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Abstract— The Non-linear Gaussian Recursive Algorithm 

(NGRA) is a novel algorithm that solves some of the known short 

range radar impairments.   These short range radar impairments 

include clutter, overlapping echo pulses, antenna pulse distortion, 

and poor distance resolution.  The NGRA accurately models the 

source signal and subtracts it from the original signal which 

allows for additional peaks to be detected.  In order to model the 

primary signal and its side lobes, a sum of Gaussian model was 

chosen.  To estimate the models coefficients a non-linear fit 

algorithm is required using initial conditions generated from a 

peak detector.  The coefficients from the model provide location 

information and distance resolution beyond the limitations of the 

sampling rate of the captured data.  Through experimentation 

the NGRA algorithm was proven to be accurate and reliable, 
achieving between one to eight percent error rates. 

I. INTRODUCTION 

Radar algorithms are used for a wide variety of 
applications.  Radar can be used for medical imaging, ground 
penetrating radar, air traffic control, and a wide range of 
military applications.  Medical imaging uses radar algorithms 
to process the return pulse and develop imaging of an object 
and its location.  One of the most recent areas of study is ultra-
wide band (UWB) breast cancer detection of tumors [4, 14-15].  
Traditional x-ray mammography results in 15% of all breast 
cancer present at the time of screening, and nearly three-fourths 
of all breast lesions biopsied turn out benign [14].  One method 
being proposed to solve these issues of traditional x-ray 
mammography is UWB breast cancer detection.   This paper 
concentrates on solving some of the range estimation issues of 
medical imaging.   In order to understand the issues with radar 
it is important to understand the echo return pulses from an 
object, antenna systems with the proper bandwidth, and digital 
signal processing algorithms to detect pulses and range 
calculation. 

 Radar systems use digital signal processing algorithms in 
order to detect the presence of a pulse in a return signal.  In 
some cases this task is challenging especially if the echo signal 
amplitude is close to the amplitude of clutter or noise.  This 
typically results in false detections of echo pulses, and 
advanced signal processing to reduce the false detection rate.  
In short range radar systems it is possible for echo signals to 
overlap with themselves and with the source pulse.  This is 
caused by the close proximity of the source and receive antenna 
being close to the boundaries.  Another unique issue to short 

range radar applications is the sampling frequency limit of the 
data accusation equipment.  For instance a 40 GHz sampling 
frequency translates to a 7.5 mm distance between samples if 
the targets are millimeters apart this can cause poor range 
estimation.  In application of medical imaging this can be a 
critical problem. 

 This paper proposes a novel range detection algorithm 
Non-Linear Gaussian Recursive Algorithm (NGRA) that will 
solve some of these short range radar issues, but can also be 
used in longer range applications.  This is unique compared to 
algorithms defined in [1-7].  The CLEAN process as described 
in [7] uses a Fourier transform to find the largest magnitude 
spot in the signal.  After the largest magnitude spot is identified 
the complex amplitude and position is used to develop a model 
that is subtracted from the source signal resulting in a new 
signal devoid of side lobes.   NGRA uses a sum of Gaussian 
model instead of Fourier transform, and can model the side 
lobes of the radar pulse; CLEAN algorithm requires side lobe 
reduction.   NGRA uses a peak detector to provide peaks of 
overlapping pulses that the traditional Maximum point (MAX) 
and interpolation (INT) peek algorithms cannot provide.  The 
Non-homogeneous Poisson process (NHPP) [1] model based 
algorithms reduce false rejection but when pulses overlap they 
are less effective.   The NGRA has better modeling capability 
than the NHPP algorithms. 

II. NGRA ALGORITHM 

The NGRA is an iterative algorithm which models the first 
pulse and removes it from the source waveform.  Through this 
iterative process the model coefficients are stored and used for 
range calculation.  There are two ways of utilizing this 
algorithm.  The first is using the sum of Gaussian model to 
model the source pulse signal without targets present and then 
subtracting it from the signal that contains the boundary 
reflections.  This option is useful when the target completely 
overlaps with the source signal.  The second method models 
the source signal with the targets present in the signal and then 
subtracting it to detect additional boundaries.  This second 
method is useful when the echo pulse does not overlap with the 
source pulse.  The NGRA process is defined as follows: 

1) Record multiple observations of the source pulse without 
targets present. 

2) Generate initial conditions for non-linear model fit using 
peak information obtained from the peak detector. 
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3) Perform non-linear fit using initial conditions in step 2. 
4) Store model coefficients for future range estimation. 
5) repeat steps 2 through 4 for all observations 
6) Calculate the mean of the model coefficients stored in 

step 4 
7) Create signal mode from model coefficients in step 6. 
8) For each observation containing targets subtract the model 

created in step 7. 
9) repeat steps 2 through 4 
10) Calculate Range using model coefficients from step 6 and 

9. 
11) Repeat steps 6 through 11 until no other targets are 

present. 
 

For option 2 you can skip steps 1- 5 in the NGRA process.  

Prior to processing the source signal it is recommended that 
the observed signals are filtered with a low pass filter.  This 
step will reduce the high frequency noise and remove aliasing 
that may have been caused by the antennas.  The cut off 
frequency of the filter should be based on the maximum 
frequency range of your antenna.   

A. Peak Detection Algorithm 

The peak detector used in the NGRA algorithm is not a 
traditional peak detection method.  This method allows both 
peaks and valleys of the signal to be detected providing more 
information to be used as initial conditions.   This information 
provides improved the convergence time and accuracy of the 
non-linear fit.  The first step is to calculate the derivative of the 
source signal using equation 3.2.  V is the derivative of the 
signal S. Where n is the sample vector and N is the total 
number of samples in the sampled signal. 

 𝑉(𝑛) =
𝑠(𝑛+1)−𝑠(𝑛)

∆𝑛
, 𝑛 = 1,2,3 … (𝑁 − 1) 

∆𝑛 is the difference between sample values which is equal 
to 1.  Points of inflection can be calculated from V(n) by 
detecting the change in sign of  adjacent V(n) values.  In order 
to prevent false detection of clutter and noise in the signal two 
thresholds must be applied. The first threshold limits the peak 
detection by amplitude of the peak, T1.    This threshold will 
help to remove the noise and clutter from the signal.  The 
second threshold T2 is used to remove noise that may be riding 
on the signal.   T2 is the minimum distance between two peaks 
that should be detected.  It is also desirable that there is a zero 
crossing between these two peaks.  These thresholds are 
defined by a series of detection equations that are defined in 
this section.  Unless otherwise specified equation 3.3 defines n. 

 𝑛 = 1,2,3 … 𝑁 

The first step in the calculation is to determine inflection points 
in the signal.  Using equation 3.2 to calculate the derivative of 
the signal the inflection points can be found where two 
consecutive sample points change from positive to negative or 
negative to positive.   Equation 3.4 generates a detection vector 
𝐼𝑝(𝑛)  which contain logical values at the points prior to 

inflection. 

 𝐼𝑝(𝑛) = {
1,  (𝑣(𝑛) ≥ 0 𝑎𝑛𝑑 𝑣(𝑛 + 1) ≤ 0)𝑜𝑟 

(𝑣(𝑛) ≤ 0 𝑎𝑛𝑑 𝑣(𝑛 + 1) ≥ 0
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

After the points of inflection are calculated it is necessary to 
apply the general amplitude threshold to perform the course 
filtering for peaks and valleys of interest.  Equation 3.5 
calculates the detection vector𝑎(𝑛) , which contains logical 
value one for the location of peaks greater than the threshold, 
and changes sign from negative to positive. 

 𝑎(𝑛) = {
1,  |𝑠(𝑛 + 1)| > 𝑇1 𝑎𝑛𝑑 𝐼𝑝(𝑛) = 1

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Once the first threshold is applied it is necessary to generate a 
location vector of the peaks prior to removing the zero spacing 
in the amplitude vector.  Equation 3.6 generates the first 
location vector 

 𝑙𝑝(𝑛) = {
𝑛,  𝑎(𝑛 + 1) = 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

In order to remove the zero value in the source vector a 
diagonal matrix is first generated from the values in equation 
3.5 as shown in equation 3.7. 

 𝐼𝑑 = 𝑑𝑖𝑎𝑔(𝑎) 

After the location vector diagonal matrix is generated it is 
possible to perform matrix multiplication of the location vector 
against the signal vector to obtain the magnitude, equation 3.8.   
It is also necessary to capture the reorganize the location vector 
in equation 3.9. 

 𝑝𝑣(𝑛) = 𝐼𝑑 ∗ 𝑠 

 𝑝𝑙(𝑛) = 𝐼𝑑 ∗ 𝑙𝑝 

This calculation reorganizes the data in 3.8 and 3.9 to have all 
the locations in the beginning of the vector.   This is 
accomplished with using the diagonal matrix created by the 
location vectors.  By having ones or zeros across the diagonal 
matrix, it effectively selects the detected peaks data and moves 
it to the beginning of the vector.  This is necessary preparation 
for the zero crossing detection and the amplitude difference 
calculation.  The next step is to calculate the zero crossing 
detector vector using equation 3.10.  Zero crossing determines 
if two adjacent peaks have different signs.  If they are different 
in sign it is considered to cross zero.  

 𝑧(𝑛) = {

1, (𝑝𝑣 (𝑛) > 0 𝑎𝑛𝑑 𝑝𝑣(𝑛 + 1) ≤ 0) 
𝑜𝑟 (𝑝𝑣(𝑛) < 0 

𝑎𝑛𝑑 𝑝𝑣(𝑛 + 1) ≥ 0)
0,  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑧𝑒

 

The next stage of the calculation is to detect adjacent peaks that 
are not far enough apart in magnitude, equation 3.11.  When 
performing this level of detection it is necessary to take into 
account the zero crossing detection in the calculation.   
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𝑑(𝑛) = {
1, |𝑝𝑣 (𝑛) − 𝑝𝑣(𝑛 + 1)| > 𝑇2 𝑜𝑟 𝑧(𝑛 + 1) = 1
0,  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑧𝑒



Given that the previous detection step removed peak locations, 
it is necessary to reorder the detection vector again.  This will 
be done first by creating a diagonal matrix using the detection 
vector d, equation 3.12 

 𝐼𝑑 = 𝑑𝑖𝑎𝑔(𝑑) 

After the diagonal matrix 𝐼𝑑 has been generated it is possible to 
use matrix multiplication again to select the detected peak data 
as calculated in 3.13, and 3.14. 

 𝑝𝑣2 = 𝐼𝑑 ∗ 𝑝𝑣 

 𝑝𝑙2 = 𝐼𝑑 ∗ 𝑝𝑙 

Since the data still contains trailing zeros from the calculations 
performed in 3.13 and 3.14 it is good to remove them from the 
vector.  Since the detection vector is comprised of zeros and 
ones it is possible to calculate its length by summing the vector.  
The sum of the vector is calculated using equation 3.15. 

 𝑁𝑝 = ∑ 𝑑(𝑛)𝑁−1
𝑛=1  

After the number of peaks is calculated it is possible to remove 
the trailing zeros by the calculations in equation 3.16 and 3.17. 

 𝑃 = 𝑝𝑣2(𝑛), 𝑛 = 1,2,3 . . . 𝑁𝑝 

 𝐿 = 𝑝𝑙2(𝑛), 𝑛 = 1,2,3 . . . 𝑁𝑝 

The information from equations 3.16 and 3.17 will be used to 
provide initial conditions to fit the pulse model. 

B. Pulse Model 

In order to provide better resolution and to suppress the 
effects of side lobes in the signal, the sum of Gaussian model 
has been chosen.   This model is different than the one used in 
NNHP.  The NNHP models used a sum of a constant and a 
Gaussian.  The new model proposed in this paper is a sum of 
Gaussians without a constant.   Using a sum of Gaussian model 
allows for the modeling of the side lobes of the signal which 
provided the inspiration for this model.   This model accurately 
models the distorted pulse resulting from transmission though 
an antenna.   The Gaussian function is defined in equation 3.18.  

𝑓(𝑛) = 𝑎0𝑒
−(

𝑛0−𝜇0
𝑢0

)
2

+ 𝑎1𝑒
−(

𝑛1−𝜇1
𝑢1

)
2

… 𝑎𝑘𝑒
−(

𝑛𝑘−𝜇𝑘
𝑢𝑘

)
2

  

 where n is the sample number a, 𝜇, and 𝑢 are the coefficient's 
being fitted and k=0,1,..K  K is the total number of Gaussians 
in the model. A sum of Gaussian model is a non-linear function 
and requires a non-linear fitting method.  The method used to 
fit this model is a non-linear least mean squares trust-region-
reflective [9-13], using MATLAB.  The equation for this type 
of fit is defined in equation 3.19. 

 min
𝑥

‖𝐹(𝑥, 𝑦) − 𝑦‖2
2 = min

𝑥
∑ (𝐹(𝑥𝑖,𝑖 𝑦𝑖) + 𝑦𝑖)

2 (3.19) 

Input data from the measurement is vector  𝑦  , and y is 
observed output data vector of the fit function.  The goal of this 
equation is to minimize the error between the predicted data 
and the measured data by adjusting the values in coefficient 
vector x.  When using non-linear fitting methods, it is 
important to choose initial conditions that are as close as 
possible to the target values in order to reduce the number of 
step's that the non-linear fitting algorithm takes to converge on 
the solution.   It is also important to focus the fit on the section 
of the signal you are trying to fit.  If you pick initial conditions 
far away from the desired pulse, it will fit a section that is not 
desired.   In order to start with good initial conditions data from 
the peak detector will be used.  The locations of the peaks will 
be used as the mean coefficient initial condition and the 
amplitude at the peak locations will be used for the 
corresponding amplitude coefficient.  The peak detector needs 
to capture enough peaks to provide initial conditions for the 
model.  This is accomplished by adjusting the T1 and T2 
thresholds appropriately.  Initial condition for the variance is 
considered to be a value of n=1.   

C. Range Calculation 

 Range is calculated using model coefficients 
generated by fitting the model defined in equation 3.29.   The 𝜇 
corresponding to the primary peak is used to calculate the range 
between peaks.  It is important to use the correct coefficient 
value that represents the primary peak and not the side lobe of 
the peak. This peak corresponds the mean of the second 
Gaussian in the sum of 3 Gaussian model.  Using the fitted 
coefficient instead of the sample value from the peak detector 
will provide a more accurate range resolution than can be 
offered by the minimum resolution of the sampling frequency.   
The following equation is used to calculate the range of the 
boundaries: 

 𝑅(𝑚) = (𝑋̂𝑚(5) − 𝑋̂0(5) −
∑ 𝑅(𝑚)𝑀

0
𝑐

𝑓𝑠∗√𝜇𝑟𝜀𝑟

) ∗
𝑐

𝑓𝑠∗√𝜇𝑟𝜀𝑟
𝑑

2
 (3.29) 

 Where c is the speed of light, 𝜇𝑟 is the relative permittivity, 
and 𝜀𝑟  is the relative permeability of the materials the wave 
travels through.  m=1,2,…M where M is the total number of 
coefficient's in the 𝑋̂.  𝑋̂ = [𝑎0 ,𝜇0, 𝑢0 ,𝑎1,𝜇1 ,𝑢1, … 𝑀].   M is 
dependent on the number of fitted peaks in the signal. 

III. EXPERIMENTAL SETUP 

The materials used in this experiment are analogous to 
those found in the human body.  Soybean oil is used to mimic 
the fatty tissue in the body, and the acrylic cube was chosen to 
reduce the reflection between the oil and the container [14].  

The aluminum-foil and copper represent materials that could 
be shrapnel from an explosion in the body or part of an 
implant.  The latex balloon filled with ketchup is a simple 
homogeneous model analogous to a malignant tumor, having 
similar dielectric constants as described in [15].   

In order to verify accuracy of the NGRA algorithm a test 
setup analogous to the human body was chosen.   An acrylic 
cube containing a homogenous material, soy bean oil, to mimic 
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human fatty tissue.  Targets were chosen to provide different 
levels of frequency.  Aluminum foil, Copper FR4 cladded 
board, and a latex balloon are the boundaries chosen for the 
experiment.  This provided echo pulses with different levels of 
echo signals.  Copper of dimensions 115 mm x 150 mm 
provided the strongest echo signals. . Next, an Aluminum bar 
of dimensions 22mm x 13 mm x 270 mm provided a lower 
amplitude echo pulse do to its small cross section.  A mid-level 
amplitude pulse generated by the balloon filled with ketchup 
with a diameter of 40 mm.  Since this experiment is focused on 
algorithm development the skin boundary was excluded.  These 
targets provide a range of permittivity and will produce 
reflections of different magnitude.  The test setup illustrated in 
Figure 1 was used to generate and capture reflections of a 
UWB pulse from a target submerged in soybean oil.   The horn 
antenna was chosen for the source antenna due to its large gain 
and bandwidth.  The SAS-571 from AH Systems has a 
bandwidth range of 700MHz and 18 GHz.  For the receive 
antenna a checkerboard patch antenna was created from FR 4 
board based on the optimal design found in [8].  This antenna 
provides a 3.1GHz to 10.6 GHz band width also providing a 
small footprint avoiding interfering with the source pulse.  In 
order to develop a wide band pulse the picosecond pulse 
generator with a FWHM of 70 ps Gaussian pulse at -6.72 V.  
The pulse is generated negative in voltage, but will be positive 
when transmitted through the antenna. 

 

 

Figure 1.  Experimental setup diagram. 

IV. RESULTS 

This section shows the results of original pulse modeling, 
peak detection, and estimation of range using the NGRA 
algorithm.   The first evaluation was performed by modeling 
the source pulse and subtracting it from the collected 

reflections. Peak detection of the first and secondary 
boundaries is shown in Figure 2.  And the results of the range 
calculations are shown in Table 1. 

 

Figure 2.  Peak detection of first and second boundary. 

The second test performed shows the performance of option 
number 2 of the NGRA algorithm.  Option 2 models the 
source signal with the targets present in the signal and then 
subtracting it to detect additional boundaries. Figure 3 shows 

the fitting of the initial pulse and the range detection of the 
secondary boundary. 

TABLE I.  RANGE CALCULATION WITH SOURCE MODELING. 

Material 

Results 

Range To 

Cube(mm) 

Range To 

Cube % 

Error 

Range 2 

(mm) 

Expected 

40 mm 

% Error 

Range 2 

Aluminum 

Foil 

9.18 8 39.5 1 

Copper RF4 9.79 2 40.4 -1 

Balloon Latex 10 0 41.1 -3 

 

Figure 3.  Fitting of initial pulse of 70 mm range estimate. 

TABLE II.  RANGE CALCULATION RESULTS 70MM TARGET. 

Material 
Results 

Range (mm) % Error Range  

Aluminum 

Foil 
74.3 -6.1 

Copper RF4 70.4 0.6 

Balloon Latex 69.1 1.2 

V. CONCLUSION 

The NGRA algorithm is effective at improving range 
estimation of boundary's that are in the millimeter range.  This 
algorithm's unique capability of using peak detection and sum 
of Gaussian model allow it to overcome short range radar 
challenges.  The application of this algorithm is not limited to 
the applications investigated in this paper.  This algorithm can 
be used for long range radar with weak radar cross section 
targets, or even traditional radar applications.  The NAGRA 
algorithm can be applied to real time radar systems, with the 
appropriate analysis window size.  This paper has proven the 
accuracy of the NGRA algorithm; with a few minor 
improvements it can be even better.   The algorithm has a few 
short comings as well.  One of the short comings of the option 
1 implementation is the positioning of the source model, and its 
sensitivity to test setup changes.  These issues can be overcome 
with better antenna mounts in the future experiments.    
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