
“Proceedings of the 2008 ASEE North Central Section Conference
Copyright © 2008, American Society for Engineering Education”

Do Microcontrollers Belong in a Sophomore Course on Statics and Dynamics?

Richard E. Haskell, Michael Latcha, and Osamah Rawashdeh
School of Engineering and Computer Science

Oakland University
Rochester, Michigan 48309

Email: haskell@oakland.edu, latcha@oakland.edu, rawashd2@oakland.edu

Abstract
A new core course, Design and Analysis of Electromechanical Systems, was taught for the first time in the fall of
2006 at Oakland University. This course is taken by all mechanical, electrical, computer, and industrial and systems
engineering majors. During the first five weeks of the course the students learn to program a microcontroller board
in C using CodeWarrior. This is made possible by providing a stationery project that contains over 80 assembly
language routines that can be called as C functions to perform I/O functions including 7-segment displays, keypad,
liquid crystal display, pushbutton switches, real-time interrupts, motor speed control, servo position control,
interrupt-driven pulse-width measurement, and serial communication. During the remainder of the course the
students learn statics and dynamics and work in groups to design and implement an electromechanical system that
uses the microcontroller board programmed in C. This approach has expanded the possibilities in a statics and
dynamics course by replacing meter sticks and stop watches with microcontrollers, servos and motors.

1. Introduction

Statics and dynamics used to be a basic engineering course (or courses) taken by all
engineering students. A review of electrical and computer engineering programs in Michigan
shows that only a small minority of these programs still require a course in mechanics beyond
the basic physics course. While all mechanical engineering programs require at least one
electrical engineering course that usually covers basic circuit theory and other topics of interest
to mechanical engineering students, none of these courses taken by ME majors include any
material on programming microcontrollers. But microcontrollers offer unlimited possibilities of
automating experiments in a mechanics lab and allowing student to easily measure such
properties as the coefficients of friction and the coefficient of restitution.

The School of Engineering and Computer Science at Oakland University has, in its 43-year

history, always had a strong engineering core curriculum that is taken by all engineering
students. In the fall of 2005 we implemented a new, completely overhauled, core curriculum that
consists of five 4-credit courses and one 1-credit course. The last course in this core curriculum
is a 4-credit course called Design and Analysis of Electromechanical Systems, which contains a
3-hour per week laboratory that is an integral part of the course. A little over half of the course
is devoted to traditional topics in statics and dynamics. We sought ways to illustrate mechanics
principles in a modern setting that would also provide the students with useful computer skills.
Mechanical engineering majors take a new follow-on course in engineering mechanics for which
a series of new lab experiments have been developed.1-3 These experiments lend themselves to
computer control, for which the students will now be prepared.

“Proceedings of the 2008 ASEE North Central Section Conference
Copyright © 2008, American Society for Engineering Education”

In the new sophomore core course we now spend the first third of the course teaching the
students how to program a modern microcontroller in C using CodeWarrior. We had been using
the miniDragon+ board from Wytec but moved to their new Dragon12-Plus board in the winter
2008 term, which uses the Freescale MC9S12DG256 microcontroller. We make it easy for the
students to program the microcontroller by providing a stationery CodeWarrior project that
contains over 80 assembly language routines that can be called as C functions to perform I/O
functions including 7-segment displays, keypad, liquid crystal display, pushbutton switches, real-
time interrupts, motor speed control, servo position control, interrupt-driven pulse-width
measurement, and serial communication. A small x-y-z accelerometer board is interfaced to the
microcontroller through its A/D converter port. This accelerometer can be used to measure tilt
by measuring the acceleration of gravity. It can also measure inertial acceleration, which can be
integrated to obtain velocity and distance measurements. Examples of writing C programs to
access all of these I/O functions are given in the book the students use in the course.4

This paper will describe our experience in teaching this course for the past three terms and

will give examples of labs and student projects that include the design of a digital scale, the
measurement of the coefficients of static and dynamic friction, the measurement of the
coefficient of restitution of a tennis ball/racquet, and the calculation of projectile velocities using
a ballistic pendulum.

Section 2 will describe the operation of the first five weeks of this course in which students

learn to program a microcontroller in C. Section 3 will describe the next seven weeks of the
course in which students learn statics and dynamics and form teams for their group project.
Section 4 will describe some of the group projects that have been done in the past year. Some
concluding remarks are given in Section 5.

2. Learning to Program a Microcontroller in a Statics and Dynamics Course

Some of the course objectives in Design and Analysis of Electromechanical Systems include
solving kinematic and kinetic dynamics problems involving particles and rigid bodies using
Newton's second law, work and energy, and impulse and momentum principles. We have found
that introducing microcontroller programming at the beginning of the course makes it possible
for the students to design and implement experiments which verify these basic principles.

Thus, the first five weeks of the course cover programming the miniDragon+ (and now the

Dragon12-Plus) microcontroller board from Wytec5 in C using CodeWarrior. The Dragon12-
Plus board was chosen because it contains the Freescale MC9S12DG256 microcontroller
(preloaded with the serial monitor) that has many I/O features, includes female headers that
make it easy to interface to circuits on the built-in protoboard, and includes a 4-digit on-board 7-
segment display, four pushbutton switches, eight slide switches, eight LEDs, a built-in hex
keypad and LCD display, and a potentiometer connected to the A/D converter. The board also
contains a serial dual D/A converter and an H-bridge that is useful for controlling the speed of
DC motors. A built-in connector makes it easy to connect a small accelerometer module to the
board. CodeWarrior was chosen as the development tool because it allows a stationery project to
be included with all student projects that contains the assembly language routines that we wrote
as C functions for use in the student programs, a free evaluation copy is available for students to
download to their own computers, interfacing to the Dragon12_Plus board through a serial cable

“Proceedings of the 2008 ASEE North Central Section Conference
Copyright © 2008, American Society for Engineering Education”

is simple, and the student programs are downloaded directly to flash memory. The
Dragon12_Plus board has a Load/Run switch that allows the student’s programs to run
automatically when the reset button is pressed in the Run mode. This same method of
programming microcontrollers could be used with similar microcontroller boards.

Microcontrollers such as the Freescale MC9S12DG256 are remarkable devices. They

contain not only a sophisticated microprocessor with a rich set of instructions and addressing
modes, but they also contain built-in RAM, EEPROM, and flash memory as well as numerous
useful I/O ports, including parallel I/O, several different types of serial I/O, timers, and A/D
converters.

This extensive list of features makes the programming of these microcontrollers, particularly

using assembly language, a daunting task. Quick looks at the many textbooks (or the many
datasheets) that describe these microcontrollers will confirm this. These books and datasheets
spend a great deal of time explaining how to program the many I/O registers to perform the wide
variety of different I/O tasks. However, it is usually something fairly simple that one is trying to
do; e.g. turn on a light, read a switch, turn on a motor at some speed, read the value of an A/D
converter, or measure some time interval. If one just wants to learn how to do these simple
things without getting bogged down in the details of the microcontrollers I/O and internal
operation, then a different approach is needed.

We do this by providing a stationery CodeWarrior project that contains over 80 assembly

language routines that can be called as C functions to perform I/O functions including 7-segment
displays, keypad, liquid crystal display, pushbutton switches, real-time interrupts, motor speed
control, servo position control, interrupt-driven pulse-width measurement, and serial
communication. The students have access to a book that includes twenty-one worked examples
of programming the microcontroller in C using these assembly language C functions.

Students attend a 3-hour lab each week. In the first lab they follow a CodeWarrior tutorial to

program the first four examples in the book. Listing 1 shows an example that produces a hex
counter on the rightmost 7-segment display.

The students are then introduced to basic human interfaces. First, digital inputs to the

microcontroller are discussed using switches, in the form of toggle switches, pushbuttons, and a
hex-keypad. This is followed by a discussion on how to use the onboard LCD as well as the
serial communication interface (SCI) in conjunction with a simple terminal program on a PC.
Using the low-level assembly drivers provided, the students then work on Lab 2 where they are
to write a set of small C programs that utilize these I/O devices. In one problem they are asked
to write a program that identifies on a 7-segment display a button pressed on the hex keypad. In
another problem, they are asked to read eight toggle switches as an ASCII character and display
it on the LCD screen. In a third problem, bidirectional communication is implemented using the
hex keypad and LCD on one side and a PC running a terminal program on the other.

“Proceedings of the 2008 ASEE North Central Section Conference
Copyright © 2008, American Society for Engineering Education”

Listing 1 – Example done in Lab 1

// Example 4b: Single Digit 7-Segment Decoder
#include <hidef.h> /* common defines and macros */
#include <mc9s12dg256.h> /* derivative information */
#pragma LINK_INFO DERIVATIVE "mc9s12dg256b"

#include "main_asm.h" /* interface to the assembly module */

void main(void) {
 int i;
 seg7_enable(); // enable 7-segment display
 led_disable(); // disable LEDs
 while(1){
 for(i = 0; i < 16; i++) {
 seg7dec(i,3);
 ms_delay(500);
 }
 }
}

In preparation for Lab 3, binary number encoding standards are discussed. Specifically, the
conversion between multi-digit decimal numbers represented as ASCII strings and their binary
integer equivalents are examined. Example functions provided to students allow user entry and
display of numbers through a serial terminal program and the display of multi-digit integers on
the LCD. In Lab 3, the students then use a calculator program that is in their book that enters
two decimal numbers from the keypad and displays a running sum on the liquid crystal display
when key A is pressed. They modify this program to a) display the result of subtracting the
second number from the first number when they press the B key, b) display the result of
multiplying two numbers when they press the C key, and c) display the result of dividing the
second number into the first number when they press the D key.

Next, the students learn about analog to digital converters (ADCs) using the potentiometer

available on the Dragon12-Plus board that is set up as a voltage divider. Examples are provided
that display the raw ADC reading as well as the corresponding voltage reading on the LCD. This
if followed by examples on pulse width modulation (PWM) and its application to driving small
DC motors and servos. In Lab 4, the student are first asked to measure ambient light intensity
using a light-sensitive resistor though an ADC and change the brightness of an LED accordingly
using PWM. In the second part of Lab 4, they are to implement a system that employs the H-
bridge available on the Dragon12-Plus board and allows the adjusting of the speed and direction
of a DC motor though a terminal program based textual user interface.

Lab 5 uses two sources of interrupts: a periodic real-time interrupt and an interrupt that
occurs when a character comes in the serial (SCI) port. Examples of using these two interrupts
separately are given in their book. The students write a program that a) blinks the letters OU in
Morse code on the 7-segment display using a real-time interrupt, b) allows the user to type
characters from the keypad and have them displayed on the first line of the LCD, and c) displays
their name coming from a text file on the PC in through the serial port on the second line of the

“Proceedings of the 2008 ASEE North Central Section Conference
Copyright © 2008, American Society for Engineering Education”

LCD. Because of the use of interrupts the three parts of this program appear to be running
simultaneously. This example gives the students a good feel for how interrupts are used to
generate concurrency in their programs. Listing 2 shows how the two interrupt service routines
are written in C.

Listing 2 – Lab 5
// Lab 5: Interrupt-Driven Controller: OU
#include <hidef.h> /* common defines and macros */
#include <mc9s12dp256.h> /* derivative information */
#include "main_asm.h" /* interface to the assembly module */
#include "queue.h"
#pragma LINK_INFO DERIVATIVE "mc9s12dp256b"
unsigned short dtime; // delay time
int ix; // index into states
const int numstates = 12;
const char seg7[] = {
 0x3F, 0x00, 0x3F, 0x00, 0x3F, 0x00, // O
 0x3E, 0x00, 0x3E, 0x00, 0x3E, 0x00, // U
};
const char delay[] = {
 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, // dashes
 0x0C, 0x0C, 0x0C, 0x0C, 0x24, 0x30, // dot-dot-dash
};
void interrupt 7 handler_rti(){
 dtime--;
 if(dtime == 0){
 seg7_on(seg7[ix],3); // turn on next display
 dtime = delay[ix]; // get next delay time
 ix++; // increment index
 if(ix == numstates){ / after going through all states
 ix = 0; // reset index to 0
 }
 }
 clear_RTI_flag();
}

// SCI0 receive Interrupt Service Routine
void interrupt 20 handler_sci(){
 qstore(read_SCI0_Rx());
}

void main(void) {
 char c, a;
 char i, ii;
 PLL_init(); // set system clock frequency to 24 MHz
 led_disable(); // disable LEDs
 seg7_enable(); // enable 7-segment displays
 initq();
 RTI_init();
 ix = 0; // reset index into states
 dtime = 1; // start display right away
 lcd_init(); // enable lcd
 keypad_enable(); // enable keypad

 SCI0_int_init(9600); // initialize SCI0 at 9600 baud with interrupts
 ii = 0x14; // address of line 2 of LCD
 while(1) {
 c = keyscan(); // read keypad
 if(c != 16){
 a = hex2asc(c); // convert to ascii
 set_lcd_addr(0x00); // display on 1st line
 data8(a); // display on LCD
 wait_keyup(); // wait to release key
 }

“Proceedings of the 2008 ASEE North Central Section Conference
Copyright © 2008, American Society for Engineering Education”

Listing 2 (cont.) – Lab 5
 while(qempty() != 1){ // if queue is not empty
 c = getq(); // and display on lcd
 set_lcd_addr(ii); // display on 2nd line
 if(c >= 0x20){ // printable chars
 data8(c); // write it to the LCD
 outchar0(c); // echo it back
 ii++; // inc address
 }
 }
 }
}

3. Statics and Dynamics
The next seven weeks of the course are devoted to mechanics, with laboratory exercises

utilizing both MATLAB and the Dragon12-Plus board. For example, in Lab 6 in the Winter
2007 term each group of students built a simple digital scale by cutting out an “L” shaped piece
of poster board, as shown in Fig. 1, with a hole at A to hang the scale and a counterweight W2
(large binder clips are used for counterweights). The Freescale MMA7260QT accelerometer
(part of the MMA7260Q evaluation board6) is used to measure the tilt angle θ. The weight to be
measured is W1.

Taking moments about point A, we find:

θtan
1

2
21 L

LWW = (1)

Thus, with the proper selection of W2, L1 and L2, and using the Freescale accelerometer to
measure the angle θ, the students are able to construct a scale with a range from 0-2 oz to an
accuracy of at least 0.25 oz.

W2

L2

L1

W1

θA

Accelerometer

Figure 1

Ax

Ay

ay

ax

Figure 1 Setup for making a digital scale

“Proceedings of the 2008 ASEE North Central Section Conference
Copyright © 2008, American Society for Engineering Education”

In another experiment, the accelerometer module was used to measure the coefficient of
static friction using the setup shown in Fig. 2. A small block is placed on a piece of poster board
that is taped at one end to the table. The other end of the poster board is slowly lifted until the
block just starts to slide down the inclined plane.
This occurs at an angleθ where the coefficient of
static friction sµ is given by

 tansµ θ= (2)

This result is easily derived by drawing a free-body
diagram of the block.

In this example, the accelerometer is mounted on
the poster board as shown in Fig. 2 where ax and az
measure the components of the acceleration of
gravity, g. Thus,

sinxa g θ= (3)

and
cosza g θ= (4)

From Eqs. (2) – (4) we see that

 tan x
s

z

a
a

µ θ= = (5)

Listing 3 will perform this calculation.

 Listing 3 Program to calculate the coefficient of static friction
// Calculating coefficient of static friction using an accelerometer
#include <hidef.h> /* common defines and macros */
#include <mc9s12dp256.h> /* derivative information */

#include "main_asm.h" /* interface to the assembly module */

#pragma LINK_INFO DERIVATIVE "mc9s12dp256b"
int ax;
int az;
int a0;
int i;
int tan_theta;

void main(void) {
 PLL_init(); // set system clock frequency to 24 MHz
 ad1_enable(); // enable a/d converter 1
 lcd_init(); // enable lcd
 a0 = 0; // average 8 values of ax to get a0

Figure 2 Measuring the coefficient
 of static friction

ax

az W

Poster
board

Tape θ

“Proceedings of the 2008 ASEE North Central Section Conference
Copyright © 2008, American Society for Engineering Education”

 Listing 3 (cont.) Program to calculate the coefficient of static friction
 for(i = 0; i < 8; i++){
 a0 += ad1conv(0); // add 8 values of ax
 }
 a0 >>= 3; // divide by 8
 while(1) {
 ax = 0;
 az = 0; // average 8 values of ax and az
 for(i = 0; i < 8; i++){
 ax += ad1conv(0); // add 8 values of ax
 az += ad1conv(2); // add 8 values of az
 }
 ax >>= 3; // divide by 8
 az >>= 3; // divide by 8
 // calculate coeff of static friction
 tan_theta = 1000*(ax - a0)/(az - a0);
 set_lcd_addr(0x40); // display on 2nd row of LCD
 write_int_lcd(tan_theta); // write value in field of 5
 ms_delay(100); // delay 0.1 seconds
 }
}

To calculate the value of tanθ in both of the examples above, we must subtract the value

corresponding to zero gravity from the measured accelerometer values in the x and z directions.
Let a0 be the measured accelerometer reading corresponding to zero gravity. We will assume
that this value is the same value for both ax and az. That is, a0 is the ax value when 0θ = , and is
the az value when o90θ = . We will measure a0 by measuring ax when 0θ = . In order to work
only with integer values, we multiply Eq. (5) by 1000 before doing the calculation. Thus, the
integer that we compute will be

0

01000tan1000
aa
aa

z

x

−
−

=θ (6)

To make the friction measurement, we make sure that the poster board is horizontal and press

the reset button on the microcontroller board. This will start the program and calculate a0 by
averaging eight readings of ax. The poster board is then lifted slowly. The value of 1000 tanθ
will continuously be displayed on the LCD.

4. Student Projects
During the last three weeks of the class students work in multidisciplinary teams to design

and implement a computer-controlled electromechanical system that demonstrates some statics
or dynamics principle. Each group typically includes at least one ME major and at least one EE
or CE major. Most projects used a Freescale KIT3109MMA7260QE 3-axis accelerometer.3
This accelerometer measures the acceleration of gravity as well as inertial acceleration. It is
therefore useful for measuring tilt angles as described in Section 3. Table 1 is a list of the
student projects done in the last three terms.

“Proceedings of the 2008 ASEE North Central Section Conference
Copyright © 2008, American Society for Engineering Education”

Table 1 List of Student Projects

Fall 2006 Winter 2007 Fall 2007
Digital Tape Measure Remote Control Car Computer Controlled Catapult
Digital Scale Dart Gun Chronograph Accelerometer based Mouse
Real-time Image Tracker Auto Braking System Airbag Deployment System
Coefficient of Friction Ballistic Pendulum Spring Friction Table
Ballistic Pendulum Coefficient of Restitution Pendulum Putterometer
Hovercraft Fuzzy Logic Balance Self-Leveling Platform
Coefficient of Restitution Ping-Pong Launcher LED Wheel Display
Friction Calculator Nerf Ball Cannon Resonant Frequency of Motors
Self-Leveling Platform Object Averting Vehicle Dart Board
Gear Ratio Efficiencies Coefficient of Restitution – Vehicle Force Constants of Springs
Labyrinth Centripetal Acceleration Device Motor with Pulley Reduction

One of the groups in the fall 2006 term built the device shown in Figure 3 to calculate the

coefficients of both static and kinetic friction by increasing the slope of an inclined plane using a
servo motor until a block starts to slide down the plane. The static coefficient of friction is found
by measuring this angle with an accelerometer; the kinetic coefficient of friction is found by
measuring the speed of the block with a pair of infrared detectors.

Figure 4 shows another group’s real-time image tracker. They wrote a Visual Basic program
on the PC that allowed them to draw a figure on the video monitor and then send the information
about this figure to the miniDragon+ board shown in the Fig. 4. The C program on the
microcontroller then controlled the two servos so as to have a pen connected to the end arm draw
the figure on a piece of paper. This part of their project worked and was very impressive. The
group was very ambitious and also tried to solve the inverse problem of moving the arm
manually, measuring the acceleration using the accelerometer mounted at the end of the arm,
calculating the resulting position of the arm, and sending this data to the PC to be displayed on

Infrared Range
Detector (A).

Object (E)

Friction Force

Servo-Motor (D)

Friction

Accelerometer
(C)

?

Travel Time

Distance D

Infrared Range
Detector (B).

Infrared Range
Detector (A).

Object (E)

Friction Force

Servo-Motor (D)

Friction

Accelerometer
(C)

?

Travel Time

Distance D

Infrared Range
Detector (B).

Figure 3 Measuring the coefficients of static and dynamic friction

“Proceedings of the 2008 ASEE North Central Section Conference
Copyright © 2008, American Society for Engineering Education”

the video monitor. Getting accurate, noise-free, accelerometer readings and putting everything
together proved to be too ambitious for a 3-week project! However, everyone who witnessed the
pen drawing the figure sent from the PC was very impressed.

As a third example from the fall 2006 term, one group measured the coefficient of

restitution of a tennis ball bouncing from a tennis racket by attaching an accelerometer to the
tennis racket and measuring the time intervals between three adjacent bounces. Acceleration
data were collected every 10.24 ms using real-time interrupts and stored in a queue. These data
were then sent out the serial port to the PC where a Visual Basic program analyzed the data and
calculated the coefficient of restitution. A typical acceleration waveform is shown in Fig. 5 and
the measured coefficient of restitution closely matched the published values for new tennis balls.

 Figure 4 Setup for the real-time image tracker

Time Vs Acceleration

-100
-50

0
50

100
150

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256

Time

A
cc

el
er

at
io

n

Figure 5 Acceleration data for measuring the coefficient of
 restitution of a tennis ball

“Proceedings of the 2008 ASEE North Central Section Conference
Copyright © 2008, American Society for Engineering Education”

Another example of finding the coefficient of restitution from a project in the winter 2007
term is shown in Fig. 6. The accelerometer was mounted on a vehicle that rode on a frictionless
track fabricated by the students. Air was blown out of a series of holes that were drilled in a
staggered pattern to get a consistent air pillow over the track. The car was given an initial
velocity and then traveled down the track until it collided with a fixed wall. The rubber band on
the vehicle absorbed the forces of the collision and then ‘sprang’ back giving the car a final
velocity in the opposite direction. Acceleration data were used to determine the velocities and
the coefficient of restitution. Typical data collected in this experiment are shown in Fig. 7.

Figure 6 Measuring the coefficient of restitution of a vehicle
 moving on a frictionless track and colliding with a wall.

Figure 7 Example of acceleration data collected in the experiment shown in Fig. 6.

“Proceedings of the 2008 ASEE North Central Section Conference
Copyright © 2008, American Society for Engineering Education”

In the fall 2007 term one group designed a putterometer by attaching the accelerometer to a

golf putter as shown in Fig. 8. The distance the ball travels can be predicted by using the friction
coefficient, the momentum principle, and the conservation of energy equation. The
accelerometer is used to measure the acceleration of the club and this acceleration is integrated to
find the velocity of the club before and after impact with the ball. This change in velocity of the
club is related to the initial velocity of the ball, which is used to calculate the distance that the
ball will travel. This distance is displayed on an LCD. A separate experiment that rolls the ball
down an inclined plane onto the synthetic grass putting surface was used to determine the
coefficient of friction. The idea of the putterometer is to train the golfer to use the appropriate
acceleration to cause the ball to roll a particular distance.

5. Conclusion

Programming a microcontroller is an essential skill for implementing most useful, modern
design projects. It is therefore a skill that all engineering students should have as they enter
modern engineering practice. In a new core course at Oakland University all engineering
students learn to program a Freescale MC9S12DG256 microcontroller in C using CodeWarrior.
Being provided with a stationery project that contains over 80 assembly language routines that
can be called as C functions, the students can concentrate on solving a particular design problem
using the microcontroller, rather than having to dig into the details of all of the various I/O
registers.

Having a microcontroller and accelerometer to use in the lab also enhances the learning of

statics and dynamics as demonstrated with the digital scale lab described in Section 3. At the
end of the course all groups gave a PowerPoint presentation and demonstration of their project in
addition to writing a group project report.

Figure 8 The putterometer

“Proceedings of the 2008 ASEE North Central Section Conference
Copyright © 2008, American Society for Engineering Education”

By using a microcontroller and modern engineering tools students get deeply involved in
designing experiments that illustrate the principles of mechanics. This deepens their
understanding of these principles and leads us to the conclusion that microcontrollers have found
a useful home in a sophomore course in statics and dynamics. As an added benefit we noticed
last term that for the first time mechanical engineering students in our multidisciplinary senior
design course7 were able to contribute to the programming of microcontrollers and did not have
to rely entirely on their computer engineering colleagues.

References
1. Y. P. Chang, “A Slider/Ramp Apparatus Capstone Design Project for a Hands-On Senior-Level Laboratory

Design Experience,” Proc. ASEE Illinois-Indiana and North Central Joint Section Conference, Indiana-Purdue
University, Fort Wayne, IN, March 31 – April 1, 2006.

2. Y. P. Chang, “A Unique String/Pulley System Apparatus Capstone Design Project for a Hands-On Senior-Level
Laboratory Design Experience,” Proc. ASEE Illinois-Indiana and North Central Joint Section Conference,
Indiana-Purdue University, Fort Wayne, IN, March 31 – April 1, 2006.

3. Y. P. Chang, “A Pendulum Impact Apparatus Capstone Design Project for a Hands-On Senior-Level Laboratory
Design Experience,” Proc. 2008 North Central Section Conference, Wright State University, Dayton, OH, March
29, 2008.

4. Richard E. Haskell, Learning By Example Using C – Programming the Dragon12-Plus Using CodeWarrior,
LBE Books, Rochester, MI, 2008.

5. Wytec Company, www.evbplus.com.
6. Freescale Semiconductor Inc., www.freescale.com.
7. Michael A. Latcha, Subramaniam Ganesan, Edward Y. L. Gu, and Richard E. Haskell, “The Melting Pot

Approach to Senior Design Part II: Assessment and Improvement,” Proc. ASEE NCS Spring Conference, EV-2,
Ohio Northern University, Ada, Ohio, April 7-8, 2005.

