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Abstract—This paper proposes an innovative machine-
learning-based method to extract compact, accurate, and 
adequate human radio frequency signature in residential 
environment. Our research created a shielded environment by 
using electromagnetic fields blocking material to attenuate 
strong signals in the background. SHapley Additive 
exPlanations were utilized to identify the most human impacted 
frequency range, which ensures the spectrums acquired later 
contain adequate information. In order to extract the spectrum 
that contains mainly human signature information, a 
conditional-generative-adversarial network has been trained to 
model the shielding effect. The proposed method can generate 
the spectrum containing the human signature that was 
originally buried in the background. In addition to simulating 
the denoising effect that is established by the physical shielding, 
the trained generator model is applied for the second time to 
achieve multi-stage denoising, which further improves the 
signal to noise ratio in the spectrum. As the result shown, the 
proposed model successfully generates the spectrum with root 
mean square distance of 0.027 when comparing with the 
physically shielded spectrum. Furthermore, a Support Vector 
Machine model is trained to evaluate the performance of the 
conditional generative adversarial network model. The 
experimental results show that the extracted human signature 
in the synthesized spectrum can be identified by the support 
vector machine classifier with 100% accuracy while the 
physically shielded spectrum yields 93.5% accuracy. 

Keywords—Human signature, passive radio frequency (PRF) 
spectrum, software defined radio (SDR), conditional generative 
adversarial network (CGAN), adaptive spectrum sensing  

I. INTRODUCTION 

Human signatures have individualized patterns and are 
automatic identifications by quantifying the biological 
characteristics exist in the human signature [1]. Pioneering 
studies have sensed and captured human signatures in many 
forms to serve the purpose of human detection and 
identification. In light of the rapid advances in machine 
learning (ML) techniques, different forms of human signature 
have been used in various applications, such as human 
detection, positioning, identification, etc. Many popular 
active sensing modalities for human signature collection 
include camera [2], LiDAR [3], radar [4][5], infrared [6], 
WiFi-based system with cognitive radio [7], and even device-
free in WiFi sensing [8], but all with their own constraints 
and limitations [9]. Instead of using any of the active sensing 
methods aforementioned, our research focused on passive 
radio frequency (PRF) sensing method via two cognitive 
radio devices. Due to the advantages of low cost, energy 
saving, and harmless to human health, especially the ability 
of allowing customized sensing frequency,  the PRF sensing 

method is ideal for collecting human radio frequency 
signatures. Our goal of this paper is not only to capture the 
PRF spectrum containing human signature, but also extract 
and denoise the human signature from the RF spectrum in 
order to better serve the purpose of human identification. 

Since the human signature buried in the RF spectrum 
tends to be weak comparing to other existing RF signals 
within a normal environment, we created a shielded 
environment to block the interference from external 
electromagnetic fields (EMF). The RF spectrums acquired in 
the shielded environment are considered to be the spectrums 
that consist of mainly human signature, and used as the target 
of generating the synthetic human signature. 

In this paper, we propose an innovative method of 
extracting and denoising human signature from the RF 
spectrum captured in a residential environment via software 
defined radio (SDR) devices. Prior to the training datasets 
acquisition, explainable artificial intelligence (XAI) 
technique is applied to identify the most human impacted RF 
frequency range to ensure the captured spectrums carry 
human signature information. To extract the human signature, 
a conditional generative adversarial network (CGAN) is 
adapted to simulate the shielding effect and then synthesize 
RF spectrum that contains mainly the human signature. 
Comparing with the target spectrums, our experimental result 
shows that the synthesized spectrums yield a root mean 
square distance of 0.027. At the end, a support vector 
machine (SVM) classifier is trained using the physically 
shielded spectrum data. The synthesized RF spectrums of five 
categories are sent into the trained classifier for human 
subject identification to evaluate the quality of the synthetic 
spectrum. The result shows that the synthetic spectrum 
obtains 1.0 as the F1-score, which indicates the generated 
spectrum does contain effective human signature and can be 
identified by the classifier with 100% accuracy.  

This paper consists of five sections. In Section II, the 
spectrum measurement setup is explained, as well as the 
machine learning methods used in this paper which are the 
Shapley Additive Explanations (SHAP), CGAN and SVM 
classifier. Section III provides information regarding the 
hardware and experiment setup. Section IV presents  the 
experiment results,  the discussion of data frequency  range 
selection result, CGAN training results, and SVM 
classification scores on the CGAN generated dataset and the 
physically shielded dataset. Conclusion of this research is 
given in Section V.  
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II. METHODOLOGY 

A. Spectrum Measurement 

    In this research, the data acquisition process solely 
relies on software defined radio (SDR) devices for spectrum 
sensing. Allowing user to configure the sensing frequency 
range, step size, sampling rate, and the number of samples in 
In-phase and Quadrature (IQ) channelsare some of its major 
advantages, making the SDR device a convenient tool for our 
research. Specifically, the RTL2832U model has been 
selected as the sensing hardware throughout our experiment.  

Human signature in RF spectrum is normally buried in the 
noisy background RF signals and difficult to be extracted. In 
our experiment, we setup a shielded environment by using 
EMF blocking materials to minimize the strong RF signal 
contaminations. The established physical shielding 
environment allows the SDR devices to capture human 
signatures in a greater signal to noise ratio (SNR) in terms of 
average power at each frequency that is impacted by the 
presence of human subjects. The spectrum recorded inside of 
the shield, named as shielded spectrum, contains the extracted 
human signature. Thus, it is used as target for training the 
CGAN. Our approach is to learn and recreate the physical 
shielding effect through a neural network so that human 
signatures can be extracted and their SNR boosted. 

The experiment datasets acquisition process consists of 
three phases.  Phase 1 and phase2 are constructing 𝐷ௌுି  
and 𝐷ௌுିଶ used in the two rounds of SHAP analysis, and 
phase 3 dataset is constructed for training the CGAN model 
and SVM classifier. The first phase dataset 𝐷ௌுି  is 
recorded at a wide frequency band of 2.4-1000MHz in order 
to fully cover the most human impacting frequencies. Then 
the SHAP result from the first phase weighed in and 
narrowed down the frequency band of the second phase to 
200-800MHz. Based on the two phases of SHAP result, 
phase 3 dataset is obtained on the 500-600MHz frequency 
band. Two datasets were constructed during phase 3, which 
are the shielded spectrum dataset 𝐷ௐ  captured in the EMF 
shielded area, and the without shield dataset 𝐷ௐை  captured at 
the same location but while the shield is removed. There are 
five categories of data taken for each dataset involved in this 
research, which include four human subjects and an 
unoccupied scenario. The detailed dataset structure and 
parameter settings are summarized in Table I.  

TABLE I.  DATASET STRUCTURE AND SDR PARAMETERS 

 Phase 1 Phase 2 Phase 3 

Frequency 
Range 

24-1000MHz 200-800MHz 500-600MHz 

Sampling Step 
Size 

2.4MHz 1.2MHz 2.4MHz 

Sampling Rate 2.4MHz 2.4MHz 2.4MHz 

Background 
Condition 

With Shield 
Only 

With Shield 
Only 

With & Without 
Shield 

Total # of 
Spectrum 
Samples  

320 400 2000 

Subjects Human Subject 1 - 4, & Unoccupied 
Data Prepared 

For 
SHAP SHAP CGAN & SVM 

Dataset 
Notation 

𝐷ௌுିଵ 𝐷ௌுିଶ 𝐷௪  &  𝐷௪ 

B. Data Pre-proccessing 

For every RF spectrum collected in our experiment, the 
sample number per frequency denoted as 𝑁, is set to be 4096. 
Each datapoint on the spectrum is returned as a sampled 
complex IQ signal ( 𝐼 + 𝑗𝑄 ) represented by two voltage 
samples. Thus, there are 𝑁/2  pairs of IQ data collected at 
each selected center frequency. The average power 𝑃 in dB at 
each center frequency 𝑓, which is also the amplitude of RF 
spectrum collected in our experiments, can be calculated as: 

𝑃(𝑓) = 10 logଵ

∑ 𝑝(𝑖)ே
ୀଵ

𝑁
2ൗ

, (1) 

where the average spectrum power 𝑃 is a function of 𝑓. 𝑝 is 
the power at each center frequency 𝑓. 

Fig. 1 shows one of the pre-processed spectrum samples. 

 
Fig. 1. Pre-processed full frequency band spectrum plot. 

C. SHAP on Frequency Band Selection 

Our group previous research result indicates that the RF 
spectrum on the full frequency range 24-1760MHz contains 
adequate information to achieve human occupancy detection 
[9]. However, due to the data recording and CGAN 
processing time being too long with the full range spectrum, 
we aim on developing a process to identify the most human 
impacting frequency band to improve the CGAN training 
efficiency.  

SHAP, as a common solution of finding the most impact 
factors in a machine learning process, is used in this research 
to find how the impact of the human signature varies at each 
frequency, and more importantly, to identify the most human 
impacting frequencies. There are two phases of dataset 
prepared for the SHAP as aforementioned. They all contain 
five categories of data, including human subject 1-4 and an 
unoccupied category. The SHAP results mainly explain the 
impact factors in classifying these five categories of data. 

Prior to the two major rounds of SHAP analysis, full 
frequency range samples were collected to identify the 
preliminary frequency band range, which is used to set the 
frequency band of 𝐷ௌுି . Phase 1 SHAP analysis is then 
conducted with 𝐷ௌுିଵ as input. The second round of data 
acquisition and SHAP is performed with narrower frequency 
range while using the first round SHAP result as the 
reference, in order to verify the result and further narrow 
down the frequency range of phase 3 dataset.  

D. CGAN Model Structure 

CGAN is the main method used in this research for 
creating a digital shielding effect, in order to achieve the 
human signature extraction and denoising.  
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The CGAN model structure consists of one discriminator 
and one generator. The goal of using the CGAN is to simulate 
the shielding effect and then generate the spectrum contains 
extracted human signature from the environment without any 
physical shielding setup. In our experiment, 𝐷ௐ is used as the 
target to train the discriminator, and 𝐷ௐை  is fed into the 
generator as the input. The condition used in training this 
CGAN model is one-dimensional label generated based on 
the experiment subject category and does not contain any 
feature information from the subject. Once the CGAN is fully 
trained, the generator model is saved and used separately to 
generate the spectrum contains extracted and denoised human 
signature with the testing data in 𝐷ௐை  as the input. The 
detailed structure of discriminator and generator of the 
proposed CGAN model are shown in Fig. 2. 

 

 
Fig. 2. CGAN model structure.  

One thing worth noting is that all the Dense, 
Convolutional, and Convolutional Transpose layers are 
followed by a Leaky ReLU layer immediately. At the data 
processing level, the generator takes the training data in 𝐷ௐை  
as input, and then send it to a down-sampling process to 
achieve the feature extraction. Fig. 2 shows the down-
sampling consists of four Convolutional 1D layers and a 
Reshape layer at the end. The conditioning data is then 
concatenated with the output from the down-sampling and 
sent into an up-sampling process, which consists of two 
Convolutional 1D Transpose layers. A Reshape layer and one 
Dense layer are applied at the end to make the output in the 
same shape as the samples in 𝐷ௐ , which is (43,1). The 
purpose of adding this up-sampling process is to handle the 
data imbalance. Based on the features extracted from the 
down-sampling, during the up-sampling process, the neural 
network will alter the data points and give the useful features 
a more equal weight. This up-sampling process is critical in 
generator training since it ensures all the important features 
are weighed correctly, which will lead to a more accurate 
output with all the useful features kept.    

In the discriminator, the input data has the same shape as 
the generator output. The condition data is embedded and 
then reshaped into the same shape as the input data, thus it 
can be concatenated with the input data. The discriminator 
contains down-sampling process only since it mainly serves 
as a binary classifier in the CGAN. After going through three 
Dense layers, the discriminator model is trained to achieve 
the feature extraction in order to classify the synthesized data 
and real data. One thing worth noting is that our discriminator 
up-sampling process uses Dense layers instead of the 
Convolutional layers due to our spectrum data type. As the 
main difference between the Convolution layer and the Dense 
layer being that Convolutional layer tends to force the input 
share the parameters when learning the relationship of the 
input and output, it uses fewer parameters by doing so. In 
contrast to the Convolutional layer, the Dense layer forms 
every output and corresponding input into a function since it 
uses linear operation. In our case, as aforementioned the input 
sample has only 43 data points, meaning there is limited 
quantity of information and parameters exist in the input data. 
Also, the dataset sample quantity is relatively small 
comparing to other CGAN applications since this experiment 
is not dealing with complicated data type. Considering all 
these factors, we decided to use Dense layers in the 
discriminator instead of Convolutional layers since the 
discriminator does not require heavy loaded learning ability 
as the generator requires.  

E. Evaluation System of the CGAN Model  

 To evaluate the quality of the generated denoised 
spectrum, a SVM classifier is trained on the dataset 𝐷ௐ and 
then used to identify the four human subjects and unoccupied 
category with the generated spectrums. In Fig. 3, the details 
of utilizing the SVM classifier is further demonstrated.  

 
Fig. 3. Evaluation system flow chart. 

 As Fig. 3 shows, the SVM model is trained on 𝐷ௐ, and 
later on, the trained SVM model is used to classify three sets 
of data:  

a) The testing samples from 𝐷ௐ, 
b) The generated denoised spectrum 𝐷ିଵ, 
c) The generated additionally denoised spectrum 𝐷ିଶ, 

where 𝐷ିଵ  is the first time generated denoised spectrum 
with 𝐷ௐ  being the input, and 𝐷ିଶ  is the second time 
generated denoised human spectrum with 𝐷ିଵ as the input. 
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 In order to generate the 𝐷ିଶ, the generated 𝐷ିଵ is fed 
back into the trained generator and the output is considered as 
second time denoised. This process simulates a better 
shielding effect than the physically shielded environment.  

 The SVM classification results are expected to have same 
F1-scores on all three sets of data to prove the success of 
CGAN training. Higher F1-score on the synthesized datasets 
indicates that the trained generator has the ability of 
extracting real human signature from the measured spectrum 
in a residential environment without physical shield. 

III. HARDWARE AND EXPERIMENT SETUP 

In the proposed research, the hardware includes two SDR 
devices for receiving RF data, one set of RF signal shield, and 
two pieces of EMF shielding fabric. The detailed product 
information is further explained in this section. 

A. SDR Devices 

Fig. 4 shows the SDR device used in the experiments. 
This device is named RTL-SDR as it is manufactured by Real 
Tech, with one of their own RTL2832U chipset to support the 
software defined radio feature. The receiving RF band of this 
device ranges from 500kHz up to 1.7GHz and could be 
adjusted by software. 

 
Fig. 4. RTL-SDR device used in the experiment. 

B. RF Signal Shield 

Fig. 5 shows the RF signal shield used throughout our 
experiment. The shield is made by coated silver fiber, with a 
size of 120×220×220cm3. The main purpose of using this 
shield is to reduce RF signal interference from the 
environment at a residential location, in order to create an 
experiment space to obtain the target data used in the training 
of CGAN model. The human subjects and SDR receivers 
were set inside of the shield through half of the data 
acquisition process, while the other half were taken without 
the shield and used as input data to the CGAN model.  

 
Fig. 5. RF signal shield setup. 

C. Experiment Setup 

The experiment was designed to be setup at a residential 
location to avoid unnecessary EMF interference, which 
commonly exist in a laboratory environment due to the usage 
of electronic devices. Two SDR devices are placed inside of 

the shield and were maintained with a fixed distance to the 
shielding boundary and the same pointing direction 
throughout the experiment as shown in Fig. 6.     

 
Fig. 6. The setup for human subject data acquisition inside the shield. Two 
SDR devices were fixed on either side of the human subject and pointing to 
the human subject. 

IV. EXPERIMENT AND RESULTS 

A. Human Impacted Frequency Band 

Initially, the spectrum data were taken on full frequency 
range supported by the SDR, which is 2.4-1760MHz, with 
1.2MHz as the step size and sensing frequency set to 
2.4MHz. To improve the efficiency of data acquisition, we 
adopted SHAP to identify the preliminary frequency range. 
The SHAP result of this preliminary process shows the top 
twenty of most human impacting frequencies fall within 100-
850MHz, which lead us to set the phase 1 dataset frequency 
band to 24-1000MHz, just to add in some buffer. 

The phase 1 SHAP result is shown in Fig. 7. The vertical 
axis shows the ranking of the top twelve most human 
impacting frequencies, while the horizontal axis indicates the 
Shapley value of the average power at the corresponding 
frequency. The color of each point represents how the impact 
value changes as the average power changes. Per the legend 
at the right side, the datapoints being marked in red meaning 
the impact value increases while the sensed spectrum average 
power increases at the indicated frequency on the left side, 
and vice versa. The Shapley values are minimal after twelve 
frequencies, therefore, only the top twelve impacting 
frequencies are listed and ranked. This result indicates that 
the most human impacting frequencies fall within the range 
of 513.2-753.2MHz.  

 
Fig. 7. Phase 1 SHAP analysis result. 

SHAP analysis was performed again to verify the 
frequency band selection by using the phase 2 dataset which 
was acquired at a different time. This phase 2 dataset 
frequency range has been narrowed down to 200-800MHz, 
based on our phase 1 SHAP result. As shown in Fig. 8, all the 
human impacting frequencies are within 513.6-597.6MHz in 
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the phase 2 analysis. The phase 3 dataset frequency range is 
then set to 500-600MHz based on the phase 2 SHAP result. 
The CGAN training later on proves that this frequency range 
does contain adequate human signature and provides better 
efficiency in the training process. 

 
Fig. 8. Phase 2 SHAP result. 

B. CGAN Training and Synthesized Spectrum 

As aforementioned, the unshielded spectrums in 𝐷ௐை  
contains human signature, but it is also mixed with strong 
background RF signals. The trained CGAN is able to 
simulate the shielding effect in order to generate the shielded 
spectrum from unshielded spectrum. This is a rough human 
signature extraction process.   

Once the datasets are constructed based on the target 
human impacting spectrum frequency range, the CGAN 
model is trained on dataset 𝐷ௐ  and 𝐷ௐை . A total of 800 
samples in  𝐷ௐ  were fed into the discriminator as input and 
800 samples in 𝐷ௐை  were fed into the generator. The samples 
in both 𝐷ௐ  and 𝐷ௐை  datasets are labeled in five categories, 
which are used as condition data when training the CGAN 
model. The CGAN is trained on 270 epochs with a batch 
number of 22. 

 Fig. 9 shows the loss curve of the training process. The 
blue and orange lines represent the loss of the discriminator 
on dataset 𝐷ௐ  and 𝐷ିଵ , and the green line represents the 
loss of the generator, respectively. It can be seen that the 
discriminator and generator loss were strongly oscillating 
within 60 epochs of training, which indicates the CGAN 
model is setup correctly with the generator and discriminator 
fighting each other at the beginning. The model slowly 
converges at 60-180 epochs range.  

  
Fig. 9. The CGAN training loss curve. 

Fig. 10 shows the result of the generated denoised 
spectrum along with the sample from 𝐷ௐ  which represents 

the denoised target spectrum, and the sample from 𝐷ௐை , 
which is the generator input. These generated first time 
denoised spectrum construct the dataset 𝐷ିଵ . As it can be 
easily visualized, the generated spectrum is quite close to the 
target shielded spectrum in terms of shape and value, but only 
with small deviations at a few human impacting frequencies. 
As discussed later on in Section IV.C, the evaluation result 
implies that the deviations are improvements on the SNR of 
human signature as 𝐷ିଵ yields better classification result.  

 
Fig. 10. Comparison of sample spectrums from 𝐷௪, 𝐷௪ and the synthesized  
when CGAN is applied the 1st time. 

 The root mean square distance (RMSD) is calculated to 
measure the difference between the synthesized 1st time 
denoised spectrum and the target shielded spectrum. With 
normalized samples in 𝐷ିଵ  and 𝐷ௐ  being the input, the 
RMSD calculation result shows that the average distance 
between data points on the same frequency from these two 
datasets is 0.027.  

The constructed 𝐷ିଵ  is fed back into the generator to 
generate the second time denoised spectrums and construct 
the dataset 𝐷ିଶ, and this process simulates a better shielding 
effect than the physically shielded environment. The red line 
in Fig. 11 shows the second time denoised spectrum. Fig. 11 
summarizes the CGAN generation results, including 
spectrum samples from  𝐷ௐை , 𝐷ௐ , 𝐷ିଵ  and 𝐷ିଶ . The 
purpose of computing this graph is to visualize the 
improvement of the first time and second time denoised 
spectrum performance.  

  
Fig. 11. Overview of the generation results. It shows the comparison of 
sample spectrums from 𝐷௪ , 𝐷௪  and the synthesized  when CGAN is 
applied the 1st time and the 2nd time.  

Based on the result shown in Fig. 11, it is obvious that the 
generated spectrum average power has decreased when 
CGAN is applied the second time, and the decreased amount 
varies at different frequencies. Our initial goal was to train 
the generator to detect which portion of the spectrum contains 
the critical human signature and how much noise should be 
filtered out from the spectrum input based on the pattern that 
the generator has learnt from the shield. This result satisfies 
our initial expectation for the generator. After the CGAN is 
applied the second time, the SNR of the spectrum is further 
denoised. Multiple stages of denoising is commonly used in 
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signal processing pipeline. To the best of our knowledge, it is 
the first time that CGAN has been trained and used to achieve 
the two times denoising function.  

C. Evaluation of Synthesized Spectrum 

The SVM classifier is applied to evaluate the quality of 
the synthesized spectrum 𝐷ିଵ and 𝐷ିଶ. The SVM is trained 
on the training dataset in 𝐷ௐ  to classify four human subjects 
and unoccupied category. Fig. 12 shows the trained SVM 
classification result of the testing dataset in 𝐷ௐ, which has a 
F1-score of 0.935. 

  
Fig. 12. SVM classifier confusion matrix on DW  testing dataset.  

 However, the two generated spectrum datasets 𝐷ିଵ and 
𝐷ିଶ with the same trained SVM classifier obtained higher 
F1-score, 1.0 for both datasets, when classifying the five 
categories. This indicates that the synthesized spectrum 
outperformed the physical shielded spectrum in terms of 
subject classification accuracy.  

The SVM classifier is intended and trained to evaluate 
the generator performance based on the human subject 
identification results. The initial expectation of the 
synthesized spectrum 𝐷ିଵand 𝐷ିଶ is to maintain the same 
level of F1-score as dataset 𝐷ௐ. However, the result shows 
that the two synthesized spectrum datasets obtained higher 
F1-score from the classifier, which implies that the CGAN 
training is successful and the generator performance exceeds 
the expectation.  

The SVM model classifies the spectrums of human 
subjects and unoccupied based on the pattern of their human 
signatures, hence the classification result is highly depending 
on the SNR of the human signature in the spectrum. The 
better quality and greater proportion of human signature 
exists in the spectrum would result in higher classification 
accuracy. In our research, the CGAN achieved the human 
signature extraction by simulating the physical shielding 
effect as expected. Furthermore, with the synthesized 
spectrum obtaining higher classification score, it implies that 
the SNR in the synthesized spectrum is higher than in the 
physically shielded spectrum. This may be caused by the 
additional denoising feature that is achieved during the 
generator training process due to the nature of the powerful 
machine learning technic and the way we setup the generator 
structure.  In the real world, the data we captured are often 
heavily imbalanced, which always result in errors on 
classification. The up-sampling process in the generator 
structure has the ability of adjusting the data weights based 

on the features that are extracted from the down-sampling 
process, which could lead to the useful features weigh 
differently than in the target spectrum. The experiment result 
implies that this data points weight altering behavior has a 
positive impact to the spectrum generation, thus, we can 
come to a conclusion that our CGAN model grants the 
spectrum an improvement on the SNR. With the feature 
extraction and denoising feature, the synthesized spectrum in 
𝐷ିଵ  and 𝐷ିଶ  both contain human signature with higher 
SNR than the shielded spectrum in 𝐷ௐ, which explains the 
higher F1-score gained on the SVM classification.  

V.  CONCLUSION 

In this paper, a CGAN model is proposed to learn from 
physical shielding effect and create digital shielding effect to 
extract and denoise human signature on RF spectrum for 
human subject identification. In order to present the human 
signature in a compact and efficient way, the RF spectrum is 
analyzed by SHAP method to obtain the most human 
impacted frequency range. The CGAN can be applied 
multiple times to achieve different levels of denoising. The 
synthetic RF spectrums are evaluated by SVM classifier and 
proven to be accurately generated, effective to human 
identification, and containing adequate human signature 
information. This proposed method provides low energy 
consumption solutions to human identification related 
applications such as security monitoring in prison, patient 
and senior people caring based on human existence, smart 
devices control in different areas of building, climate control 
in factory and isolated chambers for energy consumption and 
comfort trade-off, etc. 
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