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Abstract—Data fusion from a variety of sources requires 

alignment, association, and analysis.  One method to determine the 

relationship between two variables measuring the same 

information is a correlation analysis.  The canonical variates 

analysis (CVA) supports the assessments of two sets of data.  In 

this paper, we compare results from the fusion of histograms to 

that of the fusion of confusion matrices developed from data of the 

same modality and that of a cross modality.  We use the Confusion 

Matrix Fusion (CMF) approach in the analysis and compare the 

results for EO/RF fusion. In the analysis, the   Experiments, 

Scenarios, Concept of Operations, and Prototype Engineering 

(ESCAPE) data set is used for comparison to previous aerospace 

results. 
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1. INTRODUCTION 

 

Data fusion from electro-optical (EO) and radio frequency 

(RF) target classification extends operations for all weather 

day-night analysis [1,2,3,4].EO/RF fusion has a wide 

variety of applications including target surveillance, 

agricultural monitoring, and safety from UAV [5], space [6], 

and automotive [7] platforms. The development of antennas 

to process EO and RF data [8,9]  has renewed interest for 

autonomous cars and aircraft [10], offering possibilities for 

enhanced situation awareness and decision support [11]. 

Recent efforts with the Experiments, Scenarios, Concept of 

Operations, and Prototype Engineering (ESCAPE) dataset 

[12], has explored many techniques for analysis with an 

example shown in Fig. 1. Various examples include 

nonparametric Bayesian fusion, joint manifold fusion, and 

structural similarity [13,14,15,16,17,18].  

The scenario in Figure 1 highlights the motivation to track 

targets using a series of measurements from electro-optical 

(EO), infrared (IR), passive radio frequency (P-RF), full 

motion video (FMV), seismic, and acoustic data.  

Recent advances in artificial intelligence and machine 
learning have been developed, but mostly on single-modal 
situations (EO-IR) or multi-modal in which there is a known 
association between the data sources such as in video and 
audio multimedia. Hence, there is an opportunity to 
determine the merits of AI/ML techniques [19,20,21]. 
Recently, the convolutional neural network (CNN) has been 
applied to the ESCAPE data with some success; however, 
elements of data fusion can be further expanded.  More 
specifically, the known paradigm of signals, feature, and 
decision-level fusion offer the question on which approach 
works well for the sensor, environment, and target (SET) 
operating conditions. Since the data is collected with the 
different sensors, decision-level fusion was utilized as a 
comparison. 

To address the 
comparisons of machine 
learning methods, there 
are various statistical 
approaches such as the 
nearest neighbor, k-
nearest neighbor (kNN), 
decision tree, and naive 
Bayes, as well as deep 
learning approaches 
such as the convolution 
neural network (CNN).  
A fusion of classifiers 
approach might be an 
option, but two methods 
of known success 
include confusion-
matrix fusion (CMF) and correlation variates analysis 
(CVA), also known as canonical correlation analysis (CCA) 
[22,23,24,25,26]. Hence, a decision-level fusion approach is 
compared to the methods of deep learning. 

The paper is organized as follows. Sect. 2 presents the 
ESCAPE data, while Sect. 3 overviews data fusion 
classification methods. Sect 4 presents confusion matrix 
fusion as a method of decision-matrix fusion. Sect. 5 
presents some numerical results. Finally, conclusions are 
drawn in Sect.6. 

2. ESCAPE DATA 

The ESCAPE payload is a collection of three sensing 
modalities, EO FMV, IR FMV and passive RF (EO/IR/P-
RF).  Two Unmanned Aerial Systems (UAS) contain 
EO/IR/P-RF sensors on a Vertical Take Off and Landing 

 

Figure 1. ESCAPE data collection 
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(VTOL) aircraft. To monitor the events, another EO/IR/P-
RF was mounted on a tower (Figure 2). 

 

Figure 2. ESCAPE Data 

Radar Returns  

Figure 3 displays the UHF radar returns for the multi-
vehicle scenario. The right side of the Figure 3 displays 
amplitude (color code) versus range (vertical axis) versus 
time (horizontal axis). As indicated, certain paths, 
predictably, have different traces.  For example, the orange 
path vehicle, panel van, starts in view of the radar and 
moves away from the radar until it is lost in the Butler 
building, as indicated in the radar return. The wide band of 
returns between 160 m and 200 m represents the Butler 
building and tree line scattering, and hence, the van return 
gets consumed by this clutter as it is blocked from the radar.  
Later in time, the van re-emerges from the Butler building 
and is easily detectable in the diagram between pulse 
indexes 800 and 1400.   

The data provides an opportunity for more interesting fusion 

approaches to make use of the radar phase-history 

information in order to assign each target a unique feature 

that correlates with other modality specific signatures. 

 

Figure 3.  UHF radar returns (right side) of a multi-vehicle 
scenario.  Returns are in range (vertical axis) vs. time (horizontal 
axis).  Colored arrows relate the vehicle paths with the radar 
returns. 

 

EO and IR Association 

Figure 4 displays a snapshot in time from the recorded video 

data from 3 of the ESCAPE payloads, positioned as shown 

in Figure 2.  In Figure 4, row (a) is from the 110’ foot walk 

up tower, row (b) is from the most Westerly SUAS position, 

and row (c) is from the most Southerly SUAS position.  

Interestingly, some of the moving vehicles exist in most of 

the cameras simultaneously.  

 

Figure 4. ESCAPE payload EO and IR frames during a data 
collection run of a scenario (4 vehicles).  (a) 110’ tower view, (b) 
Westerly SUAS view, (c) Southerly SUAS view.  Color code: red- 
Gator, green – pickup, orange – van. 

The objective of the research in this paper and many other 
papers studying the ESCAPE data set will be to determine if 
a joint representation of each target can be produced that is 
unique to the given target in order to accurately and 
optimally improve target detection, improve 
discriminability, and improve target tracking. With 
overlapping fields of view across the three camera locations 
and across the EO and IR modalities, image fusion [27, 28] 
could yield robust results. 

3. DATA-FUSION CLASSIFICATION 

Data fusion classification from similar modes (EO/IR) has 
the benefit of similar types of sensors. Multi-modal 
techniques include that of similar format such as 2D 
imagery from EO and synthetic aperture radar (SAR) 
imagery [29] as well as that of different types of modes such 
as 1D radar and 2D imagery [30,31]. As shown in Figure 5, 
there are different constructs when processing the EO 
dictionary of feaures and RF historgams. Processing the 
mulitmodal data can serve to reduce the cross-covariance 
[32] and cue detection [33]. To further explore the potential 
for multimodal EO/IR and radar fusion, we expand upon 
machine learning methods [34]. The next section descirbes 
the machine learning techniques used for comparison to 
proces the data towards a confusion matrix (CM).    
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Figure 5. Data Fusion Analysis 

 

K-nearest Neighbor (KNN) 

The K-nearest Neighbor (KNN) is a non-parametric method 
(i.e., distribution free) of instance learning that works on 
entire data set at once to discern a pattern in feature space 
that determines the k closest examples. K is a specified 
positive integer, which is usually relatively small. The KNN 
does not learn any model – rather the model is itself the 
training set. For each new instance, the algorithm searches 
through the entire training set, calculating the difference 
between the new instance and each training model. A classic 
example is the Voronoi diagram (Figure 6) which partitions 
regions based on a distance to the features. Once the 
distance regions are determined, then a corresponding 
boundary set is available for classification.  

 

 

Figure 6. K-nearest neighbor from the Voronoi diagram 

• For classification, the output is the class with the K-most 

similar neighbors. 

• For regression, the output value is based on the mean or 

median of the K-most similar instances 

Both for classification and regression, the kNN assigns 
weights to the features, so that the nearer neighbors 
contribute more to the average than the more distant ones. 
For example, a common weighting scheme consists in 
giving each neighbor a weight of 1/d, where d is the 
distance to the neighbor. An example is shown in Figure 7. 
The test sample (green dot, ) should be classified either to 
blue triangles or to red circles. If k = 3 (solid line circle), it 
is assigned to the blue triangles ( ), because there are 
3triangles and no red circles inside the inner circle. If k = 20 
(dashed line circle), it is assigned to the red circles ( ), as 

there are 11 circles vs. 9 triangles inside the outer circle. 

 

Figure 7. Example of k-NN classification. 

 

The kNN works to classify the training data point xq (green 
in the above diagram). 

• Given a query instance q to be classified 

– Let x1, …, xk be the k training instances in training 

set T = (x, f(xi)) nearest to q 

– Return 
 

𝑓  𝑞 =  arg max
𝑣∈𝑉

  𝑣, 𝑓(𝑥𝑖) 

𝑘

𝑖=1

 (1) 

• where v is the finite set of target class values, and 

δ(a,b)=1 if a=b, and 0 otherwise (Kronecker 

function) 

• then, the k-NN algorithm assigns to each new query 

instance the majority class among its k nearest 

neighbors 

A distance weighted kNN uses a difference between the test 
point xq and the training data xi : 

 

 
𝑓  𝑞 =  arg max

𝑣∈𝑉
 

1

𝑑(𝑥𝑖 , 𝑥𝑞)2
 𝑣, 𝑓(𝑥𝑖) 

𝑘

𝑖=1

 (2) 

There are many distance functions, such as the city block 
(Manhattan), Chebyshev, Minkowski, quadratic, correlation, 
and Chi-square. Two popular methods include: 

 Euclidian distance:  

𝑑 𝑥𝑖 , 𝑥𝑞 =  (𝑥𝑖 − 𝑥𝑞)2  + ⋯+ (𝑥𝑛 − 𝑥𝑞)2 

 Mahalanobis:  

             d(xi, xq) = [det V] 
(1/m)

 (xi – xq) 
T
 V 

-1
(xi – xq) 

where V is the covariance matrix, det is the determinant and 
T is the transpose operator. 

A practical method is estimating the density at a point x as 
the reciprocal of the average of the distances to the K 
nearest neighbors of x: 

 
𝑓 𝑥 =   

1
1

𝐾
 𝑑 𝑥,𝑛 𝑛∈𝑁

 (3) 

where N denotes the K-nearest neighbors of x, and n is an 
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element of N. Note that increasing the value of ―K‖ takes 
more information about a point into consideration. Setting 
K=1, the estimate is completely local, which will result in 
producing a high number of clusters. Larger values of K will 
yield increasingly global estimates, while decreasing the 
granularity of the result, so that fewer clusters are produced. 
KNN makes predictions just-in-time by calculating the 
similarity between an input sample and each training 
instance. In general, the KNN is similar to the SVM with a 
Gaussian kernel.  

Benefits of KNN 

 Applicable — no assumptions about data distributions 

 Simple — easy to explain and understand/interpret 

 Accurate — achieves reasonable results 

 Versatile — useful for classification or regression 

Limitations of KNN 

 Computationally expensive by storing all data 

 Slow - prediction takes time (with big N) 

 High memory requirement so does not scale 

 Susceptible to irrelevant features  

 Sensitive to the local structure of the data 

Decision Tree 

The random forest (RF) approach is an ensemble learning 
method that derives its name from splitting decision trees 
where oblique hyperplanes gain accuracy as they grow 
without suffering from overtraining. If the splitting method 
is randomly forced to be insensitive to some feature 
dimensions or randomly restricted to be sensitive to only 
selected feature dimensions, then precision is gained with 
each tree split in the forest.  Note that when decision trees 
are designed to be deep, they learn irregular patterns and 
overfit (i.e., low bias, high variance) the data. The RF output 
is the mode of classes for classification or mean of 
individual trees for regressions. RF(s) average multiple deep 
decision trees using the same training set reducing the 
variance with small increase in bias and boosting the final 
performance. Constructing a forest of uncorrelated trees 
extends a Classification and regression Trees (CART) 
decision-tree like procedure with randomized node 
optimization and bagging. Bagging is a method of boostrap 
aggregation to reduce variance through averaging. Hence, 
bootstrap sampling is a way of de-correlating the trees by 
showing them different training sets. RF estimates the 
generalization error, measures variable importance through 
permutation, and assesses the tree correlations (i.e., want 
trees to be uncorrelated). 

There are three types: 

• Bagging: train learners in parallel on different samples 

of the data, then combine by voting (discrete output) 

or by averaging (continuous output). 

• Stacking: combine model outputs using a second-stage 

learner like linear regression.  

• Boosting: train learners on the filtered output of other 

learners. 

Given a training set X = {x1, ..., xi} with responses Y = {y1, 
..., yi},the bagging type of RF repeatedly (N times) selects a 
random sample with replacement from the training set and 
fits trees to these samples:  

For n = 1, ..., N:  

1. Sample, with replacement, n training examples from 

X, Y; for Xn, Yn. 

2. Train a classification or regression tree hn on Xn, Yn. 

After training with Xn = {x1, ..., xn}, predictions for unseen 
samples Xu = {x1, ..., xu}, where Xn + Xu = X, are: 

 

ℎ  𝑥𝑢 =
1

𝑁
 ℎ𝑖 𝑥𝑢 

𝑁

𝑖=1

 (4) 

or by taking the majority vote in the case of classification 
trees.  

Additionally, an estimate of the uncertainty of the 
prediction can be made as the standard deviation of the 

predictions from all the individual regression trees onXu: 

 

  𝑥𝑢 =
   ℎ𝑖 𝑥𝑢 −  ℎ  𝑥𝑢  

2
𝑁
𝑖=1

𝑁 − 1
 

(5) 

The number of samples/trees, N, is a free parameter. 
Typically, 100s to 1000s trees are used, depending on the 
size of the training set. An optimal number of trees N can be 
found by using cross-validation, or via the out-of-bag error: 
the mean prediction error on each training sample xᵢ, using 
only the trees that did not have xᵢ in their bootstrap sample. 
A Random Forest tree is shown in Figure 8 with N = 3. 

 

 
Figure 8. Decision Tree diagram from classification 

partitions 

The RF procedure is as follow. 

A. Grow n trees on datasets sampled from the original 
dataset with replacement (bootstrap samples), F = number 
of features.  

• Draw n bootstrap samples of size N 
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• Grow each Decision Tree, by selecting a random set of 

m out of F features at each node, and choosing the 

best feature to split on where it is suggested that f  

(rounded down) features are used in each split 

• Aggregate the predictions of the trees (most popular 

vote) to produce the final class.  

B. Each tree is constructed using the following algorithm: 

Draw n bootstrap samples of size N and the number of 

variables in the classifier be M. 

1. Let m input variables determine the decision at a node 

of the tree; mM. 

2. Grow each Decision Tree by choosing a training set for 

this tree by choosing n times with replacement from 

all N available training cases (i.e. take a bootstrap 

sample). Use the rest of the cases to estimate the 

error of the tree, by predicting their classes. 

3. For each node of the tree, randomly choose m variables 

(i.e., feature bagging) on which to base the decision 

at that node. Calculate the best split based on these m 

variables in the training set (e.g., m ) 

4. Each tree is fully grown and not pruned (as may be 

done in constructing a normal tree classifier) where 

prediction a new sample is pushed down the tree and 

assigned the label of the training sample in the 

terminal node it ends up in. 

5. Iterated over all trees in the ensemble 

6. Aggregate the predictions of the trees (most popular 

vote) to produce the final class.  

To additional considerations: 

Extremely randomized trees, or ExtraTrees, add one 
further step of randomization. Using an ensemble of 
individual trees, each tree is trained using the whole 
learning sample (rather than a bootstrap sample), and 
top-down randomized splitting. Hence, instead of 
computing the locally optimal cut-point for each feature 
under consideration (based on, e.g., information gain), a 
random cut-point is from a uniform distribution within 
the feature's empirical range (in the tree's training set). 
Then, from all ofthe randomly generated splits, the split 
that yields the highest score is chosen to split the node.  

Importance of variables used as a ranking for regression 
or classification. During the fitting process of the data 

setDn={ 𝑥𝑖 , 𝑦𝑖 }𝑖=1
𝑛  , the out-of-bag error for each data 

point is recorded and averaged over the forest. The 
importance score for the j-th feature is computed by 
averaging the difference in out-of-bag error before and 
after the permutation over all trees. The score is 
normalized by the standard deviation of these 
differences. Features which produce large values for 
this score are ranked as more important than features 
which produce small values.  

As part of their construction, random forests can be used for 

semi-supervised methods by defining a decision tree 
dissimilarity measure between unlabeled data: by 
constructing a random forest predictor that distinguishes the 
―observed‖ data from suitably ―generated‖ synthetic data. 
The observed data are the original unlabeled data and the 
synthetic data are drawn from a reference distribution. A 
random forest dissimilarity affords mixed variable types, is 
invariant to monotonic transformations of the input 
variables, is robust to outlying observations, and can weigh 
the contribution of each variable according to how 
dependent it is on other variables. The RF is essentially a 
weighted k-nearest neighbor (kNN) method and variations 
include a kernelized RF. 

Benefits of Decision Tree 

• Useful – applies to dense data (100 features)  

• Simple– can train a lot of trees 

• Efficient - parallelizes easily 

Weakness of Decision Tree 

• Biased - favors tree attributes with more levels. 

• Timeliness - needs many passes over the data 

• Overfits– hard to balance accuracy/fit tradeoff. 
 

Naive Bayes 

Naive Bayes develops a conditional probability classifier 
model of an instance Ck by assigning labels from a finite set 
to problem instances, represented as feature vectors x = (x1, 
…, xn)  of n independent feature values. Using Bayes’ 
theorem: 

 
𝑝(𝐶𝑘  | 𝐱)  =

𝑝(𝐱 |𝐶𝑘) 𝑝(𝐶𝑘) 

𝑝(𝐱) 
 (6) 

where 𝑝(𝐶𝑘  | 𝐱)  is the posterior,𝑝(𝐱 |𝐶𝑘) is the likelihood, 
𝑝(𝐶𝑘) is the prior, and 𝑝(𝐱) is the evidence. Naïve Bayes’ is 
the conditional independence of the mutually independent 
features x for conditional on the category  Ck. 

 
𝑝(𝐶𝑘  | 𝑥1,… , 𝑥𝑛) =

𝑝(𝐶𝑘) 𝑝(𝑥𝑖|𝐶𝑘)𝑛
𝑖=1

 𝑝(𝐶𝑘)k 𝑝(𝐱|𝐶𝑘)
 (7) 

Using the maximum a posteriori (MAP) decision rule for 

the most probable choice, then the class selection label 

𝑦 = 𝐶𝑘  for an instance k is: 

 
𝑦 = argmax

𝑘∈{1,…𝐾}
𝑝(𝐶𝑘) 𝑝(𝑥𝑖|𝐶𝑘)

𝑛

𝑖=1

 (8) 

Benefits of Naïve Bayes 

• Compact – requires few samples for training 

• Simple – easy to implement 

• Efficient – updates quickly with new data [35] 

Weakness of Naïve Bayes 

• Collection - assumes mutual independence (92%)  

• Zero Frequency – requires training category in test set 

• Overlap – decision boundaries need to be distinct 

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on August 25,2021 at 21:18:55 UTC from IEEE Xplore.  Restrictions apply. 



6 

 

Canonical Variates Analysis 

The CVA or Canonical Correlation Analysis (CCA), first 
described by Hotelling, works on a two data sets. As 
demonstrated by Sun [21], let the data be represented as X = 
[x1, ... ,xm] and Y = [y1, ... , ym]. CCA attempts to seek two 
projection directions wx and wy to maximize the following 
linear correlation coefficient: 

 
 =  

𝑐𝑜𝑣(w𝑥
TX, w𝑦

T  Y)  

 𝑣𝑎𝑟 wx
TX 𝑣𝑎𝑟(wy

T  Y) 

 
 

                =
wx

TC𝑥𝑦 wy

  wx
TCxx wx (wy

TCyy wy ) 

 (9) 

where the covariance matrix Cxy is defined as: 

C𝑥𝑦 =
1

𝑚
  𝑥𝑢𝑥

 

𝑚

𝑖=1

 𝑥𝑢𝑥
 

T

 (10) 

with 
𝑥
 and 

𝑦
 being the means from the two data sources 

and C𝑥𝑥  and C𝑦𝑦  can be defined analogously. 

Since the scales of w𝑥  and w𝑥  have no effects on the 

solution, so each of the two factors in the denominator can 

be constrained to have value 1. Hence, an optimization can 

be formed using an objective function for the CCA 

 arg maxwx ,wy
wx

TC𝑥𝑦 wy  

 s.t.wx
TC𝑥𝑥 wy = 1;  wx

TC𝑦𝑦 wy = 1 (11) 

Using a Lagrangian function approach, then  

  = wx
TC𝑥𝑦 wy  (12) 

where [−1,+1]. reflects the degree of correlation between 

projections. Using the generalized eigenvalue 

decomposition, the eigenvector corresponding to the largest 

eigenvalue in (13) should be retained to maximize the 

correlation between different data sources. 

 C𝑥𝑦 Cyy
−1C𝑦𝑥 wx = 

2C𝑥𝑥 wx  (13) 

The benefits and weakness of CCA/CVA is the motivation 
for the analysis.  Given the different methods, the next 
section focuses on decision matrix fusion as related to a 
fusion of classifiers. 

4. DECISION-MATRIX FUSION 

Automatic target recognition (ATR) classifier decisions are 
often stored in a confusion matrix (CM), which is an 
estimate of likelihoods. For single-look ATR performance, 
these estimates are treated as priors. Decisions from 
multiple ATRs or from multiple looks of different geometric 
perspectives are fused using the Decision Level Fusion 
(DLF) technique. Various methods support the signal, 
feature, and decision fusion [36] depending on access to the 
CM for such applications as target tracking [37] . 

With respect to the DLF, the CMs represent the 

performance of the ATR system from historical information. 
However, the performance is based on the availability of 
ground-truth or pseudo-ground truth. For example, in target 
tracking; pseudo-ground truth includes such actions as 
labeling targets in images or signatures, whereas ground 
truth is from the location instrumentation and verification to 
measurements. Hence, the historical performance of a 
sensor and classifier leads to a CM for an ATR. Choosing a 
different sensor and classifier result in a different CM [38]. 
For dynamic sensors, the CM can be used for sensor 
management and evidential tracking performance. When the 
sensor measurement is received, the evidential reasoner 
determines the probabilities across the potential targets for 
the CM. When new measurements are available, the new 
CM is determined and fused with the previous CM. For 
further details, the Dezert-Smarandache Theory (DSmT) 
[39] and Transferable Belief Model (TBM) [40] are widely 
used. Additional data can be gathered to utilize conditional 
information to improve the CM [41]. 

Assume that we have two ATRs each described in a 
confusion matrix designated as C

A
 and C

B
. The elements of 

a confusion matrix are 𝑐𝑖𝑗 = Pr{ATR decides oj when oi is 

true}, where i is the true object class, j is the assigned object 
class, and i = 1, …., N for N true classes. The CM elements 

can be represented as probabilities as 𝑐𝑖𝑗= Pr{z = j|𝑜𝑖} = 

p{𝑧𝑗|𝑜𝑖}. To determine an object declaration, we need to use 

Bayes’ rule to obtain p{𝑜𝑖|𝑧𝑗} which requires the class 

priors, p{𝑜𝑖}. The priors and likelihoods are denoted as 
column vectors 

𝑝 𝑜  =  

𝑝(𝑜1)
𝑝(𝑜2)

⋮
𝑝(𝑜𝑁)

 ;   𝑝 𝑧𝑗 |𝑜  =

 
 
 
 
𝑝(𝑧𝑗 |𝑜1)

𝑝(𝑧𝑗 |𝑜2)

⋮
𝑝(𝑧𝑗 |𝑜𝑁) 

 
 
 

 (14) 

For M decisions, a confusion matrix would be of the form 

 C  =  









p(z 1 | o1) p(z 2 | o1)  .. p(z M | o1)

 p(z 1 | o2) p(z 2 | o2)  .. p(z M | o2)

… … ⋱ …

 p(z 1 | oN) p(z 2 | oN)  .. p(z M | oN)

 .  (15) 

The joint likelihoods are similar column vectors, where we 
assume independence for two confusion matrices A and B 
(denoted here as superscripts), 

 p(z 
A

j , z 
B

k  | o)    =  









p(z 

A

j | o1) ∙p(z 
B

k | o1)

 p(z 
A

j | o2) ∙p(z 
B

k | o2)

…

 p(z 
A

j | oN) ∙p(z 
B

k | o N)

 , (16) 

where k is used to distinguish between the different assigned 
object classes between the two confusion matrices when the 
CMs are not symmetric.  

Using the priors and the likelihoods, we can calculate a 
posteriori from Bayes’ Rule (where for purposes of 
clarification, 𝑝 𝑜    is used to denote a vector in the 
implementation of the code): 
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𝑝 𝑜  zj
A, zk

B =
𝑝 zj

A, zk
B 𝑜 𝑗 𝑝 𝑜 𝑗 

  𝑝 zj
A, zk

B 𝑜 𝑖 𝑝 𝑜 𝑖 
n

i=1

 (17) 

Note that there are similar column matrices for the 

posteriors𝑝 𝑜  𝑧𝑗  and𝑝 𝑜  zj
A, zk

B . A decision is made using 

the maximum likelihood estimate 

 𝑑𝑖 =  arg max
𝑗 ,𝑘

𝑝 𝑜𝑖 |zj
A, zk

B  
(18) 

where the final decision of the true object class i is 
determined from the largest value from the vector.   

Note that the subscripts indicate the value of a variable and 

the superscripts indicate the ATR source. For example,  
𝑧A= z3 indicates that source A made a decisionz3; where 

source A might be the first look of a HRR ATR and decision 

z3 might be target type ―sedan‖. The absence of a superscript 

implies an unspecified single source. To represent the 

particular states from each source, they are indicated with 

the subscripts a and b (such as  
𝑧A=𝑧a

A  ) indicating that source A’s decision was z a.   

For the developments of the pseudo code, shown in 

Algorithm 1, we shorten the notation to 𝑧A = za, while 
keeping track of the confusion matrix source A or B.  

 

Naïve Bayes DLF Pseudocode 

Inputs to the fuser are the decisions of ATR A and B, i.e., za 
and zb respectively. The output of the fuser is the decision d 
based on a maximum a posteriori probability (MAP) 
decision rule, where the posterior is .  The fuser must know 
the prior probabilities  and the confusion matrices (one for 
each source). 

Pseudo code for decision level fusion is represented as: 

 za = 𝑧𝑎 and zb = 𝑧𝑏 are the integer decisions between 1 

… M of sources A and B, respectively 

 pObar  = is a vector of priors, represented as either 

constants or input variable 

 CA  =C
A
 and CB  = C

B
 are the confusion matrices 

derived from sources A and B, respectively 

 pZaObar =  and pZbObar =  are the likelihoods as 

extracted columns from the confusion matrices 

[pZaObar = CA(:,za); and pZbObar = CB(:,zb)] 

 pZaZbMbar  = is the joint likelihood derived from the 

point-wise product of the source likelihoods 

(pZaZbObar = pZaObar .* pZbObar); 

pObarZaZb = 𝑝 𝑜  za, zb =
𝑝 za, zb 𝑜  𝑝 𝑜  

  𝑝 za, zb 𝑜 𝑖 𝑝 𝑜 𝑖 
n
i=1

 

 the numerator is:  

posteriorNum = pZaZbObar .* pObar; 

 the denominator is:  

posteriorDen = sum(posteriorNum); 

 pMbarZaZb = posteriorNum / posteriorDen; 

 d = max(pObarZaZb), which is the fused decision,  

di∋p(oi | za, zb) p(oi | za, zb)  

i, j where i, j 1, …, N 

 

The DLF function pseudo code is presented for verification. 
  

Algorithm 1: Confusion Matrix Fusion 

function [d, pObarZaZb]=fuseCMdecisions(za, zb, Obar) 
CA = getConfusionMatrix(1);  
CB = getConfusionMatrix(2);  
pZaObar = CA(:,za); 
pZbObar = CB(:,zb); 
pZaZbObar = pZaObar.* pZbObar; 
posteriorNum = pZaZbObar .* pObar; 
posteriorDen = sum(posteriorNum); 
pObarZaZb = posteriorNum / posteriorDen; 
[junk, d] = argmax(pObarZaZb); 
Return 

 
 

5. RESULTS  

From the ESCAPE dataset, Scenario 2 was chosen as a 
baseline case. Table 1 presents the results from various 
machine learning methods for the classification of three 
vehicles. These results are the average of the classification 
over the scenario for the probability of detection. Likewise, 
classification confusion matrices were available for 
processing. Table 1 results show that the imagery provided a 
better classification, while one classifier was not superior to 
the rest in all cases. Hence, typically there are methods for 
fusion of classifiers. 

Table 1: Machine Learning Classification results based on 
single modality input for the three vehicles in Scenario 2: 

Classifier: 

Naïve 

Bayes 

Decision 

Tree KNN 

Nearest 

Centroid 

V1 EO 0.800 0.756 0.780 0.799 

V1 RF 0.505 0.562 0.572 0.629 

V2 EO 0.787 0.756 0.781 0.811 

V2 RF 0.518 0.562 0.572 0.635 

V3 EO 0.627 0.846 0.509 0.613 

V3 RF 0.543 0.612 0.580 0.621 

 
For the results from the other two scenarios, Table 2 and 
Table 3 demonstrate similar results as seen below. There are 
some outliers within single modality input classification, 
such as Vehicle 1 in Scenario 3. The application of the KNN 
clustering is the only instance of the P-RF histogram input 
by itself achieving a performance of 0.9 in all three 
scenarios, let alone outperforming the EO data for the same 
vehicle and classifier. 
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Table 2: Machine Learning Classification results based on 
single modality input for the two vehicles (V) in Scenario 1: 

Classifier: 

Naïve 

Bayes 

Decision 

Tree KNN 

Nearest 

Centroid 

V1 EO 0.949 0.639 0.962 0.593 

V1 RF 0.640 0.451 0.622 0.413 

V2 EO 0.959 0.639 0.963 0.639 

V2 RF 0.584 0.451 0.783 0.413 

 

Table 3: Machine Learning Classification results based on 
single modality input for all five vehicles (V) in Scenario 3: 

 

Classifier 
Naïve 
Bayes 

Decision 
Tree KNN 

Nearest 
Centroid 

V1 EO 0.800 0.907 0.903 0.912 

V1 RF 0.714 0.719 0.905 0.750 

V2 EO 0.894 0.900 0.881 0.917 

V2 RF 0.664 0.610 0.794 0.682 

V3 EO 0.864 0.913 0.850 0.928 

V3 RF 0.643 0.578 0.736 0.604 

V4 EO 0.818 0.917 0.913 0.785 

V4 RF 0.694 0.816 0.826 0.643 

V5 EO 0.917 0.876 0.874 0.862 

V5 RF 0.820 0.642 0.854 0.618 

 

To illustrate the differences in performance between models 
that rely on only one modality in this dataset, Table 4 and 5 
display the normalized confusion matrixes for models that 
only use P-RF and DOF-EO data. The detection of Vehicle 
2 is extremely difficult given the limited amount of time it 
appears in the scenario and the reliability of the P-RF 
histograms and the DOF-EO video input. The P-RF 
histograms for the most part do not provide enough 
discriminative features to sufficiently match the 
classification objective across all three scenarios.  

Table 4: Combined standalone EO Normalized Confusion 
Matrix (Accuracy 0.74) for Vehicle 2 in Scenario 2: 

  Precision Recall F-1 Score 

Target Not Detected 0.8 0.79 0.79 

Target Detected 0.63 0.64 0.64 

 

Table 5: Combined standalone RF Normalized Confusion 
Matrix (Accuracy 0.56)for Vehicle 2 in Scenario 2: 

  Precision Recall F-1 Score 

Target Not Detected 0.65 0.68 0.67 

Target Detected 0.38 0.34 0.36 

The advantages of the confusion matrix fusion compared to 
CNN Fusion and the standalone modalities can be seen 
below. For the CNN, it was an eight layer convolutional 2D 
of kernel size 3x3, which after max pooling, flattening, 
dropout, and dense layers [23] is then rerouted through a 

CCA using the pseudo layer, which evaluates that iteration 
of the data and then feeds the maximally correlated results 
back into the CNN. 

Comparing the results of Tables 6 and 7 for the same 
vehicle in the same scenario, the increased F-1 score, and 
the improved reliability of the model shows a drastic 
increase in model performance. However, once the 
application of CM-CCA fusion is implemented the 
performance of the model achieves a perfect F-1 score, as 
seen in Table 8. The results in Table 8 are the results based 
on the CM-CCA fusion using Naïve Bayes as the basis of 
the Confusion Matrix Fusion. 

Table 6: CM-Fusion Model’s Normalized Confusion Matrix 
(Accuracy 0.93) for Vehicle 2 in Scenario 2: 
 

  Precision Recall F-1 Score 

Target Not Detected 0.90 0.81 0.86 

Target Detected 0.94 0.97 0.96 

 

Table 7: CNN Fusion Model’s Normalized Confusion 
Matrix (Accuracy 0.85)for Vehicle 2 in Scenario 2: 
 

  Precision Recall F-1 Score 

Target Not Detected 0.64 0.84 0.72 

Target Detected 0.94 0.85 0.89 

 
Table 8: CM-CCA (Naïve Bayes Base) Fusion Model’s 
Normalized Confusion Matrix (Accuracy 1.0)for Vehicle 2 
in Scenario 2: 

  Precision Recall F-1 Score 

Target Not Detected 1.0 1.0 1.0 

Target Detected 1.0 1.0 1.0 

 
The results of Scenario 2 can be seen summarized below in 
Table 9. In the scenario, CM-CCA leads the fusion 
modalities in terms of performance, followed by the CM-
CNN model. The base CNN in some cases can outperform 
the single source EO based models, but overall is unable to 
achieve a sufficient accuracy in comparison to the CM-CCA 
and CM-CNN models.  

Table 9: Overview of single source and Fusion Model 
classification performance for targets in Scenario 2: 
 

 Vehicle 1 Vehicle 2 Vehicle 3 

EO Input 0.80 0.81 0.84 

P-RF Input 0.62 0.63 0.62 

CNN 0.78 0.85 0.81 

CM-CNN 0.82 0.93 0.90 

CM-CCA 1.00 1.00 1.00 

 
For the CM-CCA models, the same four classifiers from the 
single source standalone models were applied, Naïve Bayes, 
Decision Tree, KNN, and Nearest Centroid. From the results 
of the four, the results remained unchanged for the CM-
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CCA models, achieving the same F-1 score of 1.0 for each 
of the respective vehicles. The application of decision level 
fusion along with the use of the confusion matrix and CCA 
fusion provided the best results for classification.  

6. CONCLUSIONS 

The paper compares the decision-level fusion approaches on 
canonical variates analysis (CVA) and confusion matrix 
fusion (CFM) with deep learning methods (CNN) and 
traditional machine learning approaches for EO-RF data 
fusion for object classification. The DLF results 
demonstrate promise as shown on the ESCAPE data.  

From parallel research with explainable AI using an 
optimized version of ProtoDash [42] and as clear from the 
results of the standalone P-RF results, the P-RF histograms 
are insufficient for classification on their own. From the 
initial results of that explainable AI research, the insights 
and impact of the P-RF data indicate that locally the P-RF 
CCA covariates provides a great impact, globally only 
second to that of the DOF-EO input. As such, in the future 
research we hope to implement other methods of using the 
P-RF data as in previous research that just the 
implementation of raw I/Q data was also insufficient. 
Additionally, exploring the impact of the CM-CCA fusion 
and comparing it with other models that are competitive in 
terms of performance is another area worth exploring.  
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