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PD Parkinson’s disease
PIR Passive infrared
RELU Rectified linear unit
RF Radio frequency
RFID Radio frequency identification
RNN Recurrent neural network
RSSI Received signal strength indicator
SGD Stochastic gradient descent
TN True negative
TP True positive

1 Introduction

The geriatric population continues to increase and place a large burden on the
healthcare systems worldwide. In 2019, there were 703 million people aged 65 or
older across the globe. By 2050, this number is expected to double to an expected
1.5 billion people [1]. This increase in population is due to changes in lifestyle, the
aging Baby Boomer generation, and increasing medical advancements, among other
causes [2]. By 2030, the entire Baby Boomer generation will be older than 65 years
of age and at that point, for the first time in the history of the United States, elderly
people will outnumber the child generation. As evidence, by 2034, there will be 77
million people 65 years and older compared to 76.5 million people under the age of
18 [3]. The population older than 65 years of age currently accounts for 35% of all
medical spending in the United States, indicating how the change in the population
demographics may further impact the medical spending across the United States
federal funding and health systems [4]. Many of these individuals are admitted to
the hospital system for assistive care, as many normal activities can no longer be
performed alone due to potential falls and memory loss [2].

Neurodegenerative diseases include dementia, Alzheimer’s disease (AD),
Parkinson’s disease (PD), among various others. Largely due to these diseases,
geriatric populations require additional assistance from a caregiver or admission
to a long-term care facility site. Neurodegenerative diseases are complex in their
pathophysiology, as some diseases cause memory and cognitive impairments, where
others effect speaking and gait ability [5]. Due to this progressive degeneration in
motor stability and memory, many of those that suffer from neurodegenerative
diseases are prone to falls and memory loss effects [6]. For an insight into the
number of people who suffer from neurodegenerative diseases in the United States,
in 2015, five million suffered from AD and one million suffered from PD [7]. Aging
individuals, especially those suffering from neurodegenerative diseases, generally
require assistive care for safe long-term living.

For safe and secure living in these presented populations, a caregiver or hospital
stay is often required, which causes financial burdens on both the families and
the healthcare system. With an increasing number of people in these categories,
the financial burdens will continuously increase. There exists a need for remote
monitoring systems to aid caregivers and hospital systems to allow for greater
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independence and alleviate the burden of these populations on the healthcare
system. There exist many proposed systems for remote monitoring of geriatric
populations in at-home environments in current research and in industry. Proposed
solutions often utilize ambient sensors and artificial intelligence (AI) algorithms
for accurate monitoring of the environment. Many of these systems rely on video-
based modalities which raise privacy concerns for the monitored person. In addition,
many systems rely on expensive hardware or difficult set-up with multiple sensors
deployed throughout the home. Some systems utilize active sensors that raise
some energy and health concerns as well. An accurate, non-intrusive, passive,
inexpensive, and ubiquitous monitoring system for an at-home environment could
solve these aforementioned shortcomings.

The utilization of ambient sensors and AI extends from the need of human
monitoring applications to security and biometric authentication applications. With
the advent of the internet of things (IoT), there exists a need for an enhanced sense of
security of personal data. IoT specifically refers to the interconnection of the devices
used in everyday life including kitchen items, beds, phones, cars, and televisions [8].
IoT is expected to continue to increase as well, as in 2030 an estimated 500 billion
devices will be connected to the Internet [9]. The security of the ever-increasing
number of connected devices in our daily life remains a challenge, as potential
adversaries can take advantage of personal data, as well gain entrance to medications
or personal belongings [8]. To protect the security of IoT devices, passwords are
often utilized, but they can often be forgotten or stolen. Facial recognition and
fingerprinting technologies have become popular and have reached consumer IoT
devices as alternatives to written passwords, as seen in common Apple products.
However, these too can be unreliable and forged [10, 11]. For instance, once a
fingerprint is stolen or retrieved from a touched surface, the fingerprint will forever
be compromised [12]. A whole sector of security using biological characteristics
is referred to as biometrics and can be used for authentication and identification of
individuals for increased security of IoT devices. Where passwords can be forgotten
or stolen, biometrics are unique to one individual person and are more difficult to
replicate [8].

Biometric authentication refers to the use of a unique biological quality to
confirm one person’s identity against all other potential adversaries, while biometric
identification classifies every individual in the dataset as unique. Common biomet-
rics include previously mentioned fingerprints and facial recognition with additional
unique characteristics including iris, gait, and voice. These biometrics are used to
enhance the security of IoT devices, in comparison to written passwords or PIN
numbers. Biometrics can be captured via non-contact sensors, such as in the case
of cameras for facial recognition. Cameras, however, raise privacy concerns to the
end-user. Therefore, a non-contact sensor for biometric authentication that alleviates
the privacy intrusion to the end-user is seen as a superior modality for this purpose.
With deep learning (DL), the collected biometrics from a non-contact sensor can
be learned to differentiate a verified user against all other potential adversaries.
To summarize, there exists a need for a secure, accurate, non-contact, and non-
intrusive biometric authentication system to further enhance the security of IoT
devices. Heart-related biometrics are growing in popularity, have shown promise as
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reliable for biometric authentication and identification systems, and could fill these
mentioned shortcomings.

Various ambient sensors for non-contact sensing have been proposed for these
applications including cameras, thermal sensors, depth sensors, and passive infrared
(PIR) sensors. With the need for non-contact human monitoring and biometric
authentication systems in mind, PIR sensors are inexpensive, commercial-off-
the-shelf (COTS) components that are often utilized in monitoring and security
applications. PIR sensors work by identifying the change in infrared radiation across
its field of view (FoV) which is detected by the internal pyroelectric elements with
alternating polarity. With everything above absolute zero temperature emitting some
level of infrared radiation, theoretically any object in motion across a PIR sensor will
be detected. As a result, human subjects in motion across a traditional PIR sensor
will be detected. The major known drawback to PIR sensors, however, is the lack
of reliable and accurate detection of stationary human subjects. For accurate use
in human monitoring and biometric authentication situations, the inability to detect
stationary human occupants will first have to be addressed.

To combat these mentioned drawbacks of human detection and biometric authen-
tication systems, ambient sensors and AI have been proposed. Likewise, ambient
signals have also garnished interest for non-contact monitoring including the likes of
radio frequency (RF) and WiFi channel state information (CSI) for this purpose. DL
algorithms including artificial neural networks (ANN), recurrent neural networks
(RNN), and convolutional neural networks (CNN) have been utilized for learning
of the sensor data for human detection and biometric authentication purposes. In
our work, we propose using a PIR sensor as the ambient sensor with various
statistical learning algorithms for human detection and biometric authentication
classifications.

To address human detection and biometric authentication classifications via a
single PIR sensor modality, we introduce and propose two novel systems in this
work . . .

1. Motion induced PIR sensor (MI-PIR)
2. Chest motion PIR sensor (CM-PIR)

Both systems are proposed to address the noted major known drawback of PIR
sensors, which is the inability to reliably detect stationary human subjects [13,
14]. For MI-PIR, we extend the capabilities of this system from occupancy count
estimation, relative location classification, and human target differentiation in one
environment to precise indoor localization and human activity recognition (HAR) in
two different ambient environments. For CM-PIR, we reintroduce the initial results
of the biometric authentication system based on the chest motion data collected
from 16 subjects at nine different home environments [14]. Human monitoring and
biometric authentication via non-contact sensors and AI overall proves to have direct
applications in medicine and healthcare as identified in assistive care living and
security of private medical data from IoT devices. Accurate non-contact sensing
systems will allow for long-term living in the elderly populations and more secure
IoT devices, respectively.
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2 Related Work

For accurate comparison of the two novel systems proposed in this work, many
related systems will be introduced. For stationary human presence detection using
PIR sensors, various solutions have been introduced, primarily those that rely
on an optical shutter for accurate detection. Various additional ambient sensor
modalities have been proposed for human monitoring and biometric authentication
classifications that will also be highlighted in this section.

2.1 PIR Sensors

PIR sensors function by detecting the change in infrared radiation across its FoV.
For binary PIR sensors, the change in infrared radiation will result in a “1” for a
detected human subject and a “0” for no human subject detected. With infrared
radiation being the resultant of temperatures greater than absolute zero temperature,
other objects could potentially trigger a binary PIR sensor. For example, animals
walking across the FoV of the PIR sensor, as well as a potential ball, car, or other
object, could theoretically cause a false positive for a binary PIR sensor. When
human bodies radiate infrared radiation from their body, there is a significant energy
loss. The infrared radiation lost from a human body can be modeled by Eq. (1)
below, which relates the energy loss from a blackbody (T) with its surroundings
(Ts). In Eq. (1), the total power radiated from the human body (Wtot) is represented
by this energy loss (T4 − Ts

4) multiplied by the total surface area of the human
in question (S) and the Stefan-Boltzmann constant (σSB) [15]. Eq. (1) proves the
ambient environmental dependence on the infrared radiation of a human subject.

Wtot = SσSB

(
T 4 − T 4

s

)
(1)

Analog PIR sensors output the voltage readings of the detected infrared radiation
from a PIR sensor instead of the binary output, where an object in motion across
the FoV will trigger a sinusoidal swing for the positive and negative terminals of the
pyroelectric elements indicating human presence. For a typical human in motion,
this will cause a swing to the maximum voltage and back to the minimum voltage;
however, this sinusoidal swing is dependent on the mentioned ambient environment,
and the motion and distance of the human subject. As a result, DL was proposed as
a solution to learn from the varying outputs of the analog PIR sensor for various
classifications including differentiating ambient environments, occupancy counts,
human locations, and human subjects.

The FoV of a PIR sensor is generally expanded with the addition of a Fresnel
lens. The Fresnel lens works to distribute the FoV of a PIR sensor into many
evenly spaced fan-shaped zones with alternating polarities [16]. The Fresnel lens
also works to expand the FoV of the PIR sensor by focusing the thermal image on
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Fig. 1 Novel MI-PIR system including the (a) the Panasonic AMN24112 and (b) the full design

the internal elements, which converts the thermal energy of the image into heat.
Varying PIR sensors use different Fresnel lens and thus, there exist different FoV
ranges for each PIR sensor [17]. In our work, we utilize the Panasonic AMN 24112
PIR sensor with analog output as identified in Fig. 1(a). The Fresnel lens on the
Panasonic AMN 24112 PIR sensor expands the FoV to a recorded horizontal 93◦
and vertical 110◦.

As stated, PIR sensors rely on a change in infrared radiation for accurate
detection of a human subject. Due to this, stationary human subjects often go
undetected and result in a major drawback to the deployment of PIR sensors in
monitoring and security applications. To combat this issue, multiple designs have
been proposed for the accurate and reliable detection of stationary subjects with
a PIR sensor. Initial designs utilize additional hardware with the inclusion of an
optical shutter to periodically chop the FoV of the PIR sensor to artificially cause
a motion change for the stationary human subject [18]. In addition, Ya Wang’s
group at Texas A&M has been awarded a one-million-dollar grant to enhance an
optical shutter design for more reliable energy management solutions. The goal of
the project is the development of an advanced, low-cost occupancy sensor named
SLEEPIR that enhances industry PIR sensors for more accurate detection [19–24].
In our work, we propose two varying systems for stationary human subject detection
using a PIR sensor. MI-PIR, the first design, classifies room occupancy through a
36 s rotation to induce the motion necessary for human detection. CM-PIR, on the
other hand, relies on the chest motion from the heart to detect stationary subjects.
These two designs will be presented further throughout this chapter.

2.2 AI

AI refers to the use of a computer to mimic human knowledge. The origin of AI can
be traced to the 1950s, but overall, the field of AI is still premature [25]. Machine
learning (ML) is a subset of AI and refers to a computer’s ability to train itself
without being explicitly told how to do so. DL is a subset of ML and is referred to
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as a type of neural network, one that trains itself through multilayered networks of
data operation [26]. DL is an immensely powerful tool that can automatically learn
from unstructured datasets, learning the slight variations that exist between the data
samples while functioning like the neurons in the brain. AI is consistently used with
non-contact ambient sensors to learn from the complex scenarios that exist withing
these datasets. There exist various algorithms utilized for this purpose including ML
algorithms such as Random Forest, Support Vector Machine, and Gaussian process
regression (GPR) and DL algorithms including artificial neural networks (ANN),
recurrent neural networks (RNN), and convolutional neural networks (CNN). In our
work, we utilize GPR for precise indoor localization and ANN, RNN, and CNN as
comparison for each other classification.

A Gaussian process can be completely defined by its mean and covariance
function and is defined as a collection of random variables, with any finite number
of which have (consistent) joint Gaussian distributions. GPRs remain powerful
tools due to its probabilistic methods of predicting the output mean and variance
conditional on a specific input at a specific instance of time. GPR models differ
from classification models in that a location estimation can be predicted from GPR
models, whereas a classification algorithm outputs classification results. Various
parameters in the implementation of these models are to be optimized, including
the kernel function [27]. There exist a variety of kernels that are often used
in implementation of GPR models including Squared Exponential, Periodic, and
Matern, just to name a few [28]. Performance of these models are often indicated
with the quantification of the mean squared error (MSE) which is shown in Eq. (2).
yj refers to the observed values, y(xj) refers to the predicted values, and N is the
number of data points in the training set [15].

MSE = 1

N

N∑
j=1

(
yj − y

(
xj

))2 (2)

In terms of DL, ANNs are the most basic feedforward approaches to learning and
are used for a variety of tasks including pattern recognition, image recognition,
and natural language processing. ANNs are composed of multiple dense layers
that feedforward and do not learn recursively [29]. RNNs, on the other hand, are
a recursive approach to learning, having an internal memory and making them
particularly useful for time-series data classifications. RNNs work by taking time
and sequence into account, where the output of one layer will in turn be fed to the
input of a previous layer [30]. This approach to learning suffers from the vanishing
gradient issue and must be overcome with the use of long-short term memory
(LSTM) units in the application [31]. CNNs are often utilized for image recognition
tasks as their architecture is designed specifically for this purpose. CNNs consist of
multiple layers including fully connected layers, max pooling layers, convolutional
and non-linearity layers [29].

Adequate reporting of these algorithms is essential, and the metric used for
performance measurement often varies based on the classification task at hand.
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Broadly, Explainable AI is a new field that is based on assessing the performance of
ML algorithms to alleviate the black-box stigma surrounding AI [32, 33]. In general
cases, reporting of the performance is completed with metrics such as accuracy, F1
score, area-under-the-curve, precision, or recall. Accuracy refers to the number of
correct predictions that the statistical modeling labeled correctly divided by the total
number of predictions that were made. Classification reports are often presented as
a table that includes accuracy and various additional metrics. Visually, reporting
of the confusion matrices, visual data, and training and testing curves also aids in
the understanding of the performance. Confusion matrices visually identify the true
positive (TP), true negative (TN), false positive (FP), and false negative (FN) of each
classification by presenting the number of testing samples that were correctly and
incorrectly classified. The confusion matrix provides actual values and expected
values on the axes, and the resulting internal values are indicative of the number
of correctly labeled samples in either normalized or unnormalized form. For the
purposes of human detection and biometric authentication, we primarily rely on
accuracy, visual data, classification reports, and confusion matrices to present the
performance of the algorithms used.

2.3 Human Monitoring

There exist various methodologies for human monitoring purposes using ambient
sensors and AI in related work. Ambient sensor modalities in literature that have
been utilized for human monitoring purposes include microwave sensors, thermal
sensors, and optical sensors. In terms of utilizing microwave sensors for human
monitoring purposes, multiple sensors were distributed in the environment for multi-
person HAR using a 3D-CNN for learning [34]. Using solely ambient thermal
sensors and ML algorithms, detection of human presence was shown to be 100%
accurate, with additional classifications of occupancy count estimation and HAR
proving 100 and 97.5% accurate, respectively. The position of the thermal sensors
affected the results of this work, with three sensors being deployed in this work,
each having a horizontal FoV of 125◦ ([35]). An infrared active imaging system and
a CNN learning model were utilized for human detection with a specific application
to instances of home fires in another related work [36]. Further, image sensors were
deployed iteratively for occupancy counts in a large exhibition hall with optical
sensors deployed at entrances and exits. Learning of the occupancy counts in each
zone of the exhibition hall was accomplished with an RNN with LSTM units [37].

Worth mentioning are the commonality of utilizing ambient signals for human
monitoring purposes. In terms of leveraging ambient signals for human monitoring
purposes, related works have utilized passive radio frequency identification (RFID)
tags, passive RF signals, active RF signals, and Wi-Fi CSI. For example, a
SmartWall composed of multiple passive RFID tags were utilized for localization
and HAR purposes [38]. Similar in usage of passive RF-based signals, our group has
published work on utilizing passive RF signals for human detection in residential
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and automobile environments. This work utilizes principal component analysis
(PCA) for dimensionality reduction, recursive feature elimination with logistic
regression, and ML algorithms for accurate human detection [39]. More common in
literature are the use of active band RF signals for human monitoring applications.
State-of-the-art research performed by the MIT CSAIL group has shown the efficacy
of such approach, through the classification of human activities and their respective
locations even through walls and occlusions [40–42]. Further, a millimeter-wave
radar system was proposed for its low-cost approach in the proposed RadHAR
system for HAR of five different exercise activities using a CNN-LSTM learning
model [43]. Wi-Fi CSI via IoT devices can also prove successful at human
monitoring, for HAR was shown to achieve 97.6% accuracy using a novel DL
framework which was coined AE-LRCN [44].

In addition to the success of the previously mentioned sensor modalities, PIR
sensors also have proven successful in human monitoring applications. Through a
sensor fusion of PIR sensors and camera modalities, HeteroSense obtained accurate
classifications for presence, occupancy count, trajectory or tracking, and basic
multiclass activity recognition [45]. In HeteroSense, stereo-vision cameras are
placed at entrances and multiple PIR sensors are deployed throughout the indoor
environment for accurate classification. Sensor fusion with PIR sensors is popular
in human monitoring applications, as the binary output of the PIR sensor is used
for trajectory detection of the human subject and the other sensor modality is
traditionally used for more continuous monitoring in sedentary moments. Another
sensor fusion system can be seen with a geriatric monitoring application utilizing
eight PIR sensors in a mock apartment environment with one wearable device
connected to the thigh of the monitored subject. In this instance, a Bayesian particle
filtering sensor fusion algorithm is applied for greater indoor localization accuracy
[46]. In a similar sense, PIR sensors were deployed for early detection of dementia
based on classification of travel patterns with a CNN learning model [47]. In terms
of HAR using only PIR sensors, in the proposed system ALPAS, four activities
completed on a sofa were classified with a F-measure of 57% using only two analog
PIR sensors [48].

Although indoor localization has been classified through DL algorithms, indoor
localization via GPR models is a common approach to localization. Regression is
seen as superior in terms of indoor localization as estimation of testing data can
apply to new coordinate systems in the environment of interest. One example of such
an approach for indoor localization is coined DeepMap, a deep Gaussian process
for indoor radio map construction and indoor localization [49]. The received signal
strength (RSS) of Wi-Fi signals are used as fingerprints in this related work, for
which the deep Gaussian process is fed and learns from these RSS values and their
respective coordinates for accurate human localization. Similarly, authors in related
work utilized Wi-Fi received signal strength indicator (RSSI) fingerprinting data
for indoor localization via GPR, in which a CNN was also deployed to learn the
features from RSSI data before being fed into the GPR model. The RSSI fingerprints
were pre-processed in this case to represent images, in which such a designed
process in this work of CNN + GPR with a Matern kernel proved superior to the k-
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Nearest Neighbor algorithm in compared work [50]. A novel multi-person tracking
framework was proposed utilizing a GPR observation model through a transfer
learning approach. The prediction from the Kalman Filter feeds into the GPR model
to estimate the targets’ location and then the output of the GPR model is then used
as the measurement input into the Kalman Filter [51]. In a work completed by our
research group, the offline training phase is modeled by a 3D point cloud and the
developed GPR model learns from the RSS of Wi-Fi signals for matching completed
during the online stage. This methodology proved accurate for indoor localization
on an iOS platform [52].

For elderly monitoring, indoor localization and HAR are two applications that
significantly aid in greater independence for the monitored person. The caregiver
and hospital system will be able to check on the status of the aging individual and
monitor potentially harmful activities without being physically in their presence.
Common in many systems designed specifically for the elderly and neurodegen-
erative populations is the detection of fall events, as fall events are the leading
cause of death in these populations [53]. Many fall detection systems rely on
sensors embedded in wearable devices for accurate detection of fall events, yet
there exist ambient sensing systems that are designed for accurate classification of
fall events. One such instance is proposed where the authors used a video-based
detection system [54]. Human poses in this related work are used as features that are
fed into a CNN for feature extraction and classification, achieving high sensitivity
and specificity in comparison to other fall detection systems using raw RGB data.
In neurodegenerative monitoring, an ultra-low-power radio signal device coined
Emerald was developed and subsequently monitored seven PD patients passively
with a focus on gait, home activity, and time in bed [55].

With the presentation of related systems based on ambient sensors and statistical
learning algorithms, one can determine the shortcomings in these various systems.
For example, those systems that rely on video-based detection are prone to privacy
concerns that limit its long-term usage in at-home monitoring systems. In addition,
video-based systems can be expensive for widespread deployment in assistive
care facilities. Some systems with active sensors are prone to health and energy
concerns, such as in the case of active RF signals. Some systems that deploy
specific sensors, or PIR sensors in the traditional sense, are limited by the small
FoV, requiring multiple sensors deployed in the monitored environment. Terminal
devices used in sensor fusion with PIR sensors require the user to remember to
consistently wear the device, causing intrusion on the monitored human subject.
Therefore, as mentioned, there exists a need for inexpensive, non-intrusive, accurate,
and expanded ambient sensing systems towards the reliable monitoring of aging
individuals. A PIR sensor that extends the FoV to monitor an entire environment
and accurately detect stationary human subjects could potentially fill the gaps in
this related work.
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2.4 Biometric Authentication

Biometric authentication methodologies vary in the modality and the metric used for
classification. For instance, wearable devices have utilized biometric authentication
methodologies towards the goal of secure and implicit authentication of these
devices. One instance of this was presented with the usage of hybrid biometrics
for biometric authentication, using calorie burn and metabolic equivalent of task
(MET) metrics during sedentary and non-sedentary stages [56]. In terms of ambient,
non-contact sensing for authentication purposes, many systems rely on camera
modalities, such as in the case of imaging of fingernail plates and finger knuckles.
Utilizing rank-level fusion of the two image features, the proposed system achieved
100% accuracy from a database containing 890 total images of 178 volunteers [57].
These examples highlight the variations in methodologies for the common biometric
authentication goal. Towards biometric authentication systems that are less prone to
forgery and indicate living human presence, heart-related biometrics have garnered
much attention in recent years.

Electrocardiogram (ECG) is a measurement of the electrical activity of the
heart, which is generally dependent on surface electrodes. The waveforms that
exist in an ECG signal include the P, Q, R, S, and T waves, which are indicative
of repolarization and depolarization of various parts of the heart [15, 58]. These
collected ECG signals are commonly deployed for biometric identification and
biometric authentication purposes based on the unique QRS complex that exists
for each heartbeat of the ECG signal. More generally, these methods for biometric
identification and authentication are based on the physiological background that
everyone has a unique heartbeat due to the variations in opening and closing of
valves and varying sizes and shapes of each heart. Common methodologies for
biometric authentication and identification with ECG signals rely on DL to learn
the slight variations that often exist between the QRS complexes. For example, a
CNN was deployed to intrinsically learn the features contained within the MIT-BIH
database of ECG signal data resulting in a 99% accurate biometric identification sys-
tem. The novelty of this proposed system is such that this methodology eliminates
the usual time-extensive manual feature engineering process [59]. Likewise, another
biometric identification system based on ECG signal data was proposed, where
in this instance, the novelty was based on the QRS-resampling strategy that was
proposed to handle the variations in heart rate. This QRS-resampling strategy with a
PCANet DL architecture allowed for a 94.4% accurate identification system that is
robust to heart rate variability [60]. Towards the goal of improving the generalization
ability of ECG identification systems, a cascaded CNN was proposed for biometric
identification of ECG signal data in another related work, where the F-CNN is
used for feature extraction and M-CNN is used for classification [61]. Although
accurate enough to identify every individual included in the dataset, ECG signals
require contact with the user and are reliant on expensive hardware. To improve
biometric systems for everyday usage, such as in the case of IoT, capturing heart-
related signals with more advantageous sensor modalities is examined.
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Collecting an accurate and informative heart rate signal is more difficult with
non-contact sensors. A few solutions, however, have been proposed in recent
years on this topic. ECG signals can now be captured via wearable devices such
as an Apple Watch or in the case of capacitive coupled electrodes embedded
within clothing. In the latter example, the researchers proposed methods for
artifact reduction in such non-contact ECG monitoring examples, showing that their
proposed empirical wavelet transform with traditional wavelet transform approach
was successful at reducing motion artifacts and restoring the QRS complexes [62].
Moreover, the breathing pattern and respiratory rate (RR) has been shown to be
accurately quantified via RGB cameras [63]. Collecting these signals would allow
for a non-contact, heart-related biometric system; yet, collecting RGB images raises
privacy issues that should be avoided for a long-term monitoring solution. In more
recent work, the WiFi CSI ambient signals have shown success at estimating
the RR through high-resolution spectrogram-based CSI features for a COVID-19
monitoring application [64]. A PIR sensor would address the shortcomings of other
sensor systems and fit the needs of a long-term monitoring solution. Presented in
related work is a PIR sensor that accurately estimates the resting heart of 30 subjects
using a novel acceleration filter that is presented in Eq. (3) [65]. The magnitude
of the heart-rate signal is much greater than the respiratory signal for the applied
acceleration filter, allowing for accurate resting heart rate estimation from a PIR
sensor in this related work. The novel acceleration filter in Eq. (3) computes the
second derivative with a convolving triangular window and simple Lagrange low
pass filter to the raw PIR analog sensor data.

g
′
2 = [1 4 4 − 4 − 10 − 4 4 4 1] (3)

This acceleration filter in Eq. (3) is utilized and included as a feature for biometric
authentication in our work. In their methodology, subjects sat 1 m away from the
PIR sensor while remaining motionless, and their chest motion was collected at
a 10 Hz sampling rate [65]. Showing to be successful at extracting the heart rate
of individuals with a PIR sensor, we follow a similar methodology in our CM-
PIR system. In comparison to a proposed system using a PIR sensor for biometric
authentication, a system coined Cardiac Scan utilizes a DC-coupled continuous-
wave radar for the authentication of 78 subjects at one common location. The cardiac
motion acts as a biometric in this case, showing to be 98.61% accurate using a SVM
algorithm with RBF kernel [66]. This non-contact biometric authentication system
for an IoT device indicates the similarity to our proposed CM-PIR system.

3 Motion Induced PIR

MI-PIR was previously introduced as a novel method for stationary human presence
detection using one analog PIR sensor and an ANN DL model [13]. Additionally,
MI-PIR consists of a robotic actuator, a platform, a thermal insulator, a microcon-
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troller, and a PC. The complete set-up of MI-PIR is included in Fig. 1(b). The
thermal insulator is made of cardboard, as this material was shown to accurately
block the infrared radiation detected from the movement of the robotic actuator. A
more long-term material will be developed and replace the cardboard in this system
in a future model. The thermal insulator sits on the platform and subsequently the
robotic actuator. The robotic actuator used in the MI-PIR design is the Dynamixel
MX-28, while the platform is a Hokuyo UTM-30LX-EW which serves no other
purpose than to be used as a flat surface for the thermal insulation material. The
Elegoo Uno R3 microcontroller connects to the Panasonic AMN24112 PIR sensor
for data conversion and transmission to the PC. This full MI-PIR design classifies a
room occupancy and related parameters every 36 s due to the 26 s forward motion
and the 10 s backward motion to complete one full cycle.

In our initial work, MI-PIR was extended to classify three additional occu-
pancy parameters on top of stationary human presence detection, which included
occupancy count estimation, relative location classification, and human target dif-
ferentiation. New in this work is the addition of precise indoor localization and HAR
in both an office environment and residential environment. We utilize a GPR model
for precise indoor localization achieving 493.7 cm2 MSE in an office environment
with multiple users and 426.4 cm2 MSE for Student 1 only of Table 1. An RNN
model with LSTM units for HAR achieved 100% accuracy in the office environment
for classifying activities of Student 1 only. In the residential environment, the GPR
model achieved 131.4 cm2 MSE for precise indoor localization of one individual
and the RNN architecture achieved 98% accuracy between six total labels for HAR.
The data collection, pre-processing, and results of the MI-PIR system will be fully
addressed in this section.

3.1 Ambient Environments

The office location is in Dodge Hall, an academic office building on the campus of
Oakland University in Rochester, Michigan, USA. This office location consists of
five different PC locations labeled as “Location (L1)” through “Location 5 (L5)”,
where MI-PIR is placed for data collection at Location 1. In addition, the office
location is split into three different walking paths for HAR data collection. The
office location is 5.18 m in length and 3.96 m in width and is only accessible by key
access. As a result, student researchers are of those with access and are commonly
using the office space. Each researcher in the lab has a common workstation, but due
to fluidity in the student researchers, there does exist some variation in the student
locations. The office location has been modeled and is presented below in Fig. 2.
L1 through L5 label the locations of student researchers and W1 through W3 label
walking paths in this figure.

In relation to the office location, a residential location is more indicative of an
elderly monitoring situation, and thus the MI-PIR system was additionally tested
in an apartment bedroom. The residential environment is 4.57 m in length and
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Table 1 MI-PIR data collection in the office space location for each of the five classifications
and two regression models. The number label used for DL, along with the real label and available
samples for a 36 s rotation time is included

Classification Number label for ML Real label Available samples

Room classification 0 Unoccupied 854
1 Occupied 2803

Occupancy count
estimation

0 No people 854

1 One person 1936
2 Two people 702
3 Three people 165

Relative location
classification

0 Unoccupied 854

1 Location 1 174
2 Location 2 1240
3 Location 3 153
4 Location 4 369
6 Locations 1 and 2 105
10 Locations 2 and 3 44
11 Locations 2 and 4 100
12 Locations 2 and 5 250
15 Locations 4 and 5 203
23 Locations 2, 3, and 5 138
24 Locations 3, 4, and 5 21
25 Locations 2, 4, and 5 6

Human target
differentiation

0 Unoccupied 854

1 Student 1 1936
2 Students 1 and 2 32
3 Students 1 and 3 181
4 Students 1 and 4 386
5 Students 1 and 5 103
6 Students 1, 4, and 5 98
7 Students 1, 3, and 5 46
8 Students 1, 4, and 6 21

Indoor localization (250, 10) Unoccupied 7136
(415, 70) Location 1 279
(415, 265) Location 2 1883
(250, 265) Location 3 356
(80, 265) Location 4 699
(50, 60) Location 5 618

Indoor
localization—
Student
1

(415, 70) Location 1 174

(continued)
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Table 1 (continued)

Classification Number label for ML Real label Available samples

(415, 265) Location 2 483
(250, 265) Location 3 153
(80, 265) Location 4 369

Activity
recognition—
Student
1

0 Unoccupied 191

1 Sitting 102
2 Walking 101

Fig. 2 The model of the office space. “L1” through “L5” indicate the five stationary locations in
the office space and “W1” through “W3” indicate the three walking paths during the HAR data
collection. MI-PIR is located on the counter at L1

3.65 m in width, just smaller than that of the office environment. In this location, a
relative location classification and HAR classification are completed. In addition,
a precise indoor localization is applied to identify the results of estimating a
human occupant’s position in a residential environment. This specific residential
environment is modeled in Fig. 3. This apartment model indicates the locations
for which each activity is completed, specifically presenting Activity 1 (“A1”) of
“Working at the Desk” at Location 2 (“L2”) in Fig. 3. Further, Location 1 on Fig. 3
(“L1”) indicates the locations of Activity 2 (“A2”) and Activity 3 (“A3”), “Laying
on the Ground” and “Exercising on the Ground”, respectively. Location 3 is located
at the bed for which Activity 4 (“A4”) and Activity 5 (“A5”) are completed of
“Watching TV on Bed” and “Sleeping on Bed”, respectively.
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A4, A5
L3

A2, A3
L1

A1
L2

4.57 m

3.
65

m

Fig. 3 Model of residential environment data collection. MI-PIR is located next to the bed,
indicated by the outward signals

3.2 Data Acquisition

For data acquisition, MI-PIR scans the room every 36 s in a 130◦ motion, including
both a forward and backward trajectory. As a result, the horizontal FoV is increased
from 93 to 223◦ with the MI-PIR design. Data was collected at a 10 Hz sampling
rate. Each data sample is synced to match the ambient environment e.g., each
data collection sample starts with the MI-PIR system pointing in the farthest east
direction. For unoccupied data collection, an additional 36 s is included to copy the
data that matches the accurate situation. The data collected was copied from the
serial monitor of the Arduino integrated development environment (IDE) and then
converted to a CSV format, where it was cleaned and manually labeled. Each data
sample includes the labels for learning and the time for each classification. The data
samples are finally sent to their respective folders for each classification.

3.2.1 Office Environment

Office data collection for stationary human presence detection, occupancy count
estimation, relative location classification, and human target differentiation was
completed between August to December of 2019. This covered the change in the
summer semester to the fall semester on campus, allowing for variations in the
student researchers and their usual locations in the office environment. The ambient
environment in the data collection varied due to the sunlight changes between
seasons that existed with the open windows in the office. These changes between
locations and ambient environments allow for a more robust monitoring system.
Precise indoor localization via GPR is based on the same data collection; however,
data collection for the “walking” label of HAR was collected in March by Student 1.
HAR in this office environment is completed with Student 1 only and precise indoor
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localization is presented with a Student 1 only model and with a full data collection
model.

In terms of the office environment, the room occupants are not aware of the data
collection process while its ongoing, allowing for a data collection process that is
more representative of the workday. Data collection is a continuous process until
the room state is changed e.g., a room occupant stands up, changes seat location,
leaves the room, etc. In that case, Student 1 who runs the data collection process,
starts a new continuous data sample. Overall, Student 1 ensures the data collection
process is accurate, as this student participates in each of the data collection samples.
In terms of the unoccupied scenarios, Student 1 remains outside the office door,
ensuring no student researcher or other university employee enters the office during
this process. For the “walking” scenarios, Student 1 walked continuously in three
different specified paths as included in Fig. 2. W1 refers to the first specified location
for a continuous pacing path, W2 is the second, and W3 is the last. All classifications
include the recorded “sitting” samples of all the students, whereas the “walking”
samples of Student 1 were included for the HAR classification only.

For indoor localization, more unoccupied slots are appended to match the number
of coordinates presented in a three-person example that is needed for ML. For
example, a data sample of Location 1 and Location 3 would include the coordinates
“(415, 70), (250, 265), (250, 10)”, as the third person is not present in the data
collection process. Data for all six classifications (room classification, occupancy
count estimation, relative location classification, human target differentiation, pre-
cise indoor localization, and HAR) is presented in Table 1. This table includes the
number label or coordinate system used for ML, the actual label, and the number of
36 s samples for each label.

3.2.2 Residential Environment

Residential data collection was completed by Student 1 only for five different
activities and one unoccupied scenario. As Student 1 is the only occupant for
data collection, the subject knows data collection is ongoing in this case. The full
complete breakdown of data collection for relative location classification, HAR,
and precise indoor localization in the residential environment is included in Table
2. The five activities and their integer labels for ML are included in this table, with
the addition of the coordinate system based on the activity completed. The locations
are not provided the coordinate system in this case, as the activities differentiated
slightly at the precise location. The unoccupied scenario was given a coordinate
system close to the entrance door, like that of the office environment indoor
localization. Multiple activities are completed at the same location as to prove that
the system is not dependent on location for classification e.g., two activities at the
same location can be differentiated based on the motion of the subject. Activity 3
of “Laying on the Ground” was included in the dataset as an activity representative
of a possible fall in the geriatric population. In this instance, Student 1 remains
motionless on the ground throughout the continuous data sample collection. All
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activities in the dataset for the residential environment are completed continuously,
where each activity is roughly 2 h of data with at most three continuous data samples
for each activity.

3.3 Data Pre-processing

Collected data from MI-PIR was pre-processed in Jupyter Notebook using Python.
To increase the data samples and allow for quicker classification times, continuous
data samples were batched into 360 s samples based on the time data included in
the CSV file. The 360 s time window accounts for a 36 s complete cycle at a 10 Hz
sampling rate. Those that were less than 360 s samples at the end of the continuous
data sample were deleted. These 360 s samples were then ready to be used in
feature extraction. In total, there exists 3657 samples for the first four classifications
included in Table 1, 10,971 for precise indoor localization of the full data collection
model due to the splitting of individual labels and the appending of unoccupied
scenarios, 1179 for precise indoor localization of Student 1, and 394 samples for
the HAR classification of Student 1. For the residential environment, there are 1147
samples to be utilized for training and testing. The full complete breakdown of data
collection for relative location classification, HAR, and precise indoor localization
in the residential environment is included in Table 2. Data for each classification in
each environment is split into 70% training, 15% testing, and 15% validation for
learning purposes.

Table 2 Data collection for the MI-PIR system in a residential environment. Locations,
coordinates, and activities with their integer labels used for ML and DL are presented

Classification Number label for ML Real label Available samples

Relative location classification 0 Unoccupied 185
1 Location 1 370
2 Location 2 208
3 Location 3 384

Indoor localization (425, 50) Unoccupied 185
(290, 260) Working at desk 208
(225, 150) Laying on ground 186
(200, 150) Exercise on ground 184
(125, 260) Watch TV on bed 174
(100, 270) Sleep on bed 210

Activity recognition 0 Unoccupied 185
1 Working at desk 208
2 Laying on ground 186
3 Exercise on ground 184
4 Watch TV on bed 174
5 Sleep on bed 210
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Through various feature experimentations, the signal power of the time-series
raw MI-PIR analog voltage was found to be the most indicative of human presence.
The signal power of the raw voltage was taken for each 360 s time window, where
the absolute value of the fast Fourier transform (FFT) allowed for this calculation
to be completed. This calculation was also completed with Python in the Jupyter
Notebook. Other experimented features include discrete wavelet transform (DWT),
raw voltage, and a standard deviation statistical feature, but all of which proved
poor in stationary human presence detection using an ANN. Further, statistical
testing of stationary human presence proved inadequate due to the multiple ambient
environments collected over the multiple seasons in the office environment. The
signal power not only achieved high accuracy for room occupancy, but for each of
the other classifications. The signal power feature vector is normalized from 0 to 1
using min max normalization of the sklearn package before being used for many of
the classifications. The GPR model performed better with the raw signal power, and
in some cases the raw signal power showed better results in the neural networks,
such as in the case of the maximum sensing distance quantification that will be
presented later. Overall, the raw signal power and the normalized signal power are
both used in the statistical learning models developed for the MI-PIR system.

3.4 AI

Four different models have been developed for MI-PIR related classifications. As
mentioned, these models include three DL algorithms and one ML algorithm. An
ANN, RNN, and CNN were all utilized for the four original occupancy parameters
as comparison to identify the maximum accuracy obtained between the three neural
networks. The GPR model is utilized for precise indoor localization. The most
accurate neural network architecture will be utilized for the HAR classifications
between both environments. All models in this work were built with the Keras DL
framework in Python.

The ANN architectures used differ with the classification due to the number
of classes outputted. For example, the human target differentiation requires eight
classes, and the room occupancy classification parameter is only a binary classifi-
cation which requires two classes. With that, room occupancy classification utilizes
the binary crossentropy function as the loss function, and the other three parameters
utilize the sparse categorical crossentropy function as the loss function. The room
classification also differs in the fact that it utilizes the stochastic gradient descent
(sgd) optimizer, whereas the other four classifications utilize the Adam optimizer.
In general, the ANN model is composed of an input layer, a hidden layer, and
output layer with multiple variations in the dimensions of each due to the number of
classification output labels that are needed. For example, the ANN model for room
classification of binary output consists of two dimensions for the input layer, two for
the hidden layer, and one for the output layer. For an extensive table highlighting the
architectures of each ANN model used for room classification, occupancy count
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Fig. 4 The RNN architecture
utilized for the HAR
classification in the office
environment. The other RNN
architectures used in this
work follow a similar
structure with varying output
shapes due to the variation in
classification

estimation, relative location classification, and human target differentiation, we
direct the reader to our previous work [13].

The RNN model developed consists of two LSTM units, two dense layers, and
three dropout layers to aid in overfitting of the models. The LSTM units consist
of 128 dimensions, the dense layers of 32 for all but the output layer of the binary
classification in which a dimension of 2 is utilized, and the dropout layers utilize 0.2
and 0.1 weights. Rectified linear unit (ReLu) and softmax are utilized for activation
functions, where softmax is used as the output activation function. The Adam
optimization function and sparse categorical crossentropy function are utilized for
all four original models. Figure 4 presents the RNN architecture used for the HAR
classification, however, the other RNN architectures used follow a similar structure.
All original four occupancy classifications use 100 epochs for learning, whereas the
RNN model for HAR classification uses 50 epochs.
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The CNN developed includes two convolution layers, one dropout layer, one max
pooling layer, and two dense layers. The convolutional layers use filters of 64 and
kernel size of 3, the one dropout layers uses a weight of 0.5, max pooling layer uses
a pool size of 2, and the dense layers consists of one that is 100 dimensions, and the
output dense layer is the dimension of the number of labels. The relu and softmax
activation functions are utilized similarly for the CNN model. Sparse categorical
crossentropy is utilized for the loss function of these models and Adam is used as
the optimizer function. 10 epochs are used for the CNN.

The GPR model utilized for precise indoor localization is developed with the
sklearn package in Python. The MSE output of the GPR model was compared
with three different kernels: Matern, RBF, and ExpSineSquared. The Matern kernel
showed the best result and is thus utilized for the precise indoor localization
regression problems in this work.

3.5 Occupancy Parameter Classification

The classification reports for the four original occupancy parameters using an
ANN in the office environment (room occupancy, occupancy count estimation,
relative location classification, and human target differentiation) were reported in
our previous work [13]. The room classification occupancy parameter for detecting
human presence in an office environment achieved 99% accuracy. The occupancy
count estimation of differentiating between no people and, at maximum, three
people achieved 91% accuracy. Relative location classification at differentiating
between Location 1 through Location 5, with multiple combinations, achieved 92%.
Finally, human target differentiation of eight different combinations of people with
an unoccupied scenario achieved 93%.

For relative location classification in the residential environment, we used the
developed RNN DL model to achieve 98% accuracy. With three locations and a
constant human subject present, Student 1, the relative location classification was
less complex than that in the office location. However, for an elderly monitoring
system, it is imperative to know the location of the elderly individual in a non-
intrusive and passive manner. The location of the elderly individual can provide
peace of mind to the caregiver through the monitoring system. As such, this
classification is still essential to report towards the goal of an accurate geriatric
monitoring solution.

3.6 Expanding MI-PIR

Before applying the MI-PIR system to precise indoor localization and HAR, we
aimed to optimize and quantify the parameters of the MI-PIR system. These metrics
include the selection of an optimal DL architecture, optimal rotation time, and
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maximum sensing distance. From the results, the RNN model and 36 s rotation
time are found to be the optimal DL model and rotation time, respectively. From the
maximum sensing distance quantification, MI-PIR can accurately detect stationary
and non-stationary subjects up to 21 m. The complete results of this expansion are
included below.

3.6.1 Optimization

In the hopes of a quicker classification time, the optimal rotation time for classifica-
tion of the room occupancy parameters in the office environment was experimented
with. Three different classification times were addressed for comparison. These
include 36 s for a complete rotation of the robotic actuator, 26 s for the front scan
only, and 10 s for the backward scan only. This analysis was completed within the
developed Python code, where the batches were first developed for the 36 s rotation
time. Following, the last 10 s would be removed for the 26 s examination and vice
versa for the 26 s classification. Thirty-six seconds proved to be the most accurate
of the three times, and despite the additional time required, the relatively large
increase in accuracy outweighs the additional classification time. The results of this
optimization are included in Table 3 with reported accuracies from the previously
developed ANN.

The RNN and CNN introduced in this section were developed to compare the
reported accuracies from the ANN to more sophisticated models. The results of this
optimization are also presented in Table 3 for each of the four occupancy parameters
in the office environment. From these results, the RNN is shown to be the most
accurate DL model for MI-PIR, as indicated by the maximum accuracy obtained for
each of the occupancy classifications. The RNN performing the best in these four
classifications is expected due to the time-series nature of the input data. The RNN
model will be utilized for the rest of the work due to these results.

3.6.2 Quantification

Utilizing the RNN DL model, we aimed to quantify the maximum sensing distance
for possible extension of the design to larger environments. In addition, this metric
would allow for better comparison to existing human monitoring systems. In this
experiment, we collected data of Student 1 walking and standing at iterative linear
distances away from the MI-PIR system in three different ambient environments:
a residential hallway, a construction warehouse, and a gymnasium. Three ambient
environments were included as there was a need for greater distance away from the
sensor following the results of each environment. In the residential environment,
data was collected for an unoccupied scenario and from 1 to 12 m away from
the MI-PIR system. In the construction warehouse, data was collected for an
unoccupied scenario and 13 through 19 m away from MI-PIR at 1 m increments.
In the gymnasium, data was collected for an unoccupied scenario and distances at
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21, 41, and 43 m. For walking data collection in these environments, the human
subject paced a few meters back and forth, whereas for stationary data collection,
the human subject remained seated during the entirety of the collection. The
maximum sensing distance for a stationary individual and moving individual was
quantified by removing the data sample with the next farthest distance to quantify
the RNN accuracy. The manufacturer lists the maximum sensing distance of the
Panasonic AMN24112 PIR sensor as 10 m with the deployment of a PIR sensor
in the traditional approach. The results of this maximum sensing quantification
are compared between three different sample sets, one in which all the data is
included, one of just motionless data, and one of just walking data. The results of
this quantification are included in Table 4.

For each occupied scenario, about 3–5 min of data was collected with matching
unoccupied scenarios at each ambient environment for balanced data. Therefore, in
total, there exists 426 samples for maximum sensing distance quantification. With
motion and motionless data combined, the maximum sensing distance for 100%
accuracy was quantified as 41 m. With motionless data only, maximum sensing
distance for 100% accuracy was found to be 21 m. Finally, for motion data only, the
maximum sensing distance was also reported as 21 m.

From these reported results it is evident that MI-PIR has human detection
capabilities beyond the reported 10 m distance reported by the manufacturer.
The maximum sensing distance is quantified between three ambient environments,
causing the DL model to learn from multiple locations. For more accurate maximum
sensing quantification, data should be collected at one central location. The data
collection and results of this work is more robust however, due to the multiple
ambient environments. With the large jump between 21 to 41 m at the gymnasium
location, the maximum sensing distance could be greater than the reported 21 m for
stationary and non-stationary human subject detection. The 41 m maximum sensing
distance quantification, which includes all the data, allows for learning of double the
number of scenarios. With the additional training data, the distance of the monitored
human subject is expanded. Verification of the maximum sensing distance will be
addressed with additional data at the gymnasium location. With that being said, the
MI-PIR system has shown to expand the sensing distance of the traditional analog
PIR sensor to a recorded 21 m with motion and motionless data only, and even
further with all the data included.

3.7 Precise Indoor Localization via GPR

The GPR model was applied for a regression method of indoor localization. The
regression method, in comparison to the relative location classification, allows for
estimation of the human occupant in comparison to the ground truth coordinate
system. The coordinate system utilized for the precise indoor localization in the
office environment is presented in Table 1. Two classifications are completed for the
precise indoor localization in the office environment: one in which all stationary
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Fig. 5 Result of precise indoor localization using GPR with (a) all data (unoccupied result not
shown) and (b) Subject A

data collected is utilized and another in which only the data from Student 1 is
utilized. The Student 1 only model does not include data from Location 5 or
any unoccupied data, whereas the model including all the data does include the
unoccupied scenarios. Including two different regressions allows for a comparison
of the models in learning from the signal power from multiple subjects in the office
space to one in which there is only one person accounted for.

For multiple people, the MSE obtained is 493.7 cm2. The accuracy of this
model may be better represented visually. Figure 5(a) presents the accuracy of the
model for precise indoor localization using a GPR model with a Matern kernel
and with all the data collected for multiple variations in students present in the
office environment. This model does not visually include the clustering of the
unoccupied scenario, which is located near the door, as this data was only included
as a means of balancing the data to match the coordinate systems of three people.
With all the ground truth data for each location presented as red dots, and the
estimations presented in varying colors, one can determine that the developed GPR
model proved sufficient at clustering the testing data in their respective locations.
With the Student 1 only model, on the other hand, the model produced a MSE of
426.4 cm2. Although a better resulting MSE than the model with multiple people,
the MSE is relatively similar. Also, based on the visual representation in Fig. 5(b),
the clusters for the four respective locations of Student 1 are developed. The results
of this work indicate that MI-PIR proves to not only classify locations in an office
environment, but also estimate these locations in terms of coordinate systems. The
exact coordinates of the students were not measured during training data and the
student researchers were also free to subtly move their chairs. As a result, the
MSE is not an exact indicator of the performance of these models, but rather this
exercise proves to be a sufficient method for clustering of testing coordinates to the
ground truth coordinate system. With more precise ground truth data, the MSE is
hypothesized to decrease for both the full data collection method and for Student 1
only.
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Fig. 6 GPR model of the residential environment, where each color represents a different activity.
The yellow cluster near the entrance represents the unoccupied scenario

For precise indoor localization with a GPR model in the residential environment,
the reported MSE is 131.4 cm2. For better understanding of this reported metric, the
modeled residential environment provides the clustering of the precise locations of
each activity, as shown in Fig. 6. This model also proves accurate at clustering the
locations of the activities. As a comparison, the GPR model can be more accurate in
indoor localization as the estimation of future activities can be applied throughout
the environment, whereas the classification of locations is either classified correctly
or not. The unoccupied scenario is included in this visual display of the model, as
indicated by the small yellow cluster close to the entrance door in Fig. 6.

3.8 HAR

As a proof of concept, a simple HAR classification model was developed for the
office environment. Simple classification of sitting, walking, and an unoccupied
scenario was hypothesized to show some level of indication that MI-PIR could
accurately classify various activities in its FoV. The results of this classification
would allow for expansion to a residential environment for a HAR system more
indicative of the activities that an elderly individual would complete.

Student 1 data was only utilized in this classification. This data included
stationary moments from the original data collection that was utilized in prior
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classification and regression problems. Specifically, this stationary data included
samples from Location 2 and Location 4. In addition, this dataset includes walking
sets from all the walking patterns: W1, W2, W3. In these instances, Student 1 paced
for as long as 15 min, providing continuous data samples of walking data to classify.
Overall, there exists 394 samples to be utilized for classification as presented in
Table 1. With the 70%, 15%, 15% split of training, testing, and validation data that
is completed in all the models referenced in this work, there exists 275 samples for
training and 59 samples for testing.

The RNN model was utilized in this case for HAR classification in an office
environment. The model proved 100% accurate at differentiating unoccupied,
sitting, and walking scenarios completed by Student 1. The RNN proved its
superiority with time-series data such as in the case of the normalized absolute value
of the FFT. These results indicate that the MI-PIR system could prove accurate as
a HAR system in a geriatric monitoring situation. To prove this hypothesis, MI-PIR
was utilized in a residential environment for classification of additional activities.

Based on the success of the HAR classification in the office environment and
towards the development of an elderly monitoring system, accurate HAR classifi-
cation in a residential environment is an important task. With early success from
differentiating walking from sitting in the office environment, this classification
aims to extend the number of activities classified in a residential environment. The
developed RNN model achieved 98% accuracy in this classification of five different
activities and an unoccupied scenario. Two activities, “Exercising on Ground” and
“Laying on Ground”, were completed at Location 1, and two other activities,
“Watching TV on Bed” and “Sleeping on Bed”, were completed at Location 3. The
model proves robust to differentiating activities at the same location, indicating that
the variations in infrared radiation as indicated by the absolute value of the FFT are
suitable for an accurate HAR model in a residential environment. The classification
of the “Laying on Ground” label indicates the efficacy of detecting a potential fall
event and classifying such activity in 36 s increments. This also would allow for
greater state of mind of the caregiver in terms of an accurate elderly monitoring
system. The accuracy of the RNN model utilized for this HAR classification is
presented visually as a confusion matrix in Fig. 7. The integer labels provided on
the confusion matrix correlate to the activities highlighted in Table 2. From this
confusion matrix, one can identify high classification results, with only minimal
confusion relating to the activity number label of “3” or real label of “Exercise on
Ground”.

4 Chest Motion PIR

MI-PIR was developed as a novel system for stationary human detection utilizing
only one analog PIR sensor. Similarly, a system relying on the detection of the chest
motion of a perfectly still stationary human subject for stationary human presence
detection using one analog PIR sensor has been developed. This system is coined
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Fig. 7 Confusion matrix for HAR in the residential environment. The accuracy of HAR is reported
as 98%, and the confusion matrix serves to highlight this reported accuracy. True labels and
predicted labels are provided with integer labels that correspond to the activities provided in Table
2 for HAR in a residential environment

CM-PIR and has been previously presented in our past work [14]. CM-PIR consists
of the Panasonic AMN24112 PIR sensor, an Elegoo Uno R3 microcontroller, a
PC, and the RNN DL model for human detection and biometric authentication
classification.

CM-PIR is based on the resting heart rate estimation using a PIR sensor
methodology from related work, where the users are perfectly still 1 m away
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during the data collection process [65]. The filter to extract the heart rate from the
individuals was presented in the introduction of this work in Eq. (3). Our first step
in the human detection and biometric authentication process using CM-PIR was to
verify the accuracy of the filter and estimating the human heart rate of individuals
using a PIR sensor. After verifying this work with the heart rate monitor of the Apple
Watch Series 3, we expanded the data collection process to include 16 subjects at
nine different ambient environments. The accuracy of the model achieved 94% for
human detection and 75% for biometric authentication of Subject A against all other
potential adversaries. The results of this work are aimed to be utilized in a desk
scenario, where the human subject can be detected and authenticated for security
purposes at a 1-m distance.

4.1 Data Acquisition

CM-PIR successfully collected data for 16 subjects at nine different ambient
locations. Each subject recorded data for at least 20 min, with many collecting for
more trials and at various ambient environments. The subjects are of varying ages
and sex, with the ages of the subjects ranging from 15 to 60 years old and six females
and ten males included in the study. Some of the subjects utilized for the CM-PIR
data collection are of family relation. In each ambient environment, the CM-PIR
system would be set-up 1 m away on a surface that was on the chest level of the
subject. The full data collection for the CM-PIR system is presented in Table 5.

4.2 Data Pre-processing

Upon data acquisition of 16 subjects at nine different locations, the data was pre-
processed in Python. The overall CM-PIR flowchart is included in Fig. 8. In a similar
manner to how the MI-PIR data was batched according to the rotation time, the CM-
PIR data was batched to increase the number of data samples from the original data
files. This involved identifying the optimal window size experimentally. The optimal
window size was determined to be 90 s based on a balance between the number of
available samples to learn from and the number of data points to be learned from.
With the 90 s optimal selection in place, the next process was to apply a threshold to
the raw PIR voltage data. In terms of a human subject in motion, the raw analog PIR
voltage will spike from 5 V to 0 V as indicated by a sinusoidal swing. In terms of the
early data collection of CM-PIR, the motion of the chest from a perfectly stationary
human subject is between the ranges of 3 V to 2 V. To account for different ambient
environments, a threshold of 3.5 V to 1.5 V was applied to the 90 s batches. If
there are any data points greater than 3.5 V or less than 1.5 V in the sample, that
90 s batch would be removed. As a result, Table 5 indicates the available samples
from the collected samples after the threshold was applied. With the threshold, four
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Table 5 Data collection for the CM-PIR system including the data distribution for stationary
detection, biometric authentication, and overall subject distribution. The data included is for a
90 s window size and 3.5 to 1.5 V threshold that reduced the number of available samples from
collected to used

Category

Data
collected
(samples) Data used (samples) Integer label Real label Location

Stationary
detection

123 122 0 Unoccupied A-D

443 295 1 Occupied A-I
Biometric
authentica-
tion

123 122 0 Unoccupied A-D

219 133 1 Subject A A-D
224 162 2 Adversaries B, D-I

Individual
subject
distribution

123 122 0 Unoccupied A-D

219 133 1 Subject A A-D
40 34 2 Subject B A-C
19 19 3 Subject C B
35 32 4 Subject D B
18 14 5 Subject E E
9 7 6 Subject F E

11 11 7 Subject G B
6 0 8 Subject H F

14 0 9 Subject I G
13 11 10 Subject J G
12 6 11 Subject K B
7 0 12 Subject L H

12 0 13 Subject M I
13 11 14 Subject N F
12 7 15 Subject O F
13 10 16 Subject P D

human subjects and three ambient environments were completely removed from
the dataset. As a result, CM-PIR would then detect and classify 12 subjects and an
unoccupied scenario from six different ambient environments.

Following both the window size selection and applied threshold, feature calcula-
tions were then made on this data. As indicated by the MI-PIR system, the absolute
value of the FFT proved to be an accurate feature for human presence and related
occupancy parameters. This feature was used for the CM-PIR data, as a result.
Indicated in orange in Fig. 8, three additional steps in the CM-PIR flowchart are
included for the biometric authentication classification only. With that, two more
feature calculations are made on the CM-PIR data for concatenation to be utilized in
the biometric authentication classification of Subject A against all other adversaries.
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Fig. 8 CM-PIR flow chart. The orange is for biometric authentication only and the green is for
both human detection and biometric authentication classifications

The first additional feature to be used for biometric authentication is the acceleration
filter that models the response of the heart from the chest motion movement. The
absolute value of this feature is computed and concatenated to the signal power
value. The last feature to be utilized for the biometric authentication classification
is the absolute value of the DWT. The DWT feature allows for the frequency and
time in location of the raw PIR data to be represented in one feature and has been
utilized in related work for biometric authentication. Thus, the absolute value of the
FFT, acceleration filter, and DWT are concatenated for biometric authentication in
this work.

For the concatenated feature set to be of relative magnitude, we applied the
sklearn min max normalization to map the values from zero to one. Following
this normalization, PCA was then applied to reduce the dimensionality of the
feature set from 2700 data points to five data points. Not only does PCA reduce
the dimensionality of the normalized, concatenated feature set, but it also works
to identify the values that are representative of the entire vector. As such, PCA
increased the accuracy of the biometric authentication classification. Once PCA was
applied, the 900-sample human detection feature set and the feature set of five for
biometric authentication could be applied to the RNN DL model.

4.3 Recurrent Neural Network (RNN)

To learn the complex feature set originating from the chest motion data captured by
one analog PIR sensor, a DL model is proposed. In that case, a similar RNN model
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to that of the MI-PIR classifications is developed. A similar RNN is proposed in
this case due to the success that the RNN shown in classifying time-series data
from the MI-PIR system. Towards this, the RNN consists of two LSTM layers,
three dropout layers, and two dense layers. The LSTM layers are composed of 128
dimensions and the dense layers are composed of 16 dimensions. The dropout layers
have a weight of 0.1 to aid in overfitting, which was initially a problem with a
relatively limited dataset for biometric authentication. All the layers of the RNN
model utilize the ReLu activation function except for the last dense layer which
utilizes the softmax activation function. In terms of the loss function and optimizer
utilized in this model, the sparse categorical crossentropy loss function and Adam
optimizer are again utilized. Both classifications underwent 125 epochs. We direct
the reader to our previous work for a visual representation of the RNN architecture
used with CM-PIR [14] The results of these classifications will be presented in the
subsequent sub-sections.

4.4 Human Detection

The human detection classification achieved 94% accuracy after training on 291
samples and testing on 63 samples as a resultant of a 70% training, 15% testing,
15% validation split. In comparison to the MI-PIR system, CM-PIR achieved
lower detection accuracy using one analog PIR sensor; however, the CM-PIR
system requires less additional architecture. Utilizing only the analog PIR sensor
and the microcontroller for data transmission, the set-up time and cost is much
lower with CM-PIR. In comparison to other proposed models for stationary human
presence detection using one PIR sensor, the CM-PIR system utilizes less additional
hardware. As a standalone PIR sensor that relies on software processing and
statistical learning for accurate classification, the novel CM-PIR system advances
the capabilities of PIR sensor human monitoring. Based on the chest motion data at
a 1-m distance, the CM-PIR system would accurately respond to a desk situation in
which the human subject was completely motionless.

4.5 Biometric Authentication

The biometric authentication system based on the chest motion data captured
by a PIR sensor achieved an accuracy of 75%. These initial results prove the
potential efficacy of using a PIR sensor for security purposes. With pre-processed
data collection of 12 individuals at six different home locations, the PIR sensor
had to differentiate the many ambient environments from the human subjects,
as well as authenticate the users based on their unique chest motion movement.
With less ambient environments collected for in the data collection process, we
hypothesize that these initial results would increase, as with related non-contact
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biometric authentication systems, data collection occurred at only one central
location. In terms of PIR sensors, multiple testing locations causes even more
ambient interference in recording of chest motion data. The CM-PIR recorded
accuracy, however, is much more robust as a biometric authentication system due
to the many ambient environments. As with many systems that rely on DL for
classification, we hypothesize that increased data collection of the subjects involved
in the study would increase the accuracy of the results. Due to the balancing of
an optimal window size selection in terms of data points and data samples, there
are limited 90 s batches to learn from. Increasing the data collection efforts could
improve the results, especially in the cases of those subjects that were completely
removed from the study due to the applied threshold.

4.6 Quantification

New in this work is the addition of the quantification of the maximum sensing
distance of the CM-PIR system for accurate detection of stationary human subjects.
As the original data collection was present at a 1-m distance, we extend the CM-PIR
system for possible detection at a 2 m and 3 m distance. In this quantification, data
was collected by Subject A at Location D for 30 min at 1 m, 2 m, and 3 m, with an
additional equal time length of unoccupied data collection. In a similar methodology
of removing the dataset of longest distance iteratively from the DL model, 3 m was
classified with 85% accuracy and 2 m was classified with 92% accuracy. At 1 m,
with one ambient environment and one subject, the CM-PIR system detected human
subjects with 96% accuracy. With these results in mind, a 1-m distance is proven
to be the maximum sensing distance for an accurate stationary human detection
system.

5 Discussion

PIR sensors are discussed as potential long-term monitoring solutions due to their
low cost, non-contact, non-intrusive, and relatively accurate and reliable results. In
terms of cost, the Panasonic AMN 24112 PIR sensor used in both systems proposed
in this work costs roughly $30 USD, whereas the Microsoft Kinect sensor used
in video-based solutions costs roughly $75 USD. This comparison in cost can
be illuminated further when systems rely on multiple video-based modalities for
accurate detection, and whereas the proposed solutions in this work require only
one sensor modality [54]. Furthermore, the Impinj RAIN RFID reader that is used
in related work can cost upwards of $1000 USD [38]. From this, one can identify
that the proposed PIR sensor-based systems for human detection and biometric
authentication are relatively inexpensive in comparison to systems proposed in
related work due to their reliance on only a single COTS sensor modality. With
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Fig. 9 FFT plot of HAR in (a) an office environment and (b) a residential environment indicating
the differences seen between activities

that, the non-contact, non-intrusive, and accurate nature of PIR sensors makes them
suitable modalities for long-term monitoring systems.

The major known drawback with PIR sensors is their inability to detect stationary
human subjects reliably and accurately in their FoV. In this work we have introduced
two novel systems to combat this major known issue with PIR sensors. MI-
PIR is a motion induced PIR sensor system that classifies an office space for
room occupancy, occupancy count, relative and precise location, human target
differentiation, and simple HAR every 36 s of rotation time. In a residential
environment, MI-PIR classified relative and precise locations of one individual
subject, as well as showed the efficacy of a more complex HAR classification. CM-
PIR on the other hand deploys one PIR sensor in the traditional sense for accurate
human detection and biometric authentication for security of IoT devices.

The signal power, or the absolute value of the computed FFT coefficients from
the raw PIR voltage data, proved to be a strong feature for the detection of stationary
human subjects using an analog PIR sensor. To alleviate the black-box stigma
that surrounds DL classification models, we present Fig. 9 which identifies one
36 s batch of each activity collected for during the MI-PIR office and residential
data collection. Figure 9(a) indicates the varying signal power for each activity
completed in the office environment and Fig. 9(b) indicates the varying signal power
for each activity completed in the residential environment. The office environment
presents the walking situation to have a greater signal power than the sitting
situation, with the unoccupied scenario showing significantly lower signal power.
The residential environment signal power comparison presents varying signals that
align with our hypotheses. During a work scenario in which the user is seated,
working, and using electronics, there would be higher levels of signal power than
during the sleep and unoccupied data collections. In a direct comparison of two
activities at the same location, “Watching TV on Bed” and “Sleeping on Bed”, the
latter activity had much less signal power due to both the lack of electronics in use,
as well as the lack of movement while sleeping.
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For comparison of these proposed systems to systems of related work, we
highlight Table 6 which includes this information. MI-PIR, CM-PIR, and related
work on using a PIR sensor for stationary human presence detection is compared
in this Table. MI-PIR through rotation of the analog PIR sensor extends the
manufacturer reported horizontal FoV from 93 to 223◦ through a 130◦ rotation.
In addition, based off the maximum sensing distance quantification, the maximum
sensing distance of a stationary human subject was found to be 21 m. For CM-PIR,
these results are the manufacturer stated 93◦ through the deployment in a traditional
sense and a 1 m maximum sensing distance. In comparison to related work, MI-PIR
extends the FoV for monitoring and extends the maximum sensing distance. For
CM-PIR, the FoV, maximum sensing distance, and accuracy is reduced. CM-PIR
is however the only solution that requires no additional hardware. As MI-PIR is
less mechanically complex than the other systems in related work that require the
development of an optical shutter for the analog PIR sensor, CM-PIR requires no
robotic actuator for accurate stationary human presence detection.

In terms of differentiating the results of the MI-PIR system with related work
in HAR classification, the MI-PIR proves superior as presented in Table 7. MI-
PIR produces a higher accuracy of differentiating unoccupied, sitting, and walking
activities than in related work. From a 100% accuracy to a 93% accuracy, one can
determine that the MI-PIR system is more accurate as a simple HAR classification.
Although classification in the related work is through a continuous data collection
with multiple people, the accuracy of the MI-PIR system with multiple activities in
a residential environment ensures the potential superior efficacy to the related work
[22]. The MI-PIR system for classification of a residential environment is compared
to the results of the ALPAS system presented earlier. This system requires two PIR
sensors for HAR classification, whereas the MI-PIR system requires only one analog
PIR sensor. The accuracy of the MI-PIR system of classifying five activities with one
unoccupied scenario achieves a significantly higher accuracy than the reported F-
measure of the ALPAS system. Although the ALPAS system classifies four activities
at one location with multiple users participating in the study, the MI-PIR system’s
significant increase in accuracy ensures the superior efficacy to the ALPAS system
[48].

For comparison of CM-PIR with other biometric authentication systems, CM-
PIR classifies one human subject against 11 other individuals that remain in the
study following an applied threshold. The 75% accuracy of CM-PIR is compared
against the introduced Cardiac Scan system of 98.6% accuracy with 78 different
subjects. Although the Cardiac Scan system achieves much greater accuracy, there
are a variety of differences between the two systems that highlights the potential
positives that CM-PIR might provide. CM-PIR collects data from nine different
ambient environments, although three of which are removed with a threshold during
pre-processing. In contrast, Cardiac Scan collects data at one central location.
The multiple ambient environments that the CM-PIR system must learn from is
hypothesized to decrease the accuracy and will be tested in future work. The PIR
sensor in which CM-PIR relies on is a passive sensor, and Cardiac Scan utilizes an



92 J. Andrews and J. Li

Ta
bl
e
7

H
A

R
an

d
bi

om
et

ri
c

au
th

en
tic

at
io

n
cl

as
si

fic
at

io
n

ac
cu

ra
cy

co
m

pa
ri

so
n

ag
ai

ns
ts

im
ila

r
pr

op
os

ed
sy

st
em

s
in

lit
er

at
ur

e

C
la

ss
ifi

ca
tio

n
R

ef
er

en
ce

#
of

PI
R

s
#

of
ac

tiv
iti

es
A

ct
iv

iti
es

R
es

ul
ts

H
A

R
—

O
ffi

ce
W

u
an

d
W

an
g

[2
2]

1
3

–
U

no
cc

up
ie

d
93

%
ac

cu
ra

cy

–
Si

tti
ng

–
W

al
ki

ng
M

I-
PI

R
1

3
–

U
no

cc
up

ie
d

10
0%

ac
cu

ra
cy

–
Si

tti
ng

–
W

al
ki

ng
H

A
R

—
R

es
id

en
tia

l
K

as
hi

m
ot

o
et

al
.[

48
]

2
4

–
E

at
on

so
fa

57
%

F-
m

ea
su

re

–
R

ea
d

of
so

fa

–
U

se
ph

on
e

on
so

fa

–
U

se
PC

on
so

fa
M

I-
PI

R
1

6
–

U
no

cc
up

ie
d

98
%

ac
cu

ra
cy

–
W

or
ki

ng
at

de
sk

–
L

ay
in

g
on

gr
ou

nd

–
E

xe
rc

is
e

on
gr

ou
nd

–
W

at
ch

T
V

on
be

d

–
Sl

ee
p

on
be

d



Human Detection and Biometric Authentication with Ambient Sensors 93

active Doppler Scanner for biometric authentication [66]. The passive nature of the
sensor would allow for greater state-of-mind with less chance of any adverse health
and energy concerns.

6 Conclusions

Elderly monitoring remains an ever-growing challenge due to the increasing number
of individuals and the prevalence of neurodegenerative diseases found in this
population. Current systems for monitoring aging subjects often rely on camera-
based or terminal-based modalities that cause both a privacy intrusion and burden
to the end-user. Ambient sensors have been proposed to fill the gaps towards
a need for non-contact and non-intrusive monitoring systems that provide both
accurate localization and HAR classification of aging individuals in a residential
environment. Many of these current systems require expensive architecture or
multiple sensors deployed throughout the room to expand the FoV. Towards the
goal of accurate localization, HAR, and other occupancy related parameters, a novel
system coined MI-PIR was proposed in this work. CM-PIR is proposed in this work
for human detection and biometric authentication. To summarize the contributions
of these two systems, the accuracies and quantifications are included below.

In summary, MI-PIR has shown these results in an office environment utilizing
statistical learning . . .

• 100% accurate at room classification,
• 93% accurate at occupancy count estimation,
• 95% accurate at relative location classification,
• 94% accurate at human target differentiation,
• 100% accurate at simple HAR,
• 493.7 cm2 MSE was quantified for precise indoor localization with varying

subject conditions,
• 426.4 cm2 MSE was quantified for precise indoor localization of Subject 1 only.

MI-PIR has also shown accurate results in a residential environment utilizing
statistical learning . . .

• 98% accuracy at relative location classification,
• 98% accurate at differentiating five activities and an unoccupied scenario.
• 131.4 cm2 was quantified for precise indoor localization of Subject 1 only.

CM-PIR has shown to be accurate in two different classifications . . .

• 94% accurate at human detection of perfectly stationary human subjects,
• 75% accurate at biometric authentication of 13 labels at six varying environ-

ments.

These results highlight the potential success of MI-PIR as a long-term elderly
monitoring solution and CM-PIR as both a monitoring solution and biometric
authentication modality. In the case of HAR for MI-PIR, similar results to those
reported above can be obtained via the monitoring of one elderly subject, whereas
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additional tests are required to determine the efficacy of HAR with many individuals
present in an indoor environment. For each other classification, multiple subjects
were included, and the results can be directly mapped to a real-world scenario. The
only requirement for deployment of MI-PIR would be to collect initial training data
of the ambient environment.

While MI-PIR is proposed as a potential elderly monitoring system, CM-PIR
is proposed as a combined office space occupancy detection and IoT security
system. The FoV of the CM-PIR system is constrained to the manufacturer stated
FoV, as this analog PIR sensor is deployed in the traditional sense. As such, CM-
PIR is proposed to be deployed at the desk location of a human subject present
in an office scenario. Accurate detection of a human subject, even in the most
motionless of instances, would aid in smart energy management applications in
an office environment. The novelty of the CM-PIR system for stationary human
presence detection against proposed methods, including MI-PIR, is the lack of
additional hardware and set-up needed. In comparison to a state-of-the-art non-
contact biometric authentication system, CM-PIR proves less accurate, but proposes
a more adequate sensor modality for long-term monitoring. Data collection at
one central location, as well as a greater data collection effort, is hypothesized to
increase the initial results of CM-PIR for biometric authentication. CM-PIR would
be suitable for human detection in a real-world office environment, but only suitable
as a biometric authenticator in a closed room with a single individual. The CM-PIR
biometric authentication system extends the capabilities of biometric authentication
systems from traditional contact systems to an additional non-contact system. Non-
contact and non-intrusive biometric authentication systems for IoT security is a
growing need with the ever-growing field of IoT devices in our everyday life.

The summarized results also indicate the efficacy of the RNN model at classify-
ing various scenarios. The RNN proved the most accurate DL model, indicating the
temporal reliance of the signal power feature calculated in data pre-processing. With
precise indoor localization using a GPR model, MI-PIR showed to be effective at
visually clustering locations in two ambient environments, allowing for regression
of future coordinate systems during real-world deployment of the system. These
activities differentiated in the residential environment proved the potential success
as an elderly monitoring modality. In fact, classifying a “Laying on Ground” activity
proved direct translation to a potential fall event. Accurately classifying multiple
activities that are performed at the same location proves the HAR classification
accuracy is not based on the learning of the location in which the activity is
performed.

The future of monitoring is in the deployment of ambient sensors with statistical
learning algorithms for accurate localization and HAR classification. To fulfill
the needs of a non-contact, non-intrusive, low-cost, and passive sensor modality
for monitoring situations, a PIR sensor is proposed and highlighted in this work.
Solving the known drawback of PIR sensors in this work with two novel systems,
the capabilities of PIR sensors for monitoring have been extended. Future work for
progression of these two novel systems include testing the MI-PIR system for a real-
world data collection and increasing the biometric authentication accuracy of the
CM-PIR system. A more systematic data collection and increased data collection is
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proposed to increase the biometric authentication accuracy of the CM-PIR system.
These novel systems highlight the growing field of ambient sensing for human
detection and biometric authentication.
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