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ABSTRACT

Shape matching remains a challenging problem. Most
search engines on the internet use textual description to
match images. More sophisticated systems use shape
descriptors that are automatically constructed from the
original 3D shape. In this paper, we propose a novel shape
descriptor based on four dimensional (4D) hyperspherical
harmonics. Shape descriptor using 3D spherical harmonics
present the benefits of being insensitive to noise,
orientation, scale, and translation. However, the-radii cuts
introduce a disadvantage of failing to recognize inner
rotations. We address this problem by mapping 3D objects
onto the 4D unit hypersphere and applying 4D
hyperspherical harmonic decomposition to get the shape
descriptor. The 4D hyperspherical harmonics have the same
advantages of the 3D spherical harmonics and remove the
disadvantage of the 3D spherical harmonics that is
associated with the inner radii cuts.
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1 INTRODUCTION

The advancement of 3D scanning device technology and
the daily use of the World Wide Web have made the index
of available 3D shapes expand vastly over the years. As the
demand for computer graphics increases, the methods of
search and retrieval of shape databasc must become more
robust and effective. 3D shape retrieval has wide
applications in target recognition, medical image analysis,
entertainment, and architectural industries. It also has the
potential to greatly improve many fields of research such as
mechanical engineering and molecular biology. The
challenge is to convert different 3D object representations,
such as surface mesh and volumetric data into a compact
computational  representation, . the so-called shape
descriptor, so that different 3D objects can be efficiently
compared and matched. The shape descriptors are usually in
the form of vectors that can be compared by the distance of
two points within the space. These numerical
representations serve as search characteristics during the
retrieval process. Good shape descriptors must be
insensitive to noise, orientation, scale, and translation. They
must be fast to compute, small in size, and easy to compare.
A variety of methods have been proposed in the past, which
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can be classified into three main catcgories or are some
combination of the three groups [1].

This research focuses on the global matching method using
orthogonal basis functions. We use the basic idea of
harmonics and apply them to hypersphere. Hyperspherical
harmonics have been used in solving multi-body problems
in physics, but to the best of our knowledge, this research is
the first step toward mapping 3D objects onto 4D unit
hypersphere and using hyperspherical harmonics as shape
descriptor. The organization of this paper is as follows. In
section 2, we briefly describe the mapping of 2D image
onto 3D unit sphere and the properties of 3D spherical
harmonics. In section 3, we introduce hyperspherical
harmonics and our shape descriptor’s implementation. In
section 4, the experimental results and the analysis are
presented. Section 5 concludes the paper and gives details
about future work.

2 3D SPHERICAL HARMONICS

Spherical harmonic representation as a rotational invariant
3D shape descriptor was proposed by Michael Kazhdan.

"This descriptor transforms rotationally dependent shapes

into rotationally invariant descriptors. Spherical harmonic
representation provides better shape matching results than
those obtained by rotation normalization [2]. The main
goals of the spherical harmonics descriptor are to provide
better matching results while reducing both the space for
storage and the time for comparison. Kazhdan reported that
pose alignment via principal component analysis (PCA)
hampers the performance of descriptors. Spherical
harmonic decomposition is a generalization of Fourier
transform on the unit sphere, which uses basis functions of
different frequencies. The main idea of this approach is to
describe a function on the unit sphere in terms of the
amount of energy it contains at different frequencies [2].
These values do not change when the function is rotated,
hence rotation invariant.

Besides invariance to rotation, spherical harmonic
descriptors offer several other advantages. Precision-recall
is a method of determining the retrieval accuracy of a shape
descriptor.  As reported, spherical harmonic descriptors
currently have the best precision-recall of the available 3D
shape descriptors.



2.1 Limitation of Spherical Harmonics

Although spherical harmonic representation has proven to
be successful, there is still room for improvement. There is
a full dimension of information lost in going from a
spherical function to its harmonic representation. The
descriptors are unchanged if different rotations are applied
to different frequency components of a spherical function.
For each frequency component, the spherical harmonic
representation only stores the energy in that component [2].

The process of spherical harmonics leads to uniquc sources
of error not seen in other methods. The spherical harmonics
of a function continuc infinitely. Much like the rounding of
decimals, spherical harmonic descriptors must arbitrarily
decide which degree of harmonic decomposition to end
analysis at. Because spherical harmonics are applied over
functions on 3D spherical surface, a 3D object must be
severed into many shells with varying radii to be
.represented by spherical harmonics. The number of
possible radii cuts is also finite in real applications. The
error caused by harmonic truncation is compounded over
every radii cut, and the error caused by using finitely many
radii cuts is obvious. These radii cuts also introduce the
problem of a descriptor that cannot acknowledge inner
rotations. Ideally objects would have the same harmonic
representation after outer rotation over the entire shape.
With inner rotations (see Figure 2), the 3D spherical
harmonic descriptors for two objects are the same, when it
obviously should not be.

Our proposed method of using hyperspherical harmonic
decomposition as a shape descriptor will map 3D objects to
the domain of 4D hypersphere and remove the step of radii
cuts. Thus the descriptor is sensitive to inner rotations,.
The proposed descriptor will no longer be a function of
radius, but a function of hyperspherical harmonic frequency
only.

3 4D HYPERSPHERICAL HARMONICS
Hyperspherical methods have long been a valuable
analytical and computational tool for understanding n-body
quantum systems [3,4]. They have also been applied to
problems in molecular, nuclear, and atomic physics.

Our choice to use hyperspherical harmonics was based on
the need to address the inncr radius cut issue. Harmonics
taken over the entire shape would produce better results
than those produced by finitely many radii cuts. It is known
that harmonics may be performed over the n® dimensional
sphere, as the idea has been generalized by physicists. A
test of the theory was performed based on the assumption
that if 2D areas can be mapped to the 3D unit sphere and
subsequently spherical analysis may be performed, then a
3D volume may be mapped to the 4D unit hypersphere and
subsequently hyperspherical analysis may be performed.
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3.1 Theory Testing

Verification of rotational invariance and invertibility were
tested via the mapping of 2D image to 3D unit sphere. It
was done in MatLab, using Yet Another Wavelet Toolbox
to compute spherical harmonics [5]. After the mapping
onto the unit sphere, the coordinates become the
longitudinal and latitudinal angles. The results of the
testing showed that rotation of a 2D shape was represented
by a latitudinal phase shift (see Figure 1).

AV

Figure 1: Original 2D shape (upper left), 60° rotation of
original shape (middle left), 90° rotation of original shape
(bottom left), and longitudinal and latitudinal angles of 3D
spherical coordinates (right).

Such a phase shift corresponds to a 3D rotation of the shape
function on the unit sphere. And the 3D spherical harmonic
descriptors that could be applied to represent the mapped
data are invariant to such rotations. The original 2D image
can be recovered by inverse mapping of the function over
the unit sphere. Figure 4 shows the results. The mapping is
thusly safe to use.

After having successful results using 2D-to-3D mapping,
we think that 3D volume-to-4D hypersphere mapping was
worth pursuing and we are ready to apply hyperspherical
harmonic analysis.

3.2 Implementation .

The 3D volumetric representation was obtained by running
a surface voxelization algorithm over the entire mesh. A
solid voxelization algorithm may be applied as well, but it
has the limit to work only with closed surface object. We
chose surface voxelization for more flexibility.



Figure 2: Original 2D shape (left), longitudinal and
latitudinal angles of 3D spherical coordinates (middle), then
it is inverted back to original shape (right).

Once voxelization is performed, each voxel is considered to
be a single point in the original continuous space with a
value of true or false. An angular grid is set up for the 4D
unit hypersphere on the range of [0, =], [0, «], [0, 2x].
Each entry of the grid is mapped backwards to the 3D
continuous coordinate system and takes on the truth value
of that mapped 3D point.

Now we have an angular voxel grid with the 3D object
mapped onto the 4D unit hypersphere. The entire sample
space of the angular voxel grid is converted into the
corresponding continuous angles, then harmonics are
performed on them (up to an arbitrary upper limit). This
gives a complex matrix A containing the harmonic values
over the sample space of points. The matrix b is filled in
with truth values of the corresponding point. Coefficients
for each harmonic value are found by solving the linear
equation Ax=b for x.

In 3D harmonic methods, a rotationally invariant descriptor
is found by representing a spherical function by the size of
its projections onto each fundamental frequency [6].
Effectively, this equation is the square root of the sum of

the complex m-value norms for each frequency/ :
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To maintain rotational invariance in four dimensions, we
decided to generalize said formula.  First a three
dimensional descriptor is found as above, then the same
process is performed using lambda as the fundamental
frequency and the spherical 1 function as the m-value.

4 RESULTS

We chose to use seven models for testing. These models
came from the Princeton Benchmark and are referenced by
their filename in the database [7]. Four models are shown
in Figure 3. The other three models were created via
rotating the m0 model over the x-axis, y-axis, and z-axis by
= radians.
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Figure 3: Prerendered images. [m0 (top left), m150 (top
right), m1401 (bottom left), m100 (bottom right)].

The models were voxelized (see Figure 4) and the process
described in section 3.3 was applied. The analysis was
performed up to the fourth harmonic frequency. Ideally,
the results would be more accurate as the highcst harmonic
frequency of decomposition is increased.

Figure 4: Voxelization results. [m0 (top left), m150 (top
right), m1401 (bottom left), m100 (bottom right)].

Table 1 shows the shape descriptors for the m0 rotated and
unrotated models. The x-rotation seemed to be the most
unlike the others. Although the descriptor is not perfectly
invariant to rotation, when comparing the descriptors of the
m0 model against the other original models shown in Table
2, it is obvious that the values are significantly different
from the values shown in Table 1. This leads us to believe
that the descriptor and the math associated is going in the
correct direction.

Finally, the Euclidean distance between the original m0 and
the other six descriptors was computed. The results are
shown in Table 3. It is apparent that a search engine using
our descriptor would bring up the rotations as the most
similar followed later by the other, unrelated models.

A precision-recall analysis has not yet been performed. At
the current time, the x-rotation result gives cause to look
more closely at the method and further perfect it.



A=0 |A=1 [A=2 A=3 A=4
no .0015 | .0330 | .0209 0788 | .0795
rotation
X- .0024 | .0309 | .0177 .1065 | .0788
rotation
y- .0013 | .0291 | .0115 .0868 | .0786
rotation
z- .0014 | .0291 | .0173 0778 | .0734
rotation

Table 1: Shape descriptors of Model m0 in different
orientations.

A=0 |A=1 [A=2 |A=3 |A=4
m0 .0015 |.0330 | .0209 | .0788 | .0795
m100 .0084 | .0850 [ .0264 | .1711 | .1595
ml50 .0103 | .0922 | .0310 | .2239 | .2145
ml401 | .0090 | .0899 | .0299 | .2134 | .1561

Table 2: Shape descriptors of different models.

m0
x-rotation .0280
y-rotation .0094
z-Totation .0081
m100 1330
m150 2072
mi1401 1654

Table 3: Euclidean distance between shape descriptors.

5 CONCLUSION /FUTURE WORK

In this paper, we proposed a novel shape descriptor using
hyperspherical harmonics. Hyperspherical harmonics
incorporate global features of a shape by initially taking a
surface voxelization of the object and mapping the entire
volumetric data onto a 4D hypersphere. Hyperspherical
harmonics are not limited to certain types of shapes, it can
be perform on points clouds (by skipping voxclization),
genus-zero, mesh, or polygon-mesh. The initial volumetric
data must be normalized for scale and translation. The
major advantage of hyperspherical harmonics is that it is
invariant to global rotation and sensitive to inner rotation.

The method discussed in this paper still needs to be refined
with proper mathematical analysis. To truly display the
capabilities of the descriptor, precision-recall will need to
be found and compared against the Princeton Benchmark.

In the future, this method could be generalized to analyze
four dimensional data using fifth dimensional harmonic
decomposition techniques. Such a generalization could be
used to compare measured, time-based heart data against a
database of similar data that represents known heart
conditions. Such a generalization could be used to
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categorize any function-based biological scans, including
fMRIs.
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