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Abstract—We present an adaptive motion model for tracking the 
movement of smartphone user by using the motion sensors 
(accelerometer, gyroscope and magnetometer) embedded in the 
smartphone. A particle filter based estimator is used to 
seamlessly fuse the adaptive motion model with a WiFi based 
indoor localization system. The system applies Gaussian process 
regression to train the collected WiFi received signal strength 
(RSS) dataset, and particle filter for the estimation of the 
smartphone user’s location and movement. Simulations were 
conducted in MATLAB to provide more insights of the proposed 
approach. The experiments carried out with an iOS device in 
typical library environment illustrate that our system is an 
accurate, real-time, highly integrated system. 

Keywords—WiFi RSS, indoor localization, Gaussian process 
regression, particle filter, smartphone, motion sensors, adaptive 
motion model 

I. INTRODUCTION 
      Indoor localization is a key component to many location 
based services, such as patient monitoring in hospitals, tour 
guiding in museums or spot finding in parking lots. As Global 
Positioning System (GPS) lacks the ability to function indoor, 
people are looking for other solutions to solve the indoor 
localization problem. In recent years, WiFi received signal 
strength (RSS) based location fingerprinting technique are 
attracting more and more interest for indoor localization, as 
they can provide good accuracy with no modification to the 
infrastructure. But WiFi RSS has the problem of signal 
fluctuation due to the fact of multipath fading in indoor 
environment. To meet the uncertainty of signal fluctuation, 
many probabilistic methods have been proposed. The state-of-
the-art is the Bayesian filtering technique, implemented as 
particle filter.  

      Particle filter consists of two components: a measurement 
likelihood model and a motion model. In [1], Ferris et al 
propose an algorithm to construct the measurement likelihood 
model using Gaussian process regression during the offline 
survey phase. In the online localization phase, they apply 
particle filter to determine the target location. In order to not 
only locate the target in one spot, but also track the target 
movement, they develop a motion model to update the 
particles’ coordinates on the map. Limited by using only WiFi 
signal, they adopt a naive conditional probabilistic motion 
model, which does not unleash the total power of the particle 
filter. 

      As the smartphones are equipped with more and more 
different sensors, the future of localization and tracking system 
will most likely evolve towards systems that are able to fuse 
the information provided by multiple sensors in a mobile 
device. However, most of the existing localization systems 
nowadays either lack the ability to process the multisensory 
integration problem or rely on data collected from separated 
MEMS sensors and WiFi signals sniffed from a mobile handset 
[2]. The localization is performed by post-processing the data 
from different sensors on a laptop instead of real-time 
processing on a smartphone.  

      In our previous work [3], we adapt the Gaussian process 
modeling of WiFi RSS and particle filter based localizer to 
smartphone platform and develop an iOS app called WiFi 
iLocate. In this paper, we investigate the motion sensors 
embedded in the smartphone. Currently, smartphones are 
equipped with various low cost motion sensors, such as 
accelerometer, gyroscope and magnetometer. The localization 
technique based on them is called pedestrian dead reckoning 
(PDR). However, due to the drifting nature of the motion 
sensors, PDR could only achieve limited accuracy and the 
localization error will accumulate in the long run. To overcome 
the problem, Li et al [4] applied particle filter to fuse PDR with 
indoor map information: In each particle propagation step, the 
algorithm checks whether the particles ended into obstacles or 
cross the walls. If they did, their weights are set to zero and get 
eliminated in the resampling step. This approach greatly 
improves the PDR based indoor localization performance but 
requires extra infrastructure information and detailed modeling 
of the indoor map.  

      Inspired by the previous study trying to combine the WiFi 
based indoor localization with PDR [5] [6]. We developed an 
adaptive motion model by fusing the data provided by motion 
sensors embedded in smartphone. This motion model is 
incorporated with a Gaussian process regression based WiFi 
RSS model into the particle filter framework.  

      Specifically, we make the following contributions: By 
carefully examine the information provided by various sensors, 
we are able to fuse the data effectively, and process the 
multisensory integration problem in real time. To the best of 
our knowledge, our upgraded iOS app WiFi iLocate is the first 
one to achieve accurate, highly integrated indoor localization 
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by seamlessly leveraging information from WiFi and motion 
sensors on smartphone. 

The paper continues as follows: In Section II, we first give 
a brief overview of our previous work. Then we describe the 
adaptive motion model and how it can improve the particle 
filter based location estimator. In Section III, simulation is 
conducted in MATLAB to provide more insights of the 
algorithm. The upgraded iOS application and field tests are 
presented in Section IV. Finally, we give a conclusion and 
future plan in Section V. 

II. SYSTEM SETUP 
The workflow of WiFi iLocate is presented in Figure 1. 

During the offline training phase, we first import the floor plan 
into the system. Then we can set the survey points on the 
screen and scan WiFi around the indoor environment. The 
scanned RSS values and corresponding BSSIDs are stored in a 
training dataset and preprocessed through Gaussian process 
regression modeling. The detailed procedure of Gaussian 
process regression can be found in [1] [3].  

After the offline training phase, we are ready to perform the 
online localization and tracking by pressing the “Locate” 
button on the screen. When the localization task initiates, the 
smartphone starts scanning the WiFi RSS. Particle filter is 
initialized through KNN method, which searches for K closest 
matches of known locations in signal space from the offline-
built dataset. The initial estimated location is acquired by 
averaging these K location candidates. It served as the starting 
point for all the particles. Next, the particles start to move 
randomly, as we apply a random walk motion model for 
particle propagation. When the particles are in motion, 
Gaussian process model is used to continually update the 
weight of each particle. After the particle weights get updated, 
we perform resampling to update the particle locations. The 
weight of each particle is treated as a probability where this 
particular particle is chosen to be the estimated location. In 
such a way, those particles with higher weights are picked 
more frequently than others, resulting in the elimination of 
wrongly moved particles and correctly tracking of the 
smartphone location. Figure 2 is the snapshots of our WiFi 
iLocate system [3]. The left-hand side shows the survey points 
during offline training phase, and the right-hand side shows the 
online localization result. 

Import Floor Plan

Set Survey Points

Scan WiFi

Store in Dataset

Preprocess

Offline Phase

Press “Locate”

Initialization

Localization
& Tracking

Online Phase  
Figure 1: WiFi iLocate workflow [3] 

 
Figure 2: Snapshots of WiFi iLocate app [3] 

Since we apply a simple random walk model to control the 
particle movement, we need a large amount of particle to reach 
sufficient accuracy, as the location estimation fully relies on the 
resampling step during the online localization [3]. We are 
hoping that some of the particles will randomly hit the right 
spot and others will be eliminated. If we have enough particles, 
it is working for most of the time. However, there’re cases 
when particles can be fooled to a wrong place. We will 
demonstrate this in Section III. 

In order to fully solve the problem, we develop an adaptive 
motion model to better control the particle movement. 

A. Adaptive motion model 
A motion model enables the prediction of the smartphone 

user’s movement based on his current location. It is usually 
represented by the conditional probability 1( | )t tp x x+ , where 

tx  is current state of the particle and 1tx +  is the next state. In 
order to track the user in real time, it is important to develop a 
motion model providing accurate estimation of his actual 
movement. We present three steps adaptive motion models 
with the help of motion sensors embedded in the smartphone.   

      (1) Stage transition detection 

      We define two stages for particles, standing and walking. 
Initially, all particles stay in the standing stage. We perform 
stage transition detection based on data collected from 
accelerometer. 

      When the user is standing still, it is expected that their 
mobile device will register little acceleration. Therefore, the 
standard deviation in the magnitude of acceleration is selected 
to detect the stage transition. It tells whether the particle to stay 
or move. If aσ < 0.01, it means that the user is standing still in 

a location, thus the particle’s movement will be limited in a 
small circle with center in the previous location. If aσ  ≥  

0.01, however, it is not sufficient to ascertain that the user is 
walking. For example, user hands’ sudden movement could 
result in a larger acceleration. Thus, we exploit the repetitive 
nature of walking. 

      Figure 3 shows the acceleration data recorded by a 
smartphone carrying by a walking user. We can see that the 
acceleration data exhibits a highly repetitive pattern. This 
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pattern arises due to the fact of rhythmic nature of walking. In 
order to determine whether the user actually enter the walking 
state, we calculate the auto-correlation of the acceleration 
signal ( )a n  for lag τ  at the thm  as follows [7]: 

                                                                                                  (1)                      

 

where ( , )kµ τ  and ( , )kσ τ  are the mean and standard 
deviation of the sequence of samples from ( )a k  to 

( 1)a k τ+ − . 

 
Figure 3: User acceleration during walking 

      If the user is walking then the auto-correlation will spike 
the periodicity of the walker. We define ( )mψ  as the 

maximum of the auto-correlation between min 30τ =  and 

max 60τ = . If both aσ ≥ 0.01 and ( )mψ ≥  0.8 are 

satisfied, then we set the state equals walking. 

      (2) Step counting and stride estimation 

      Once we have determined that state is walking, step 
counting and stride estimation are performed to calculate the 
walking distance of the user.  

      As shown in Figure 4, the step counting is realized by 
dividing the duration of sample when the maximum auto-
correlation ( )mψ ≥  0.8 by optτ , and round up to an integer 

value. The optτ  is determined by simply finding the most 

frequently occurred τ  in the duration when ( )mψ ≥ 0.8. 

 
Figure 4: Maximum autocorrelation for step counting 

      Because human stride is not constant during walking, the 
stride size is determined by dynamically checking the 
acceleration sequence. We apply an empirical equation based 
on [8] to estimate the stride size. 

 

                                                                                                  (2) 

where ka  means the measured acceleration and  N  represents 
the number of sample in one period of walking. 

      (3) Heading detection 

      The mobile phone’s magnetometer provides heading 
orientation of the phone relative to the magnetic north. There 
are many researches about how to induce the user walking 
direction from the magnetometer reading with phone placing 
on different parts of the human body [4] [5] [6] [7]. For 
example, the phone may be placed in pants, bounded on arms 
or hold in hands. In our case, we use the phone to track our 
location in an indoor environment, with our current location 
and walking path display on the screen. Thus, we can simply 
assume that the phone will only be hold in hand and in portrait 
direction. This is a valid assumption for navigation application 
on smartphone and it reduces the complicated orientation 
induction problem to simple heading detection. 

      The iOS navigation API provides device orientation 
information based on magnetometer reading. However, this 
information is easy to be disturbed indoor. Therefore, we only 
use it as the initial heading. Further heading direction is 
calculated from device yaw attitude, which acquired from 
gyroscope. Figure 5 shows the device yaw attitude changing 
when user is walking.  

 
Figure 5: Device yaw attitude changing during walking 

B. The hidden Markov model  
      The incorporation of adaptive motion model with Gaussian 
process modeling of WiFi RSS is implemented through particle 
filter to provide recursive location estimation over time. 
Particle filter is one kind of Bayesian filtering technique, which 
follows the Bayesian decision rule. The location estimation is 
based on posterior probability 

1( | ) ( | ) ( | )t t t tp x z p z x p x x −∝                   (3) 
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      Here ( | )tp z x  and 1( | )t tp x x −  represent a measurement 
likelihood model and a motion model, respectively. 

      The measurement likelihood model can be calculated using 
the posterior distribution of the signal strength at each location 
determined by the Gaussian process [3]. 

      The motion model is based on a hidden Markov model 
(HMM). The state represents the location under estimation, it is 
not directly visible, but the state is depended on the observation 
output, which is the WiFi RSS in our case.  Figure 6 illustrates 
the general structure of an HMM. We can clearly see that the 
conditional probability of the hidden state ( )X t  at time t  
depends only on ( 1)X t −  at previous epoch, and the 
observation ( )O t  only depends on ( )X t  of the same epoch 
[9].  

X(t-1) X(t) X(t+1)

O(t-1) O(t) O(t+1)

Hidden states

Observations

Time

… …

 
Figure 6: HMM general structure 

      The initial state (0)X  is determined through KNN 
method, as discussed before. Next, particle filter is applied to 
solve the hidden state problem. Each particle’s coordinates 
represent a possible state. The particles propagate to a new 
location at the next epoch ( 1t = ). From the observation 

(1)O , we are able to remove those wrongly moved particles 
by resampling. The state (1)X  is calculated as the mean of all 
the resampled particles’ location. This state transition process 
is iterated for 2,3,4t = … until the localization stop. 

      During the state transition process, we observe that the 
particle propagation plays an important role, which represents 
the state transition probability. The more accurate the particles 
propagate towards the right location, the better the localization 
performance will be. In our previous work, we apply a simple 
random walk model, which cannot guarantees the particles 
propagate towards the right location. In this paper, the motion 
sensors embedded in the smartphone are used to provide 
motion information about the user.  

      Based on the motion information, an adaptive motion 
model is developed to control the particle propagation. If the 
particles stay in standing stage, they follow a random walk 
model, which assigns a circle with center at the particle’s 
current location and radius of 1 meter for the particle to move 
randomly within it. This may result in a disturbance when the 
user is standing still but the location display on the screen is 
moving slightly. But in general, the disturbance is small if the 
localization is correct. On the other hand, this freedom of 

movement gives particle filter the ability to correct the error 
during localization. Thus it greatly increases the system 
robustness. Once the stage is detected as walking, the system 
calculates the approximated heading direction and the walking 
distance within one particle filter epoch. Then we use the 
information to guide the particle’s movement. All particles 
update their coordinates according to [4] 

                                                                                                  (4) 

                                                                                                  (5) 

where ( )l t  and ( )tθ  are the estimated step length and 
heading direction, while ( )l tδ  and ( )tδθ  are the zero mean 
Gaussian noise on the length and direction, respectively.         

      Figure 7 demonstrates the particle propagation from current 
epoch to next epoch and the particles are located within the 
shadow region. As shown in Figure 7, the left-hand side is 
related to the case when adaptive motion model is applied. The 
current state is at the center of the circle, the moving distance 
and heading direction are estimated by the adaptive motion 
model. The shadow region is considered as the state candidate 
of the next epoch, particles are guided to propagate to this 
region. In our previous work, we apply a random walk model 
for particle propagation. As we can see from the right-hand 
side of Figure 7, the shadow region covers the entire circle. 
Therefore, by introducing an adaptive motion model, we are 
able to accurately target the possible region for next state 
before doing particle resampling. It provides us two benefits: 
First, it greatly reduces the amount of particle needed for 
precise localization, thus decrease the computational 
complexity. Second, it prevents the cases when particles are 
fooled to a wrong place during resampling, making the system 
more robust against large errors. 

State of current epoch Probable states of next epoch  
Figure 7: Particle propagation in state transition 

III. SIMULATION AND RESULT ANALYSIS 
In order to illustrate the insight of how the adaptive motion 

model can improve the localization performance and prevent 
large error occurs in particle resampling. We have setup a 
simulation environment in MATLAB.  

      The simulation setup is the same as in [3]. Wireless InSite, 
an EM solver by REMCOM, has been used to simulate a 40m 
by 40 m empty room with 4 APs, as shown in Figure 8.  

( 1) ( ) (( ( ) ( ))*sin( ( ) ( ))y t y t l t l t t tδ θ δθ+ = + + +
( 1) ( ) (( ( ) ( ))*cos( ( ) ( ))x t x t l t l t t tδ θ δθ+ = + + +
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Figure 8: Simulated indoor environment [3] 

      The simulated WiFi RSS data are import into MATLAB, 
where we perform offline training and online localization and 
tracking. Figure 9 shows a localization result. The true path 
starts from coordinate (4.5, 4.5) and ends at coordinate (25.5, 
10.5). It is shown on the left-hand side. The estimated path is 
shown on the right-hand side, where the blue dot and the red 
star represent the particle distribution and the estimated 
location [3]. 

 
Figure 9: Particle filter based location estimation 

      As we can see from Figure 9, the particle filter is able to 
keep track of the true path. Here we use all 4 APs to help us 
locate the target. However, if we reduce the number of access 
point, the localization performance drops significantly, as 
shown in Table 1 [3].  

Number 
of AP 

1 2 3 4 

Average 
error 

14.8 m 7.4 m 6.5 m 3.8 m 

Table 1: The localization error for different number of AP [3] 

      The root of this performance deterioration lies in the fact of 
WiFi RSS fluctuation. If we have sparse deployment of AP, it’s 
highly possible that two faraway locations happen to share 
similar WiFi RSS. Figure 10 illustrates this situation in the 
simulation. As we can see from the figure, there are two places 
with much higher weight than other places, if particle reaches 
either places, they will survive the resampling process, as 
shown in Figure 11. Thus, large error occurs when we calculate 
the estimated location as the mean of particle distribution. Liu 
et al [10] also demonstrate this root cause of large error for 
WiFi based localization in real indoor environment.  

 
Figure 10: The situation when large error occurs 

 
Figure 11: Particle distribution after resampling 

      By introducing an adaptive motion model, we are able to 
control the propagation of particles. Figure 12 shows the 
localization comparison in each time step between no motion 
model and with motion model in sparse AP situation. We can 
see that the motion information successfully helps solving the 
root cause of large error [3]. 

 
Figure 12: Localization error comparison, 1 AP situation [3] 

IV. IMPLEMENTATION ON IOS DEVICE 
We develop the adaptive motion model on our previous 

system WiFi iLocate. The updated system is tested and 
compared with the previous version in Oakland University 
library. 
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A. System update 

      The adaptive motion model is implemented within the 
online localization and tracking part in the system workflow 
shown in Figure 1. By introducing the iOS Motion API, we can 
record device motion data from accelerometer, gyroscope and 
magnetometer embedded in the smartphone in real time. These 
raw data related to the user acceleration, device attitude and 
heading direction are being logged simultaneously during the 
scanning of WiFi RSS. In each localization epoch, the motion 
information is processed by the adaptive motion model, and 
controlled the particle propagation.  

B. Experimental evaluation 

     Figure 13 compares the estimated paths with the ground 
truth path. The dark red line represents the ground truth path, 
while the blue dot and the orange stroke illustrate the estimated 
path.  

 
Figure 13: Comparison of the estimated path against the ground truth 

      Table 2 compares the localization performance between the 
pure PDR, previous WiFi iLocate system, and the updated one 
with Adaptive motion model (AMM).  

Error Mean Median Maximum 

 Pure PDR 9.5 m 8.8 m >15 m 

WiFi iLocate 3.6 m 2.9 m 5 m 

WiFi iLocate 
with AMM 

2.0 m 2.1 m 3.1 m 

Table 2: Localization accuracy comparison 

      By seamlessly fusing the motion information into the 
system, we not only improve the localization performance, but 
also reduce the computational complexity, thus the system 
response time has decrease, resulting in a more sensitive, real 
time localization and tracking system. 

V. CONCLUSION & FUTURE PLAN 
In this paper, we have demonstrated an indoor localization 

and tracking system that is capable of integrating WiFi RSS 
and motion sensor information on smartphone. By introducing 
an adaptive motion model into the particle filter framework, we 
seamlessly fuse the motion information with the WiFi based 
localization technique. To the best of our knowledge, our 
updated WiFi iLocate is the first app delivering such accurate, 
highly integrated indoor localization system on smartphone 
platform.  

As Google has announced in Project Tango [11], they have 
developed a prototype phone with powerful vision and 3D 
sensors. We believe the key technology for future localization 
lies in how to effectively fuse the information provided by 
various sensors. In the next step, we are looking to combine 
LiDAR and camera sensors into WiFi iLocate and fuse our 
system into vehicular information platform. So that smartphone 
and smart vehicle can better interact with each other. 
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