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Abstract—Human occupancy in an enclosed space can cause 
variation of the passive radio frequency (RF) spectrum. To 
assess the RF spectrum variation, a cognitive radio (CR) based 
human occupancy detection (CRHOD) method successfully 
determines presence of people. However, a wireless 
environment can be easily interfered by jamming signals or by 
replaying recorded samples. Hence, the knowledge of the RF 
environment is a critical aspect of a passive RF signals-based 
security monitoring system. Instead of retraining detectors with 
newly collected data, future systems can adapt to a new 
environment by predicting the RF signatures with human 
occupancy given the baseline spectrum of the environment 
measured without human occupancy. Synthesizing RF 
signatures of human occupancy is a challenging research area 
due to the lack of prior knowledge of how a human body alters 
the RF data. A human RF signatures generation system via 
conditional generative adversarial networks (GAN) is proposed 
in this paper to synthesize spectrum with human occupancy 
using the baseline spectrum at the area of interest. First, the 
trained human RF signatures GAN (HSGAN) model synthesizes 
passive RF signals with human occupancy via the baseline 
spectrum without human occupancy collected in the enclosed 
space. Second, the trained HSGAN model predicts the human 
RF signatures in the enclosed space at a new location using the 
HSGAN model trained in other locations. Lastly, the HSGAN 
model is quantitatively evaluated via two classifiers including a 
convolutional neural network (CNN) model and a k-nearest 
neighbors (KNN) classifier for the quality of the synthesized 
spectrum. In addition, a 99.5% correlation between synthesize 
human RF signatures and real human RF signatures results 
from the HSGAN. 
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1. INTRODUCTION 

Human occupancy detection (HOD) has been applied in 
many field including smart building monitoring [1], 
autonomous vehicle passenger inspection [2], human 
tracking motion analysis [3] and robotic system safety [4]. 
Different technologies have been applied to solve the HOD 
problem using various sensing modalities such as visual 
cameras [5] and thermal imagers [6], lidar [7] and radar [8], 
[9] infrared [10], and ultrasonic [11] sensors. All these 
technologies have individual advantages and weaknesses. 
For example, visual cameras are restricted by lighting 
although they can provide images which can be applied to 
human subject identification and tracking. Furthermore, 
cameras can be invasive thus they are limited when privacy 
is a concern. Signal emitters are the essential parts of lidar 
and radar systems. The actively emitted signals can interfere 
with existing wireless systems and are not environment 
friendly. Other detectors such as infrared, ultrasonic and all 
the modalities mentioned above are constrained by the 
installation angle and position. Therefore, a passive, non-
polluting, and low-priced sensing solution is beneficial for 
HOD. 

By analyzing passive RF signals variation caused by human 
anatomy, a cognitive radio (CR) based human occupancy 
detection (CRHOD) system successfully detects the presence 
of people in the enclosed spaces [12]. However, adversaries 
can easily jam a wireless environment by emitting 
interference RF signals or simply replaying the recorded data. 
A passive RF signals-based security monitoring system 
should have the awareness of the RF environment to maintain 
its reliability and robustness. RF environments vary with 
locations. Thus, the system should easily adapt to a new 
environment with minimum user effort through synthesis of 
human RF signatures after measuring the baseline spectrum 
of the new environment. The knowledge of spectrum 
variation caused by human occupancy and synthesizing 
human RF signatures are critical aspects of building a more 
efficient, robust, and secure real-time indoor monitoring 
system. An open question this paper addresses is whether this 
variation can be synthesized. 

Generative adversarial networks (GAN) are powerful tools 
which can learn from labeled samples and generate features 20
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based on the knowledge gained. GANs have been widely 
used in areas such as synthesizing artificial images, text 
articles, human voices, and wireless signatures [13]–[20]. 
GANs are usually built with two neural networks, a generator 
and a discriminator, competing with each other in order to 
discriminate which data imitates the real data. The generator 
produces faked data to fool the discriminator and the 
discriminator distinguishes between the synthetic and the real 
instances of data. Both models become more robust during 
the competition.  

A human RF signatures generation system via conditional 
GAN is proposed in this paper to synthesize RF signals 
through the baseline spectrum at the area of interest. A low-
cost software defined radio (SDR) scans the spectrum from 
its lowest frequency to its highest frequency in an enclosed 
space with and without human occupancy. Labels are 
automatically assigned to the collected samples. The GAN 
generator is fed with the average power of frequency bands 
in the collected baseline spectrum and generates the average 
powers to simulate the spectrum with human occupancy. The 
GAN discriminator discerns the generated spectrum from the 
real spectrum with human occupancy through classification. 
The errors of classification results are backpropagated to train 
the generator to maximize the classification errors and to train 
the discriminator to minimize the classification errors. The 
process repeats to optimize the performance of both models. 

To the best of our knowledge, it is the first time that a GAN 
is used to generate passive human RF signatures in the 
application of HOD. The main contributions of this paper are: 
(1) a human signatures GAN (HSGAN) model is proposed to 
synthesize passive RF data in the enclosed space and the 
proposed HSGAN model can generate human RF signatures 
via a baseline spectrum; (2) the trained HSGAN model can 
predict the human RF signatures in a new environment via 
transfer learning where the variation of wireless signals 
caused by human body are unseen during training; (3) the 
synthesized RF data is quantitatively evaluated by the HOD 
results and calculated correlation between the generated 
signals and real signals; (4) the comprehensive measured 
results are presented in this paper for operational usability. 

The rest of the paper is as follows. Section 2 introduces 
related research works and comparisons to the HSGAN 
solution. Section 3 explains applied technologies and the 
detailed experimental design. The experimental results are 
presented in Section 4. Conclusions and future research are 
discussed in Section 5. 

2. BACKGROUND 
2.1. Related work 

2.1.1. Human Occupancy Detection 

Human occupancy detection (HOD) is sometimes referred to 
as occupancy detection. Different technologies have been 
utilized for HOD including analysis of wireless RF signals 
and video surveillance. The development of wireless 
technologies increased attention for HOD such as infrared, 

RFID, and Wi-Fi network sensing, sparse vibration sensors 
and active RF signals assessed in [1], [10], [21]–[23]. 
However, all the solutions mentioned above either depended 
on certain types wireless signals, required significant 
installations, or emitted active wireless signals. Edrich et al. 
[24] proposed to detect objects through passive RF data in the 
application of airspace surveillance, but HOD was not within 
their published research. Cameras were used for HOD inside 
a vehicle by Birch et al. [2] and in a building by Shih et al. 
yet visual images were not desirable when privacy was 
favorable [25]. Passive CR was utilized by [12] to collect 
passive RF data and applied to HOD through data analysis 
which compensated for the solutions mentioned above. This 
method did not relay on specific types of wireless signals 
and/or privacy protection. For example, the low cost and 
environmentally friendly solution did not emit active signals 
nor occupy the crowded communication channels. 
Furthermore, it was easy to deploy the detection devices and 
to adapt a new environment. Current methods can take 
advantage of simulated data for training [26].  

2.1.2. Generative Adversarial Networks 

The wireless environment is difficult to control and is 
vulnerable to jamming signal disturbance sent by malicious 
devices. Knowing and inspecting the spectrum at the location 
of interest becomes an indispensable part of HOD from 
wireless signals. Researchers have initiated various 
approaches to protect the security of wireless environment. 
SDR and convolutional neural network (CNN) were used by 
Riyaz et al. to detect and identify a specific radio transmitter 
uniquely among other similar devices [27]. The emitter of the 
wireless signal were classified by four machine learning 
(ML) algorithms from the adversarial devices by [28] [29]. 
However, both research works mention passively monitor the 
wireless environment instead of proactively predicting 
spectrum variations. Generative models in ML project the 
changes in the wireless network. The GAN was proposed by 
J. Goodfellow et al. in 2014 to estimate the generative model 
via the adversarial process [30]. The GAN has been widely 
employed in multiple areas and drew attention from some 
researchers in the field of wireless communication due to its 
capability of synthesizing data. Roy et al. [31] used the RF 
data generated by GAN to simulate the spoofing signals thus 
the rogue transmitters could be recognized from the trusted 
devices through the classifier which was trained with the 
simulation data and trusted data. Missing spectral 
information was recovered via GAN by Tran et al. [32] in 
domain of a ultra-wideband (UWB) radar system. Li et al. 
[33] implemented sparsely self-supervised GAN to estimate 
the corrupted cellular network data. The significant accuracy 
improvement was made by Liu et al. [34] in the field of real-
time smartphone indoor localization via GAN. With these 
very promising outcomes from the above studies, there is 
motivation to apply GANs to train a generative model which 
can predict human RF signatures through the baseline 
spectrum via the adversarial process. 

GAN can be extended to conditional model by providing 
auxiliary information which it conditions on. Comparing to 
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the original GAN which the generated data is not controlled 
by the model, the conditional model is capable of directing 
the data generation process. These additional information can 
be any type of supplementary data such as the classification 
labels and output from other sensors. Mirza et al. fed the 
classification labels along with the random data into both the 
generator and dissimilator to generate images. Their 
preliminary experiments demonstrated the potential of 
conditional GAN and the useful applications [35]. Superior 
de-raining images were obtained by feeding the adversely 
affected images captured during raining into the generator of 
the conditional GAN [36]. The RF ultrasound plane wave 
channel data was employed as the input signals of the 
conditional GAN in order to generate high quality B-mode 
images [37]. Our HSGAN model uses the baseline spectrum 
as the input of the generator to estimate the actual spectrum 
with human occupancy. 

2.1.3. Cognitive Radio 

Cognitive radio (CR) evolved from software defined radio 
(SDR) by adding additional functions such as wireless 
environment assessment, spectrum changes tracking, 
parameter reconfiguration, and environment-based reaction. 
CR emerged in the recent decades due to innumerable 
wireless devices and rapid deployment as described by 
Jondral [38]. The fixed channel allocation policy causes 
inefficient usage of limited spectrum resources. CR is urged 
by its innovative technology and is applied quickly and 
widely. The development of a dynamic spectrum access 
network was enabled by CR through which the spectrum and 
energy could be utilized more efficiently in an opportunistic 
fashion [39] and the inference with licensed users could be 
voided [40]. CR has been employed in the domains such as 
wireless communication power consumption saving through 
active channel utilization, intelligent channel allocation, 
smart grid energy reduction by automatically monitoring and 
controlling grid activities by incorporating the CR 
communication network [41]–[44]. Significant power is 
reduced via CR in the application of HOD using only the 
significant frequency bands data and the performance can be 
maintained without using full bands data [12].  

CR is utilized in this research to synthesize human RF 
signatures in order to build a more energy efficient and eco-
friendly HOD system. Furthermore, considering that the 
spectrum is not the same at different locations, CR can help 
to build more flexible system which can fit new wireless 
environments easier by sensing its surroundings 
circumstance. A low cost SDR is configured in our 
experiment to collect the data at the location of interest and 
adjusted based on the observed spectrum status. 

 
2.1.4. Feature Selection 

Signals, features, and decisions are the three common 
elements of classification methods. Passive RF based HOD 
system classifies the human RF signatures from the baseline 
spectrum that recognizes the space occupancy status. Earlier 
research works suggested properly selected features cannot 

only simplify the classification model and reduce the training 
time, but also enhance the model’s generalization [45]–[48]. 
Our previous study indicates that certain frequency bands are 
sensitive to HOD, but others are not [12]. Thus, it is not 
necessary to process all the signals since the same accuracy 
can be achieved with reduced data size. Moreover, the system 
efficiency would decrease, and energy would be wasted if all 
the data in the whole frequency bands supported by the SDR 
is processed including those not responsive to HOD. So, the 
insensitive frequency bands data was eliminated from 
CRHOD system and the system maintained the same 
reliability [12].  

Synthesizing human RF signatures should adopt the same 
strategy without generating redundant or irrelevant features 
in the data. A Feature selection algorithm based on the 
principal component analysis (PCA) is utilized to pick the 
frequency bands which are sensitive to HOD and only these 
selected frequency bands data in the baseline spectrum are 
fed to the HSGAN model. PCA is an unsupervised feature 
selection algorithm which needs less computation power and 
does not require the training data to be labeled as compared 
to supervised feature selection algorithms, e.g. recursive 
feature elimination with logistic regression (RFE-LR). RFE-
LR consumes more calculation power and training samples 
must be labeled but without notable performance 
improvement in the application of HOD [12].  
 
2.2. Advantages 

This paper proposes a human RF signatures synthesis 
(HSGAN) model which generates the RF signals from the 
baseline spectrum at the location of interest. A SDR scans the 
spectrum from its lowest frequency to its highest frequency 
in an enclosed space with and without human occupancy, 
where labels are automatically assigned to the collected 
samples. Frequency bands sensitive to HOD are selected by 
the PCA algorithm. The HSGAN is trained with the average 
powers in the selected frequency bands of the baseline 
spectrum, HSGAN then generates average powers in the 
same frequency bands to simulate the spectrum with human 
occupancy. There are several advantages offered by the 
HSGAN approach. Firstly, through proactively predicting the 
wireless environment at the location of interest, the passive 
RF based HOD system is capable of recognizing the spoofing 
or jamming signals which are used to disturb ambient 
spectrum from the real human RF signatures. Secondly, the 
passive RF based HOD system can fit a new spectrum 
circumstance easier without retaining the classifier. It 
enhances flexibility of the system and the maintenance coast 
is reduced. Lastly, through bands selection strategy, only the 
signals containing important information are synthesized 
from which the efficiency of the system is increased. 

3. METHODOLOGIES 
A human RF signatures synthesis system is built in our 
experiment and is depicted in Figure 1. The system includes 
a receiving antenna, an SDR, a data reprocessing module, a 
band selection module, and a HSGAN module. 
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Figure 1. Human RF signatures synthesis system 

The RF signals are collected from enclosed spaces. In the 
initial stage, the SDR is configured to scan the whole 
spectrum in its frequency range (24-1760 MHz). Meanwhile, 
the collected data is automatically labeled, and the collected 
RF signals corresponding to the human occupancy status are 
associated to the labels. After enough whole spectrum 
samples are collected, the frequency bands which are 
sensitive to HOD are selected. Then, only the selected 
frequency bands are scanned by the reconfigured SDR. The 
HSGAN including a generator and a discriminator are trained 
with the baseline spectrum and the human RF signatures in 
the selected frequency bands. The generator synthesizes the 
RF human signals to simulate the spectrum when the 
enclosed space is occupied. Lastly, a CNN model and a k-
nearest neighbors (KNN) model are trained with the real 
signals in the selected frequency bands with and without 
human occupancy at the location of interest.  

The performance of human RF signatures synthesis system is 
evaluated by the classification results of the trained CNN and 
KNN models taking the inputs of the real baseline spectrum 
and the synthesized RF data. The signal acquisition and pre-
processing are introduced in subsection 3.1 and 3.2. 
Subsection 3.3 illustrates the frequency bands selection 
algorithm. Finally, the structure of HSGAN, the training 
process and evaluation methods are presented in Subsections 
3.4, 3.5, and 3.6. 

 
3.1. RF signal Acquisition 

Only a laptop, SDR, and cell phone are used to collect data in 
the enclosed space in order to eliminate the data 
contamination from irrelevant electronic devices. Regardless 
of the occupancy status, the laptop and SDR are always in 
working status. The real-life environment wherein people 
carry their cell phones in most situations is simulated by 
leaving the cell phone powered on or off in the enclosed space 
randomly, regardless of the occupancy status. The cell phone 
assures the experiment does not depend on the signals emitted 
by the cell phone. A low-cost SDR, RTL2832U, is used to 
collect the RF raw data at two separate locations, a study 
room in a single family house and a fourth floor office in a 
six floors building, with and without a human subject 
occupying the enclosed spaces. The labels are automatically  

Table 1. SDR configuration of passive RF data collection. 

Items Description 

SDR 
Locations 

Data Labels 
Frequency Range 

Scanning Step 
Bandwidth 

Sampling Rate 
Duration 

Number of Frequency Bands 

RTL2832U 
a study room, an office 

0: Unoccupied 1: Occupied 
24 MHz–1760 MHz 

1.2 MHz 
1.2 MHz 
2.4 MHz 

2 ms per frequency band 
1447 

assigned to the RF raw data by the program during wireless 
signals collection. The spectrum is continuously scanned by 
the SDR with an even step size of 1.2 MHz from its lowest 
frequency 24 MHz to its highest frequency 1760 MHz during 
a full band scan. The passive RF data collection information 
is described in Table 1.  

A full band sample refers to the frequency data collected 
through a scan from the lowest frequency to the highest 
frequency. One full band sample has 1447 frequency bands. 
The sampling rate is set at 2.4 MHz. One frequency band is 
scanned for 2 ms and 4800 samples per frequency band are 
collected. The verified highest sample rate is 2.4 MHz at 
which the regular universal serial bus (USB) controllers do 
not lose samples although the maximal sample rate specified 
by manufacturer is 3.2 MHz. At each experiment location, the 
antenna is placed at a fixed position and orientation. Two 
identical SDRs are used to collect the data which can reduce 
the data collection time and can eliminate the device 
dependency. A total number of 1296 full band samples with 
human occupancy and an equal number of samples without 
human occupancy were randomly collected in the study room 
from 6 am to 10 pm across 3 months to eliminate the impact 
of spectrum variation among different timeframes in the day. 
879 full band samples with human occupancy and equal 
number of samples without human occupancy were collected 
in the office with the same strategy. 

3.2. RF signal Pre-Processing 

The average power per frequency band is calculated and is 
used throughout the experiment. 𝑁𝑁  denotes the number of 
samples per frequency band which value is 2400. 𝑝𝑝(𝑓𝑓) is the 
average power of the frequency band centered at 𝑓𝑓. The value 
of 𝑝𝑝(𝑓𝑓) is calculated by following equation with the unit of 
DB: 

                       𝑝𝑝(𝑓𝑓) = 10 ∗
𝑙𝑙𝑙𝑙𝑙𝑙10�� 𝑎𝑎𝑖𝑖(𝑓𝑓)2𝑁𝑁

𝑖𝑖=1 �
𝑁𝑁
2

                       (1) 

where 𝑎𝑎𝑖𝑖(𝑓𝑓)  is the received amplitude of the 𝑖𝑖 -th 
intermediate frequency signal at the frequency band of 𝑓𝑓 by 
the SDR. 
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3.3. Frequency Band Selection 

The 𝑝𝑝(𝑓𝑓) in the power spectrum is used to select the bands 
sensitive to HOD. In this research work, the PCA algorithm 
with 1447 𝑝𝑝(𝑓𝑓) as the input features is applied to extract the 
principal components. Frequency bands according to their 
values in the extracted components are selected. It is not 
suggested to directly use the extracted principal components 
as the features because subsequent spectrum sensing still has 
to involve all of the frequency bands, since each principal 
component is a linear combination of all the original 
frequency bands [49]. According to the measurement 
variance, the principal components are ranked from high to 
low by the importance after they are extracted. Then, the first 
three components are kept. Lastly, 𝑘𝑘 (𝑘𝑘 = 784) frequency 
bands are selected which have the highest absolute 
coefficients in the first three components. 

3.4. Human Signature Generative Adversarial Networks 

A Generative adversarial network (GAN) is a framework 
proposed by Goodfellow et al. [30] which estimates the 
generative mode via an adversarial process. During the GAN 
process, two models including a discriminator 𝐷𝐷  and a 
generator 𝐺𝐺 are trained simultaneously. The data distribution 
under estimation is captured by the generator 𝐺𝐺 . The 
generative model 𝐺𝐺  generates fake samples through its 
captured distribution. The fake samples and real training data 
are fed to the discriminator 𝐷𝐷 which classifies if the input 
samples come from the training data rather than generated 
by 𝐺𝐺. The training process is a two players’ game. The goal 
of 𝐺𝐺 is to maximize the probability of 𝐷𝐷 to make the mistakes 
and the goal of 𝐷𝐷 aims to minimize its chances to be fooled 
by 𝐺𝐺. In HSGAN, the human RF signatures are synthesized 
via the baseline spectrum. The discriminator loss ℒ𝐷𝐷 and the 
generator loss ℒ𝐺𝐺 are defined as follows: 

ℒ𝐷𝐷 = 𝐸𝐸𝑝𝑝𝑜𝑜(𝑓𝑓) ~𝐹𝐹𝑜𝑜�log𝐷𝐷�𝑝𝑝𝑙𝑙(𝑓𝑓)�� + 

           𝐸𝐸𝑝𝑝𝑢𝑢(𝑓𝑓)~𝐹𝐹𝑢𝑢 �log �1 − 𝐷𝐷 �𝐺𝐺�𝑝𝑝𝑢𝑢(𝑓𝑓)����                        (2) 

ℒ𝐺𝐺 = 𝐸𝐸𝑝𝑝𝑢𝑢(𝑓𝑓)~𝐹𝐹𝑢𝑢 �log �1 − 𝐷𝐷 �𝐺𝐺�𝑝𝑝𝑢𝑢(𝑓𝑓)����                         (3) 

The average power for each band of the selected 𝑘𝑘 frequency 
bands with and without human occupancy are denoted by 
𝑝𝑝𝑙𝑙(𝑓𝑓)  and 𝑝𝑝𝑢𝑢(𝑓𝑓)  respectively. 𝐹𝐹𝑙𝑙  is the probability 
distribution of 𝑝𝑝𝑙𝑙(𝑓𝑓) and 𝐹𝐹𝑢𝑢 is the probability distribution of 
𝑝𝑝𝑢𝑢(𝑓𝑓) . 𝐺𝐺  estimates the human RF signatures probability 
distribution from the input 𝑝𝑝𝑢𝑢(𝑓𝑓) instead of random data. The 
training is defined as: 

                          max 
𝐷𝐷

min
𝐺𝐺

𝐶𝐶(𝐺𝐺;𝐷𝐷) = ℒ𝐷𝐷                                         (4) 

The generated data 𝐺𝐺�𝑝𝑝𝑢𝑢(𝑓𝑓)� from 𝐺𝐺 and real sample 𝑝𝑝𝑙𝑙(𝑓𝑓) 
are fed to  𝐷𝐷 . 𝐷𝐷  estimates the probability of its input is 
𝐺𝐺�𝑝𝑝𝑢𝑢(𝑓𝑓)� rather than 𝑝𝑝𝑙𝑙(𝑓𝑓). The cross-entropy cost function 
𝐶𝐶(𝐺𝐺;𝐷𝐷)  depends on both the generator 𝐺𝐺  and the 
discriminator 𝐷𝐷. The calculated loss ℒ𝐷𝐷 is propagated back to 
update both 𝐺𝐺 and 𝐷𝐷. 𝐺𝐺 maximizes ℒ𝐷𝐷 and 𝐷𝐷 minimizes ℒ𝐷𝐷. 
The 𝐺𝐺  is optimal when the 𝐷𝐷  cannot distinguish 𝐺𝐺�𝑝𝑝𝑢𝑢(𝑓𝑓)� 

from 𝑝𝑝𝑙𝑙(𝑓𝑓) . The 𝐷𝐷  is optimal when the 𝐷𝐷  can recognize 
𝑝𝑝𝑙𝑙(𝑓𝑓)  from generated 𝐺𝐺�𝑝𝑝𝑢𝑢(𝑓𝑓)� . The process repeats till 
both models are optimized. 

Both model 𝐺𝐺 and 𝐷𝐷 are CNNs and their designs are shown 
in Figure 2. 𝐺𝐺 has 5 layers including one input layer, three 
convolutional layers and one output layer. The number of 
neurons and activation functions of each layer are displayed 
in Figure 2. Similarly, D has 5 layers including one input 
layer, two convolutional layers, one dense layer and one 
output layer. The number of neurons and activation functions 
of each layer are also displayed in the figure. 

3.5. HSGAN Model Training 

These extracted 𝑝𝑝𝑙𝑙(𝑓𝑓) and 𝑝𝑝𝑢𝑢(𝑓𝑓) from the power spectrum 
collected are randomly selected as the training and validation 
samples. These samples are used for HSGAN model fitting 
and evaluation. Only the samples of the study room are used 
to train the HSGAN model. The trained HSGAN model 
generates 𝑘𝑘 average powers to simulate human RF signatures 
which is donated as 𝑝𝑝𝑠𝑠𝑙𝑙(𝑓𝑓) . Each value in the samples is 
normalized before fitting the model and the normalized data 
range is from 0 to 1. Uniformly distributed noise ranging 
from -0.0001 to 0.0001 is added to each value in the training 
sample in order to improve the model’s generalization from 
which the sample is fed to 𝐺𝐺. The outputs from generator, of 
𝑝𝑝𝑠𝑠𝑙𝑙(𝑓𝑓)  and 𝑝𝑝𝑙𝑙(𝑓𝑓)  in the training sample, are fed to 𝐷𝐷 
alternately. The Adam optimizer is used during training, the 
learning rate is 0.0002, beta1 is 0.5, beta2 is 0.999 and epsilon 
is 1e-8. Batch size is 4 and total 90 epochs is trained till both 
Gand D are optimized. 

3.6. HSGAN Model Evaluation 

In order to evaluate the performance of HSGAN model, two 
classifiers including a CNN and a KNN are built to take the 
input of generated 𝑝𝑝𝑠𝑠𝑙𝑙(𝑓𝑓) and 𝑝𝑝𝑢𝑢(𝑓𝑓) to estimate occupancy 
status. To build these two classifiers, CNN and KNN models 
are trained with the real data, 𝑝𝑝𝑢𝑢(𝑓𝑓) and 𝑝𝑝𝑙𝑙(𝑓𝑓) of the study 
room and corresponding labels, where the number of training 
samples are 70% of the number of collected samples of each 
occupancy status, which is 907 out of 1296. The rest 389 
samples of each occupancy status are used for testing which 
are unseen during the training of CNN and KNN. The number 
of 1296 samples of 𝑝𝑝𝑠𝑠𝑙𝑙(𝑓𝑓) are synthesized by 𝐺𝐺 taking the 

 

Figure 2. HSGAN structure 
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input of 𝑝𝑝𝑢𝑢(𝑓𝑓)  of the study room which is added by 
uniformly distributed noises ranging from -0.0001 to 0.0001 
before being fed to 𝐺𝐺. Then, the generated 1296 samples of 
𝑝𝑝𝑠𝑠𝑙𝑙(𝑓𝑓) , including the 389 samples of 𝑝𝑝𝑢𝑢(𝑓𝑓) and 
corresponding labels, are fed to trained CNN and KNN 
models for classification. Similarly, the number of 879 
𝑝𝑝𝑠𝑠𝑙𝑙(𝑓𝑓)  are synthesized using the data 𝑝𝑝𝑢𝑢(𝑓𝑓)  of the office 
scene are evaluated by CNN and KNN models. These two 
trained classifiers should be able to accurately distinguish the 
occupancy status, and the classification results indicate the 
performance of our proposed HSGAN. Apart from these two 
classifiers, the correlation between generated data and real 
data is also calculated for evaluation. 

4. EXPERIMENTAL RESULTS 
The HOD accuracy of CNN and KNN are used to quantify 
the overall performance of HSGAN. In order to present the 
evaluation results of these two classifiers, a confusion matrix 
is developed. The confusion matrix is determined from the 
accuracy, precision, recall, and F1 scores from the true 
positive (TP), true negative (TN), false positive (FP), and 
false negative (FN) results. The accuracy, precision, recall, 
and F1 score are determined as: 

accuracy = TF+TN
TP+FN+TN+FP

                             (5) 

precision = TP
TP+FP

                                      (6) 

recall = TP
TP+FN

                                             (7) 

F1 = 2×precision×recall
precision+recall

                                      (8) 

4.1. Synthesized human RF signatures 

Figure 3 depicts examples of synthesized human RF 
signatures and baseline spectrum at the location of study 
room. Figure 3(a) presents an example of the average powers 
in the selected 784 frequency bands generated by HSGAN 
model using baseline spectrum when the study room is 
unoccupied and Figure 3(b) is a real sample of human 
signatures collected when the study room is occupied. The 
overall trends of these two samples are similar and the peaks 
appear at similar frequency bands such as 0.1 GHz, 0.2 GHz, 
0.37 GHz, 0.48 GHz, 0.69 GHz, and so on. The two samples 
have valleys at similar frequencies as well. A total number of 
1296 samples of human RF signatures are generated from 
1296 samples of baseline spectrums. To better examine the 
synthesized signals, the average over all generated human RF 
signatures, corresponding baseline spectrums, and real 
human RF signatures are illustrated in Figure 3(c). The red 
color represents the real signals with human occupancy, the 
blue line is the baseline spectrum and the gray line is 
synthesized. The red line and gray line are closer in the gaps 
in most frequency bands, especially the bands from 0.48 GHz 
to 1.3 GHz. However, in the lower frequency bands below 
0.48 GHz, an opposite relationship is obtained. The 
synthesized signals are slightly above the real signal with  

 
(a) Synthesized 

 
(b) Real 

 
(c) Comparison of the real and synthesized spectrum 

Figure 3. Synthesized human RF signatures using data 
collected in the study room. 

human occupancy in the frequency bands higher than 0.17 
GHz but almost overlap in the bands lower than 0.17 GHz. 
Further investigation is needed to study the reasons so that 
model enhancement can be made.  

The correlation between the generated RF data and the real 
signals with human occupancy, and the correlation between 
the real signals with human occupancy and without human 
occupancy are shown in Figure 4. The correlation is 
calculated using the 1296 generated samples collected with 
and without human occupancy in the study room. The real 
occupied signals have a closer relationship with the generated 
signals as determined by the correlation between the real 
occupied signals and real unoccupied signals which is 
consistent with the visual observation. 

 

Figure 4. Correlation of synthesized occupied RF data 
and real data in the study room. 
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4.2. Evaluation via detection results 

Besides visually inspecting the generated signals, and 
calculating the correlation between the generated data and the 
real data, the HSGAN is also evaluated by HOD results. The 
CNN and KNN classifiers are trained with the real collected 
data with and without human occupancy in the study room. 
These two trained models take the inputs of synthesized data 
and baseline spectrum of study room or office, respectively. 
The detection results of each model at the two locations are 
listed in Table 2. Both models achieve very encouraging 
detection performance. The proposed HSGAN can not only 
generates the human RF signatures at the location of the RF 
signals in the study room, but can also predict the human RF 
signatures for a different location using the baseline spectrum 
at the new location, e.g., the office specifically, as a form of 
transfer learning or domain adaptation. 

Table 2. Detection results of synthesized human RF 
signatures. 

Location Model Precision Recall F1 Accuracy 

Study 
Room 

CNN 
RNN 

100% 
98.33% 

99.92% 
100% 

99.96% 
99.16% 

99.94% 
98.69% 

Office 
CNN 
RNN 

99.77% 
98.98% 

99.43% 
99.66% 

99.60% 
99.32% 

99.39% 
98.95% 

 

5. CONCLUSIONS 
This paper presents a human RF signatures synthesis system 
using a conditional GAN. The generated spectrum simulates 
the wireless signals in an enclosed space occupied by a 
human subject using the baseline spectrums without human 
occupancy. The system is based on the GAN model and 
software defined radio technology. The experimental results 
show that the proposed HSGAN model is not only capable of 
synthesizing the human RF signatures using the baseline 
spectrum at the trained location but also predicting human RF 
signatures using the baseline signals at a new location without 
training. The synthesized RF spectrum is evaluated 
quantitatively by CNN and KNN based classifiers which are 
trained using the measured spectrum with and without human 
occupancy in the enclosed space. When fed with synthesized 
data and measured baseline spectrum, both classifiers 
produce HOD accuracy above 98 percent.  

Different distances between human subject and antenna may 
cause different variations in the spectrum. We are 
investigating indoor positioning via passive spectrum 
monitoring and the research results will be published in the 
near future. 
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