of the 
data play the largest parts in terms of differentiating between 
generated image inputs as well as for differentiating between 
different targets.  

While the discriminator’s insights were of interest, the 
MVI-DCGAN’s generated images could be improved in terms 
of FID score. In future research, a focus on increasing the 
sample size will be of importance, as will the number of 
models used for the input visualizations. Additional methods of 
providing explainability, such as LIME or SHAP, would be 
desirable as would additional metrics for evaluation of the 
generator’s performance such as Inception Score (IS) or Rapid 
Scene Categorization. The results of the MVI-DCGAN were 
sufficient to train the discriminator on P-RF features of the 
overlay visualizations. The primary contributions of the MVI-
DCGAN approach are the novel usage of other model’s 
visualizations to “steer” the discriminator towards the usage of 
certain features and enforcing that focus with adversarial 
training. Our previous research has shown that for the purposes 
of vehicle tracking and classification, the overlay image inputs 
are sufficient for conventional and deep learning-based 
approaches, and MVI-DCGAN has demonstrated the 
possibility of learning to better rely on desired features with 
adversarial training. 
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