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Abstract—With the advancement of navigation technologies, 

indoor localization has become an essential function in our daily 

life. However, the existing methods of human indoor positioning 

are mainly based on active sensing or labeling techniques, so the 

application of indoor localization is restricted by utilizing these 

current approaches. For example, when the location of the signal 

transmitter is unknown, or the target does not carry a tag, it is 

challenging to recognize the position of the target. Therefore, it is 

important to design a suitable approach to achieve indoor 

positioning. This paper proposes a new approach, which uses 

passive radio frequency signals to accurately locate the human 

subject indoor. Since human occupancy can alter the passive 

spectrum, and human at different locations can generate different 

signatures on the spectrum, these spectrum characteristics can be 

utilized to achieve human positioning. Cognitive radio is applied 

to collect passive radio frequency (RF) signals in the frequency 

bands that are sensitive to human occupancy. Two machine 

learning algorithms are used to achieve indoor positioning. A 

decision tree is used to classify a human subject’s position on a 

grid. The result of classification can verify that human occupying 

different indoor locations can generate different RF signatures on 

the passive spectrum. Then Gaussian process regression is 

employed to estimate the coordinates of the human subject. This 

process provides a higher resolution of indoor localization than the 

decision tree algorithm. The experiments show a positioning error 

as low as 0.8m among all tested scenarios. 

Keywords—indoor positioning, passive radio frequency, 

spectrum monitoring, human RF signatures 

I. INTRODUCTION  

The development of mobile computing devices and the 
advancement of wireless network technology have made 
positioning technology a hot research topic. Positioning 
technology has been applied in different areas ranging from 
national defense to security in our daily lives. For instance, 
military navigation services such as intelligence collection, 
explosion monitoring, and emergency communications all 
depend on accurate positioning of human operators. 
Applications such as private navigation, monitoring, rescue, and 
transportation are in a huge demand. Therefore, positioning 
technologies have become an essential function in our life.  

The Global Positioning System (GPS) is a mature 
positioning system based on satellite signals. However, it is not 
suitable for indoor positioning. First, the materials of the 
building can appreciably attenuate the satellite signals. Second, 
there are many electronic devices in indoor environments. The 
presence of these signals interferes with the transmission of 
satellite signals. This will greatly lower the accuracy of GPS 
based positioning in an indoor environment. Therefore, 
positioning technologies other than GPS are required for indoor 
positioning.  

Indoor positioning methods are mainly based on tags and 
active signals. Users need to obtain information about the signal 
source, or add tags to the target, and acquire data from the tags 
to achieve the target’s position. These methods have some 
limitations. For example, when the location of the signal 
transmitter is unknown, or the target does not carry a tag,  
positioning becomes very difficult. In this paper, we propose a 
method that is based on the passive RF spectrum, which requires 
neither knowing the origin of signal source nor tagging the 
human target to achieve indoor positioning.  

Human’s occupations at different indoor locations can 
generate different RF signatures on the passive spectrum. Our 
method estimates human locations by detecting and processing 
the variations of the scanned spectrum. The contributions of this 
paper are as follows. First, we developed a novel positioning 
technique based on subtle alterations of the passive spectrum to 
detect human occupancy of different locations. Second, we 
verified using a decision tree to roughly estimate the person’s 
position on a grid. Third, we employed the Gaussian process 
regression (GPR) method to accurate the indoor localization 
result, which enriched the practical positioning methods in the 
field. Forth, only low-cost devices were used to acquire RF 
signals in our research, and the average error is lower than 0.8 
m, which have proved the practicability and affordability of the 
proposed approach. 

The remaining sections of this paper are organized as 
follows. Section II introduces the existing positioning 
techniques in the field, and describes the advantages of our 
technique. Section III presents the proposed technique and the 
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experimental design. Section IV shows the experimental results. 
Section V discusses the conclusion and future direction of our 
research. 

II. RELATED WORKS 

A. Existing Technologies 

The current positioning technologies include infrared 
positioning, ultrasonic positioning, WIFI positioning, and radio 
frequency identification (RFID) positioning. These  methods 
currently used in indoor positioning are discussed below.  

Infrared positioning is used to locate targets by receiving the 
modulated infrared signal sent by optical sensors installed 
indoors [1]. This technology has high indoor positioning 
accuracy. Since light cannot penetrate obstacles, infrared rays 
can only travel within the line of sight and are easily interfered 
by other light [2]. The localization performance by using 
infrared positioning technique cannot perform well when objects 
exist on the site. Besides, to efficiently receive infrared, amount 
of antennas must be installed on experimental site, which leads 
to higher costs. 

Ultrasonic positioning are widely used for positioning, and 
the reflection measurement value is used to calculate the 
distance to the reference node based on the time difference 
between the transmitted ultrasonic wave and the response echo 
of the reference node [3]. Authors of [4] who introduced Active 
Bat are the pioneers of the ultrasonic positioning system. 
Intensive deployment of a large number of ultrasonic receiving 
devices is required to achieve a positioning accuracy with a 
minimum error of 3cm. Although ultrasonic positioning 
technique can be used in a non-line of sight circumstance with 
high positioning accuracy and small errors, the cost of the 
devices is high. Moreover, the transmission attenuation of 
ultrasonic signals cannot be avoided, so the effective positioning 
range of this technique is somehow limited. 

WIFI positioning as a Wireless Local Area Network 
(WLAN) is composed of wireless routers, and wireless access 
points, which can realize positioning, monitoring, and tracking 
tasks in complex environments [5]. Signal propagation models 
can be used to locate the receiving mobile device. The highest 
accuracy is between 1 m and 2 m [6]. However, the disadvantage 
of WIFI positioning is that this technique highly depends on 
wireless routers and access points, and these WIFI devices must 
stay online while working. Therefore, this method has certain  
limitations.  

RFID positioning uses radio frequency signals and signal 
strength to detect positions. In [7], an aggregation algorithm is 
developed to locate targets in three-dimensional space. The 
hardware tags in the system are distributed in a network without 
a signal source, and the distance between tags is characterized 
by the strength of the signals detected by the tags. This method 
heavily depends on the tags on the target, which limits the 
application of this technique.  

B. Discussion 

Comparing with the above mentioned indoor positioning 
methods, there are some differences with our method. First, the 
signals utilized in our method are passive RF signals instead of 
active signals. This is an efficient and environmental friendly 

method because a new signal source is not needed in a space. 
Nowadays, our environment is already crowded with various RF 
signals, which leads to a lot of electromagnetic pollution. 
Radiation of RF signals can be harmful to people's health. 
Therefore, passive sensing techniques are preferred over active 
sensing techniques if they can achieve the same level accuracies. 

Second, our method does not require human subject to carry 
any tags or receiving devices. This is completely different from 
the traditional approaches which build a radio map based on 
received radio signal strength to realize positioning. Our method 
deploys software defined radio (SDR) at multiple fixed locations 
and scans the passive spectrum at those locations. Machine 
learning methods are applied to map spectrum alterations to 
human locations. This eliminates the need of tagging the targets 
or carrying a device, which is beneficial in the applications of 
monitoring.  

Third, Gaussian process regression (GPR) is a non-
parametric model that uses Gaussian process priors to perform 
regression analysis on data. GPR can provide the posterior of the 
prediction result, and when the likelihood is normally 
distributed, the posterior has an analytical form. GPR has been 
applied in the fields of image processing and automatic control 
[8]. GPR is very suitable for solving positioning problems [9]. 
The prediction results obtained by GPR are highly accurate [10]. 
The advantages of GPR include using only a few training data 
points for regression to acquire all position results, predicting 
high-dimensional data, and flexibly using different kernel 
functions to construct the relationship between the independent 
variables and the dependent variables [11]. In our work, the 
independent variables are passive RF spectrums, and the 
dependent variables are human occupying positions. We used 
the GPR model to infer the relationship between the passive RF 
spectrums and human occupying positions. 

Last, RTL-SDR, a software defined radio, is used to collect 
passive RF signals in our method. SDR has been widely used in 
communications and spectrum monitoring, specifically in 
improving the power amplifier system and transmitter 
architecture [12], and receiving nerve signals in animals [13]. 
We have tuned the SDR to scan only the frequency bands that 
are sensitive to human occupancy to improve power efficiency 
[14]. Moreover, the devices used in our experiments are low 
cost, compact, and easy to deploy.  

III. METHODOLOGIES 

Our recent research shows the presence of human subjects 
can be detected via passive RF signals [15]. The experimental 
results suggest that human can cause variations in the passive 
spectrum. In this work, we find that human  subject at different 
locations can generate different signatures on the passive 
spectrum. Utilizing machine learning algorithms to associate 
these spectrum characteristics with the corresponding human 
occupancy locations can help achieve indoor positioning.  

The proposed human positioning method includes 3 steps: 

data acquisition, data pre-processing, and classification and 

estimation of human subject position by decision tree and 

Gaussian process regression. In the first step, 6 SDRs were 

deployed to collect data at multiple locations simultaneously in 

an indoor environment. In the second step, the pre-process was 
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to calculate the signal power from collected raw data. In the third 

step, two machine learning algorithms were used for the 

classification and estimation of human position. A decision tree 

was used to classify the signal power spectrums of human 

occupying different positions. This process can verify that 

human at different locations can generate different signatures on 

the passive spectrum. Last, GPR was used to build a model 

between the signal’s spectrums and the location coordinates of 

the human subject. According to the GPR model and signals 

spectrums of unknown positions, the positions of the human 

subject can be estimated. The details about data acquisition, data 

pre-processing, and classification and estimation of human 

subject position are described in the following subsections. 

A. Data Acquisition 

RTL-SDR was used to collect RF signals data in our 
experiments. The SDRs can scan the spectrum frequency from 
24MHz to 1760MHz. Our previous research shows that the 
frequency band around 330MHz is the most sensitive to human 
occupancy. In this work, frequency bands range from 300MHz 
to 420MHz were scanned. The sampling rate is 2.4MHz. The 
experimental site was a classroom at Oakland University. The 
size of the classroom was 10m×12m. Six devices of the same 
model are placed around the classroom. Their locations are 
shown in Fig. 1 as green dots. Then, 20 locations evenly 
distributed in the classroom were selected for human occupancy. 
The distance between neighboring points was 1.8m. A human 
subject occupies one location when six SDRs scan the spectrum 
simultaneously. Only one human subject was inside the 
classroom during the experiments. The distributions of the 
devices and points are shown in Fig. 1. 

 

Fig. 1. The Distributions of the Devices and Human Occupying Locations. 

The 20 locations are numbered sequentially from the upper 
left to lower right one row after another. For example, the points 
in the first row are numbered 1 to 5 from left to right, and so on. 
The data collected with different human occupancy locations are 
used differently in the decision tree and GPR algorithms, which 
will be discussed later in details. The coordinates of each 
occupancy location are recorded to facilitate the training of 
GPR.  

B. Data Pre-processing 

In our experiment, the input of the decision tree and GPR is 
the power spectrum density. The average power of each 
frequency band is calculated as follows: 

���� � 10 ⋅  
��� ∑ � ����.���������2
                        �1�             

where �  is the average signal power of the frequency band 
centered at �. � is the number of samples per frequency band. �� 
is the value of raw data of the  -th received by each device. The 
frequency band ranges from 300MHz to 420MHz. A total of 100  
frequency bands are scanned. The power spectrum density 
collected by the 6 SDRs is shown in Fig. 2. 

 

Fig. 2. The Power Spectrum Density Collected by the 6 SDRs When 
Location 1 is Occupied by a Human Subject. 

C. Decision Tree 

The decision tree is a classical machine learning approach. 
Each internal node in the decision tree model represents the 
judgment of the attribute, each branch represents the output of a 
judgment result, and each leaf node represents a classification 
result [16]. A decision tree can classify data sets layer by layer 
according to feature values. The advantage of the decision tree 
is that the computational complexity is not high, and the 
classified results can be presented intuitively. 

In this study, it is very important to verify whether a human 
subject at different locations can generate different RF 
signatures on the spectrum. A decision tree method is applied to 
test the hypothesis. If the spectrums obtained when different 
positions were occupied by human subject can be classified by 
decision tree with high accuracy, it will be a strong evidence that 
the hypothesis is true. There are 20 positions tested in our 
experiments. The signal spectrums obtained at each human 
occupying position is used as the input of the decision tree. The 
output of the decision tree is the index of the position.  

D. Gaussian Process Regression 

 The process of using GPR to solve the problem is introduced 
as follows. The first step is to choose the appropriate mean 
function and kernel function. The kernel function in GPR is the 
covariance function. The second step is to calculate the kernel 
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matrix of the training samples. The third step is to calculate the 
kernel vectors of the points to be predicted and all points of the 
training samples. Finally, the prediction values are obtained 
through the function of means and covariances. The GPR 
method is applied in our research as follows.  

 First, the training set ! for GPR is as follows: 

! � �", $� � %�"� , $��&�'�,…)                       �2� 

where the N-dimensional inputs vector " represents the stacked 
spectrum of multi-sensors collected by SDRs when the  -th 
position is occupied by human subjects. The output $�  is the 
coordinates of the location occupied by the human subject. GPR 
only depends on the mean *�"��  and covariance +�"� , $���,,'�,…). 

*�"�� � -.��"��/                                     �3� 

+�"� , $���,,'�,…) � - 12��"�� − *�"��4 ��2",4 − *2",4�5 �4� 

The GPR model is to infer the relationship �: " → $ , which 
maps a spectrum " to a position $. The conditional distribution 
of $  is determined when the "  is given. The function of as 
follows: 

��"��~:� �*�"��, +2"� , ",4�                      �4�                   

$ � ��"� + <                                   �5� 

where <~��0, >�?� is the measurement noise. *�"��  is the 
mean. +�"� , $���,,'�,…) is the covariance. Usually, when the data 

is preprocessed, the mean value is 0. Then the prior distribution 
of $ can be expressed as follows: 

$~��0, @�", "� + >�?�                             �6� 

 In function (6), @�", "� � @) � B+�"� , ",�C�,D�1,…� is a � ×
� covariance matrix. The joint distribution of training set �", $� 
and test set �"∗, $∗� can be expressed as follows 

1 $$∗5 ~� G0, H@�", "� + >)?I) @�", "∗�@�"∗, "� +�"∗, "∗�JK     �4� 

where @�", "∗� � @�"∗, "�L is a � × 1  covariance matrix 
between the test set "∗  and the input "  of the training set. +�"∗, "∗� is the covariance matrix of test point "∗. I) is the N-
dimensional identity matrix. In our work, the squared 
exponential covariance is chosen to be the kernel function. The 
function of the kernel is presented as follows: 

+2"� , ",4 � >? exp P− Q2"� , ",4?
2R? S                 �5� 

 In this function, >  is constant. Q�"� , ",�?  represents the 

Euclidean distance. R is the length scale of the kernel function. 
For fear that the trained model is overfitting or underfitting, the 
value of > needs to be determined carefully. R needs to be given 
an initial value and boundary. Then the posterior distribution of ��"∗� can be calculated using the functions below: 

 

 

 ����"∗�|"∗� � ��U∗�"∗�, >∗?�"∗��                        �6� 

U∗�"∗� � @�"∗, "�.@�", "� + >)?I)/��"�          �7� 

>∗?�"∗� �  +�"∗, "∗� − @�"∗, "�@�", "� + >)?I)��@�", "∗� �8� 

 ����"∗�|"∗� is the conditional probability of ��"∗�. U∗�"∗� 
is the mean of prediction corresponding to "∗ , which is the 
coordinate of position ��"∗� . >∗?�"∗�  is the variance of the 
predicted value. Thus, the accuracy of positioning is calculated 
with the Euclidean distance between the original and predicted 
positions. 

IV. EXPERIMENTS AND RESULTS 

 This section presents the experiments to demonstrate the 
proposed indoor positioning method and compares the 
positioning accuracies when using a different number of SDRs. 

A. Data acquisition 

 The experimental site was a classroom at Oakland 
University. The size of the classroom was 10m×12m. The SDRs 
should not only be away from the metal properly but also be 
dispersed as much as possible. The device and data acquisition 
setup are listed in TABLE I. The spectrums for each location of 
human occupation were collected from 8 pm to 10 pm. We 
collected 10 spectrum samples when the human subject 
occupied a specific location. Each sample contains 100 
frequency bands. 

TABLE I.  DEVICES INFORMATION 

Items Iteration 

Device 6× RTL-SDRs 

Frequency bands 300MHz to 420MHz(step size of 1.2MHz) 

Sampling rate 2.4MHz 

   

B. Decision Tree Results 

 A decision tree is first applied to validate the hypothesis that 
human subjects occupying different locations can cause 
variations of passive spectrum. The passive RF spectrums at 20 
human occupying positions are the input of the decision tree. 
The indexes of 20 positions from 1 to 20 are used as the output 
of the decision tree.   

The cross-validation method can verify the accuracy of the 
model and obtain the accuracy by calculating the F1 score. The 
F1 score is also called goodness of fit, which is commonly used 
to model evaluation scales in machine learning. The function of 
the F1 score is as follows: 

XYYZ[XY$ � \� + \�\� + ]� + \� + ]�                �9� 

_[`Y � ab � \�\� + ]�                                        �10� 

[`YXRR � \�\� + ]�                                        �11� 

]I � 2 ⋅  _[`Y � ab ⋅  [`YXRR_[`Y � ab + [`YXRR                 �12� 
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In these functions, TP means true positive. FP is a false positive. 
FN represents false negative. TN means true negative. The FI 
score can only be between 0 and 1. When the value of F1 is close 
to 1, the accuracy of the model will be higher, and the 
classification result is better. When the value of the F1 score is 
close to 0, the accuracy of the model is low, and the 
classification result is worse. If the value of the F1 score is high, 
which indicates that there is a strong correlation between signal 
spectrums and human position. However, if the value of the F1 
score is low, this means that it is difficult to build an accurate 
model between the spectrums and the location coordinates of the 
human subject. We also compared the impact of using different 
numbers of SDRs to obtain data for classification results. The 
classification accuracy is shown in Fig. 3. 

 

Fig. 3. The Accuracy for Different Number of SDRs. 

The results show that signal spectrums can be classified by 
human position, and the accuracy of classification is very high. 
We found that when more than three devices were used for 
classification, the accuracy was stabilized. When using 
spectrums collected by one SDR, the accuracy dropped 
significantly. When using spectrums collected by multiple 
devices to train the model, the accuracy increased. These results 
verify that human occupancy can alter the passive RF spectrum, 
and human at different locations can generate different 
signatures on the spectrum. It also shows that using five SDRs 
produces the most accurate result. Therefore, this spectrum’s 
characteristics can be utilized to achieve human positioning 
classification. Next, we used 4, 5, and 6 SDRs respectively to 
estimate the human positions.  

C. GPR results 

In this section, we used GPR to predict the position of test 
points. We selected 16 positions for GPR training and 4 
positions for testing. The distributions of training and testing 
position are shown in Fig. 4. The red dots represent the positions 
of training sets, and the blue dots represent the positions of 
testing sets. 

 

Fig. 4. The Distributions of the Training Positions and Testing Positions. 

We compared the accuracy of using different numbers of 
SDRs to obtain spectrums for prediction results of testing human 
subject positions. The test results of each human occupying 
position are shown in Fig. 5. 

 

Fig. 5. The Test Results. 

In Fig. 5, the red dots indicate the positions of the training 
set. The blue dots indicate the original position of the test point. 
The orange dots represent the predicted positions based on the 
spectrum obtained on the blue point through the GPR model. A 
set of orange and blue dots connected by each arrow indicates 
each set of original and predicted positions. The results of 
position 1, 2, and 3 show good accuracy, while position 4 has 
the worst result. 

In order to obtain more detailed information and compare the 
effects of different numbers of SDRs, we calculated the average 
residuals of different test points after modeling different 
numbers of SDRs. The residuals were calculated using 
Euclidean distance between orange and blue dots. The results 
are shown in TABLE II.  

 

1 

2 

3 

4 

A 

B 

C 

D 

E 

F 
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TABLE II.  RESIDUALS AT DIFFERENT POSITIONS FOR DIFFERENT 

NUMBERS OF DEVICES 

Position 6 devices  5 devices 4 devices 

1 0.837m 0.835m 0.826m 

2 0.618m 0.694m 0.775m 

3 0.803m 0.823m 0.852m 

4 3.106m 3.108m 3.131m 

 
In TABLE II. , the residuals calculated from the data 

received by six devices, five devices and four devices are 
separately presented. The layout of the 6 devices is shown in Fig. 
4. The values of the second column are calculated by utilizing 
all six devices. The values of the third column are the average 
residuals of removing one device from devices A, C, D, and F. 
The values of the last column are the average residuals from the 
combination of device B, E, and A/C, D/F.  

This table shows the residuals of different numbers of SDRs 
at different test positions. The prediction results for positions 1, 
2, and 3 are fairly accurate. The average value of the residual is 
around 0.8m. However, the result of the position 4 prediction is 
very poor. In our experiments, when the SDRs were placed in 
the central area of the four boundaries, the variation of spectrum 
caused by the human subject at the corners are the least 
compared to other positions of the human subject. The behind 
reason needs to be explored in the future research.  

The residuals of using 4, 5, and 6 devices did not have 
extreme change. When we used six devices, the residual results 
were only slightly better than using 5 and 4 devices. It shows 
that the residual error of positioning can be stabilized when 
using 4 devices. 

V. CONCLUSIONS 

In this paper, we verify that human occupancy can alter the 
passive RF spectrum, and human at different locations can 
generate different signatures on the spectrum. The passive RF 
spectrum can be utilized to achieve positioning of human subject 
in an indoor environment. A decision tree can classify the 
positions of the human on a grid with 98% accuracy using 5 
SDRs. Gaussian process regression is applied to construct a 
model to map the passive RF spectrums and the coordinates of 
human locations. Using the passive RF spectrums when an 
unknown position is occupied by the human subject, the model 
can accurately estimate the human subject’s location. The 
residual error shows that the positioning error is less than 0.8m. 

The future directions of development include how to locate 
the human subject in a larger and open environment, to locate 
multiple human subjects in an indoor environment and to 
distinguish different human subjects in an indoor environment. 
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