
RECONSTRUCTION OF 3D TUBULAR STRUCTURES FROM CONE-BEAM PROJECTIONS

Jia Li∗

Dept. of Elect. and Comp. Engrg.
Oakland University

Rochester, MI 48309, USA

Laurent D. Cohen

CEREMADE
University Paris - Dauphine
75775 Paris cedex 16, France

ABSTRACT

A new method of reconstructing three-dimensional (3D) tubular
structures from cone-beam projections is proposed in this paper.
Minimal path method is applied to detect 2D tubular structures in
the cone-beam projections. The extracted 2D information are fused
to design a weight function over the 3D volume so that minimal path
method can be applied again to extract centerlines of 3D tubular
structures. The validity of the proposed weight function relies on
the sparsity of 3D images containing tubular structures. The pro-
cedure of estimating the radius of 3D tube from 2D projections is
also described. The proposed method requires neither cone-beam
reconstruction, nor tree matching, one of which is usually necessary
in the existing reconstruction methods. The method is robust to
small motions between different projections.

Index Terms— Tubular structures, cone-beam, minimal path

1. INTRODUCTION

Reconstruction of three dimensional (3D) tubular structures from
multiple cone-beam projections has important applications in medi-
cal image analysis. For example, the extraction of 3D coronary ar-
teries in the analysis of X-ray coronary angiographies [1], and the
intracerebral vascular reconstruction in neurosurgeon practice [2],
are both concerned with reconstructing 3D blood vessels from cone-
beam projections. Using a digital flat panel, cone-beam projections
are usually obtained in a rotational acquisition mode with a fixed step
in rotational angle. A few projections can be selected from the whole
sequence for the reconstruction task. For example, in coronary arter-
ies reconstruction, the projections corresponding to the same cardiac
time are selected such that a static 3D reconstruction is possible.
Motion estimation can be performed after the static reconstructions
at different cardiac time are obtained. We are mainly concerned with
static reconstruction from a few projections in this paper, so the issue
of motion estimation will not be discussed, although it is one of the
main tasks in quantitative coronary analysis.

The existing reconstruction methods can be classified into two
categories according to whether it requires 3D volume reconstruc-
tion or not. Methods in the first category usually perform cone-
beam image reconstruction, then apply 3D segmentation to extract
the tubular structures [3]. For general 3D cone-beam reconstruc-
tion, most common non-iterative algorithms are based on the back-
projection formula proposed by Feldkamp [4]. Although filtered
back-projection reconstruction is faster than iterative reconstruction,
the resulted images usually contain sever artifacts due to the over
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simplified line-integral model. Iterative cone-beam reconstructions
claim better reconstruction quality, but suffer from high computa-
tional cost. After 3D volume is reconstructed, tubular structures can
be extracted using minimal path method [5]. Li and Yezzi proposed
to represent 3D tubular structure as a 4D curve to incorporate radius
information such that a global minimizing 4D path can be a com-
plete solution to the reconstruction task [6]. The methods that do not
require 3D cone-beam reconstruction usually first perform 2D seg-
mentation in each projection to extract 2D centerlines, then perform
tree matching over the trees from different projections to reconstruct
3D tubular structures. For example, in [2], Bullitt et al addressed the
specific problem of reconstruction of 3D curves from a pair of 2D
curves in the presence of error. In [1], Blondel et al performed mul-
tiocular matching to build correspondences between the centerlines
of different projections. The approach developed by Jandt’s group
also falls into this category [7]. When processing 2D projections,
each pixel is assigned a rank to indicate its likelihood of being inside
a blood vessel. Then 2D ranking functions of different viewing an-
gles are paired to form a weight function of the volume that is used
in 3D centerline extraction. However, the issue of radius estimation
is not addressed in Jandt’s work.

In this paper, we present a reconstruction method, which extracts
both the centerlines and radii of 3D tubular structures. The method
does not require cone-beam reconstruction, so it belongs to the sec-
ond category discussed above. 2D centerlines in each projection are
first extracted using minimal path method. Then the distance map
corresponding to the distance between pixels and 2D centerlines is
computed for each projection. A 3D weight function is obtained
by fusing the distance maps of all the projections. Finally 3D center-
lines are reconstructed from the 3D weight function via minimal path
method, and radii at discrete centerline points are estimated from the
size of 2D tubular structures. Our contribution to the field is the in-
troduction of a new weight function for minimal path segmentation,
which exploits the sparsity of tubular structure images, as well as a
low cost radius estimation procedure.

The remainder of this paper is organized as follows. In Section
2, minimal path method and tubular structure detection based on op-
timally oriented flux are briefly reviewed. Section 3 details the 3D
weight function design and radius estimation. In Section 4, the ex-
perimental results with simulated coronary data sets are presented
and discussed. We conclude the paper in Section 5.

2. MINIMAL PATHS AND TUBULAR STRUCTURE
DETECTION

2.1. Minimal Path

Minimal path, also called geodesic, is a path connecting a starting
point and an ending point that minimizes the total cost accumulated
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along the path. Let γ : [0, 1] → Ω be a smooth curve, the cost
functional can be regarded as a weighted length of γ and expressed
as

L(γ) =

Z 1

0

W (γ(t))‖γ′(t)‖dt (1)

where γ′(t) is the derivative of γ, and W is a weight function defined
on the domain Ω that can vary with applications. Using this setting,
the solution to the minimal path problem γ∗ is a global minimizer of
the weighted length,

γ∗ = argmin
γ∈P (xs,xe)

L(γ) (2)

where xs and xe represent the starting and ending points of the path,
and P (xs, xe) is the set of all the paths between xs and xe.

In computer vision community, minimal path method has been
applied to image segmentation, especially the centerline extractions
of tubular structures, such as roads and blood vessels. For this kind
of application, weight function is usually designed such that the re-
gion inside the tubular structures has a small value relative to the
background or other objects. Therefore the optimizer prefers the
path passing through tubular structures to the solutions that pass
through background.

To solve minimal path problem, minimal distance map associ-
ated with the starting point xs must be computed. The minimal dis-
tance map Uxs(x) is a function over the image domain Ω, whose
value equals the weighted length of the minimal path connecting
points xs and x, i.e.

Uxs(x) = min
γ∈P (xs,x)

L(γ) (3)

where P (xs, x) is the set containing all the possible paths between
xs and x, and x ∈ Ω. Uxs(x) satisfies Eikonal equation ∇Uxs =
W , which can be solved by different schemes after discretization.
An efficient non-iterative algorithm for solving the equation is fast
marching algorithm [8]. We have applied fast marching algorithm to
compute minimal distance map in both the 2D and 3D centerline ex-
tractions. Once the minimal distance map is computed, minimal path
can be obtained by gradient descent starting from the ending point
xe. Fig. 1 shows a 2D cone-beam projection and the 2D centerlines
extracted from it.

(a) A cone-beam projection (b) Extracted 2D centerlines

Fig. 1. A cone-beam projection and the associated 2D centerlines
γ2D.

2.2. Tubular Structure Detection

When applying minimal path method to solve image segmentation
problem, the difficult task is to design a weight function W such

that the desired features can be represented by the minimizing curve.
In case of tubular structure segmentation, the weight function W
should incorporate the information from tubular structure detection.
Such kind of detection aims at detecting the presence of tubular
structures as well as estimating local orientation and size of the struc-
ture. The detectors that have been proposed include Hessian based
filters and optimally oriented flux (OOF). Hessian based filters have
difficulties when there are other objects adjacent to the tubular struc-
ture. To overcome this drawback, Law and Chung introduced OOF,
which estimated the structure orientation by finding a projection axis
on which the projected gradient flux is minimized [9]. The advantage
of OOF is that its performance is not disturbed by the adjacent ob-
jects. In [6], Li and Yezzi proposed to represent a tubular surface as
the envelope of a family of spheres with continuously changing cen-
ter points and radii, and developed two different 4D weight functions
which can ensure the sphere with the desired radius has lower weight
than those spheres with inaccurate radii. The 2D centerline extrac-
tion in our approach has adopted a 2D version of Li and Yezzi’s
method, which allows simultaneous extraction of centerline and ra-
dius. A drawback of the method is that it requires user inputs of start
points and end points of tubular structures. The key point detection
technique [10] can be incorporated to remove the requirement of end
points, but hasn’t been implemented by this time.

3. FROM 2D CONE-BEAM PROJECTIONS TO 3D
WEIGHT FUNCTION

The first step in our approach is to process each cone-beam pro-
jection to extract 2D centerlines and estimate local thickness of the
projected tubular structures. After that, 3D centerline reconstruction
and radius estimation are done sequentially. As mentioned in Sec-
tion 1, our weight function for 3D centerline extraction is computed
from centerlines in 2D projections. So the focus of this section is
to design a 3D weight function using the extracted 2D information.
Table 1 lists the notations that will be used in our discussion. Fig. 2
illustrates the physical meanings of these notations.

Table 1. Notations
Notations Descriptions
x a point in the 3D field of view
Si radiation source location of the i-th

projection
proji the i-th projection operator
γ3D centerlines of the 3D tubular structure
γ2D

i 2D centerlines in the i-th projection,
equivalent to proji(γ

3D)
dγ2D

i
Euclidean distance map associated with

γ2D
i , defined over the i-th projection

3.1. Weight Function Design

Minimal path method relies on proper design of weight function to
obtain meaningful solution. Based on the information extracted from
2D projections, we are interested in forming a 3D weight function
suitable for minimal path method to extract centerlines of 3D tubular
structures. Due to the nature of minimal path, the desired weight
function should have small values inside the tubular structure, and
lowest value on the centerlines.
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Fig. 2. Illustrations of notations.

For each 2D projection image, we first compute the distance map
associated with the extracted centerlines. Using the i-th projection
as an example, the map is defined as a pixel’s Euclidean distance to
γ2D

i , i.e.

dγ2D
i

(proji(x)) = min
y∈γ2D

i

‖proji(x) − y‖, (4)

where proji represents the i-th projection operator, and γ2D
i is the

2D centerline extracted from the i-th projection.
Based on the distance function dγ2D

i
, we propose a weight func-

tion
W (x) = max

i
(dγ2D

i
(proji(x))), (5)

for 3D centerline extraction. We claim that W (x) has the following
properties:

1. ∀x, W (x) ≥ 0.

2. ∀x ∈ γ3D , W (x) = 0.

3. The set X0 = {x : x /∈ γ3DandW (x) = 0} is very small if
the 3D volume containing tubular structures is sparse.

By sparse image, we refer to images where background pixels/voxels
are dominant. For example, in the X-ray coronary angiography, the
pixels in vessel regions are about 5-10% of all the pixels in a 2D
projection. In terms of the 3D volume to be reconstructed, the voxels
in vessel regions are about 0.04-0.1% of the total number of voxels.

Proof

1. This property is inherited from the nature of the distance func-
tion dγ2D

i
.

2. x ∈ γ3D ⇒ ∀i, proji(x) ∈ γ2D
i ⇒ ∀i, dγ2D

i
(proji(x)) = 0

⇒ W (x) = 0.

3. W (x) = 0 implies that proji(x) ∈ γ2D
i ,∀i. If x /∈ γ3D ,

proji(x) ∈ γ2D
i ,∀i is an event that is unlikely to occur due

to the sparsity of the image, especially when the number of
projections used in reconstruction is larger than 2. For a
point x /∈ γ3D , the event proji(x) belongs to γ2D

i occurs
if and only if x belongs to the surface formed by Si and
γ3D . We can assume the probability of this event is less

S

2D

γ 3D

x

proj(x)

A

B

D

γ

Fig. 3. Estimation of 3D tubular structure’s radius.

than a small constant c for all i due to the sparsity of the
volume. The value of c varies with the level of sparsity. In
simulated data that we have tested, c is less than 0.1. It’s
also reasonable to assume that the event that proji(x) belongs
to γ2D

i is independent to the event that projj(x) belongs to
γ2D

j , for i 	= j. Let K be the number of projections used
in reconstruction, the probability that proji(x) ∈ γ2D

i ,∀i
or W (x) = 0 is less than cK . In other words, the size of
the set X0 = {x : x /∈ γ3DandW (x) = 0} is less than
Nx · Ny · Nz · cK , where Nx, Ny and Nz are the size of the
three dimensions of the volume.

We use Fig. 2 to illustrate the argument above. Fig. 2 shows two
3D points, x ∈ γ3D and x′ /∈ γ3D . Because x′ is in the line formed
by Sj and x, projj(x

′) equals projj(x), and belongs to γ2D
j , which

implies dγ2D
j

(projj(x
′)) = 0. However, due to the sparsity, x′ is not

in any line formed by Si and a point in γ3D . So proji(x
′) does not

belong to γ2D
i , which implies dγ2D

i
(proji(x

′)) > 0 and W (x′) > 0.

These properties of W (x) can assure that it achieves minimum
value along γ3D and larger values out of γ3D , which subsequently
assures the accurate extraction of 3D centerlines of the tubular struc-
tures in sparse images. The existence of the set X0 usually does not
have an impact to the 3D centerline extraction because X0 /∈ γ3D .
As long as the starting point provided by the user is in γ3D , the
points in X0 will not be extracted by the minimal path solver. In
real practice, a small positive constant ε is added to W (x) to prevent
loops in the path.

3.2. Radius Estimation

We estimate the radii of 3D tubular structure from the radii extracted
in 2D projections. Fig. 3 shows the general relationship between
the thickness of the 3D tubular structure and the radius of its 2D
projections. S is the location of radiation source. For a point x in
the 3D centerline γ3D , its projection proj(x) is on the 2D centerline
γ2D . A and B are two boundary points that form a segment passing
through proj(x) and perpendicular to γ2D . The three points, S, A
and B, define a plane that intersects the 3D tube.

Let the radius of the tube at x be r. The distance d(S, x) is
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(a) Projection 1 (b) Projection 2

(c) Projection 3 (d) Projection 4

Fig. 4. Cone-beam projections used in reconstruction.

usually much larger than the value of r. So line SA and line SB
bounding the tube at x are near parallel. Under the assumption of
parallelism, the shortest distance between the two lines at x, repre-
sented by D, can be regarded as the diameter of the tube. The value
of D can be calculated from the location of S, x, A and B. If the
assumption of parallelism doesn’t hold, r can still be estimated via a
general procedure, which involves a little bit more computation.

4. RESULTS

We present the results of tubular structure reconstruction using the
proposed method in this section. The method has been tested over
simulated data to quantify the accuracy of the results.

To generate the simulated data, blood vessels were constructed
from binary 3D coronary trees and embedded in a 512 × 512 × 332
volume image. Fig. 5 (a) shows the simulated coronary arteries. The
volume image was projected to produce a series of cone-beam pro-
jections of size 800 × 800 to simulate rotational angiography. The
projection operator is a distance driven operator. Four projections,
with rotational angle at 0◦, 30◦, 60◦ and 90◦, have been selected
as the input to the reconstruction algorithm. They are shown in Fig.
4. After extracting the 2D centerlines in these projections, the 3D
weight function is computed and fed to minimal path method to ex-
tract 3D centerlines. The result is shown in Fig. 5 (b).

We quantify the accuracy of minimal path solution using a sim-
ple metric. Let γ3D = {p1, p2, . . . , pM} be the true centerline and
γ∗ = {v1, v2, . . . , vK} be the minimal path solution. For each point
vi ∈ γ∗, we find its two nearest neighbors in γ3D and compute the
distance between vi and the line formed by the two nearest neigh-
bors. The resulted distance is regarded as the error of γ∗ at vi. The
error of γ∗ is obtained by taking average of this error over the whole
curve. It should be noted that curve smoothness, which is also an
important factor in fidelity quantification, cannot be measured with
this metric.

(a) Simulated coronary arteries
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(b) Extracted centerlines

Fig. 5. Reconstruction of simulated 3D coronary trees.
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To test the robustness of the proposed method, random transla-
tions have been added to the vertical direction of the four projections
to simulate the motion caused by imperfect synchronization in car-
diac time. A standard Gaussian was sampled and multiplied with
different values of σ to generate different levels of random motions.
Table 2 shows a snapshot of such generated motions in vertical di-
rection. Applying the listed motions, we got five minimal path solu-
tions corresponding to σ = 0, 0.5, 1, 2, 4, separately. The errors of
these solutions are recorded at the bottom of Table 2. Fig. 6 com-
pares one of the 3D centerlines extracted in the experiment of σ = 4
with the ground truth. As indicated in Table 2, the error of the min-
imal path solution equals 1.9186 pixels when σ = 4. These results
demonstrate that the proposed method is not very sensitive to small
motions in vertical direction.

Table 2. Simulated different levels of random motions and recon-
struction errors in pixels.

Motions in vertical direction (pixel)
σ = 0 σ = 0.5 σ = 1 σ = 2 σ = 4

Proj 1 0 -0.5732 0.3273 -1.1766 4.2671
Proj 2 0 0.5955 0.1746 4.3664 0.2371
Proj 3 0 0.5946 -0.1867 -0.2728 -0.3826
Proj 4 0 -0.0188 0.7258 0.2729 -3.3294
Error 0.9954 1.2906 1.2866 1.3623 1.9186

Fig. 6. One of the 3D centerlines extracted when σ = 4. The blue
dots represent the ground truth, while the red line is the minimal
path solution.

5. CONCLUSION

In this paper, a new method for static reconstruction of 3D tubular
structures from cone-beam projections has been presented. The spar-
sity of tubular structures is exploited to design a 3D weight function
for the extraction of centerlines by minimal path method. The fea-
sibility of the method has been evaluated over simulated data sets.

The results show that the method can achieve fairly good accuracy
when the cone-beam projections are disturbed by small motions in
the vertical direction. Current version of the method requires both
start points and end points of the tubular structure as inputs. In the
future, a minimal path method with key point detection technique
can be implemented to remove the requirement for end points.
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