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1. Unique Solution to the Image-Object Mapping 
 
As we discussed in Part 1, the inverse mapping from a pair of 2D pixel coordinates (xp, yp) 
on the image screen to the real-world object coordinates (x, y, z) does not have a unique 
solution.  The relationship of the mapping is given by 
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where xi, yi and zi are the three coordinates of a point of object referred to the image frame, 
and D is a common zoom ratio in both x- and y-directions.  It can be further shown that if the 
real-world object point to be determined is constrained on the floor surface that is also 
parallel to the x-axis of the image frame, then the inverse mapping can have a unique 
solution. 
 
 

 

θ 

h 

d 
c 

a

F 

Wall

Floor 

yi xi 
Camera Image Frame 

zi 

zb Base Frame 

yb 

0

xb

Figure 1 – Geometry of the Image-Object Mapping 
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With a careful observation on the 3D geometry, as depicted in Figure 1, we can clearly see 
that the z-coordinate of each point on the floor has a linear relation with its y-coordinate, 
both of which are referred to the image frame, i.e., 
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with a constant slope k and a constant intercept b.  In fact, based on the triangle geometry 
displayed in Figure 1, 
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Namely, the intercept b is actually the length from the camera to the intersection point F 
between the zi-axis of the image frame and the floor. 
 
Once we have equation (2), substituting it into (1) yields 
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Therefore, the inverse mapping has the following unique solution for every point on the 
floor: 
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where k and b are given by (2) and a minus sign is imposed into the second equation for xi , 
because the image shown on the computer screen is often flipped over with respect to the x-
axis from the reception signal on the CCD panel of a digital camera.  Since equation (4) gives 
the coordinates of an object point with respect to the image frame that is fixed on the camera, 
we therefore need a homogeneous transformation Hb

i to convert them into the coordinates 
referred to the base, i.e., 
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2. How to Determine the Camera Shooting Axis? 
 

This question is virtually equivalent to finding both the position and orientation of a camera, 
which is also a Calibration Process.  The easiest way is to first determine the center pixel of 
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the image window on your computer screen, i.e., the pixel of both xp = 0 and yp = 0.  Then, 
you may ask your teammate to locate and match the corresponding real point on the floor 
while you are monitoring the center pixel on the image window, as shown in Figure 2.  As a 
matter of fact, the real point that you just located on the floor is exactly the point F in Figure 
1, which is the intersection point between the camera shooting axis and the floor.  Now, you 
may measure the vertical distance from the wall to Point F and it gives you a value of d.  Of 
course, the height h of the camera hanging on the wall is given.  Using equation (2), you can 
readily determine both the slope k and the intercept b. 
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Figure 2 – The Center Pixel in an Image Window on Computer Screen 

 
 

3. How to Determine the Homogeneous Transformation Matrix? 
 

The 4 by 4 homogeneous transformation matrix Hb
i is required to transform a point referred 

to the image frame to the same point referred to the base according to equation (5).  To find 
it, you have to decide where your base frame is and how it orients.  Although the choice of 
your base frame is arbitrary, a better definition of the base coordinate system will often 
provide you with much more convenient way to your application.  In our project, I bet you 
would like to place the base frame at your ball-launching device center.  If so, the origin of 
the base is at the rotating center of both the azimuth and elevation, while the three base axes 
could be defined to make your future projectile planning easier. 
 
As an illustrative example, I first place the origin of my base at a point with a vertical 
distance a > 0 from the wall and a vertical distance c > 0 to the left of the projection line of 
the camera shooting axis on the floor, as shown in Figure 1.  Then, my xb-axis is defined to 
be leaving away from and perpendicular to the wall, and my zb-axis is perpendicular to the 
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floor and going upward, see also Figure 1.  With such a definition of the base, according to 
the description of Part 1, the homogeneous transformation matrix has the following form: 
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where θ can be found by the first equation in (2).  If the orientation of your base is to be 
defined differently, then your homogeneous transformation should be modified accordingly.  
Since Hb

i is a constant matrix, its determination is needed only once. 
 

4. How to Determine the Zoom Ratio D? 
 

Even if every group shares a common camera, different computer imaging system has 
different zoom ratio, depending on the scales in your computer display.  To find your zoom 
ratio, it suffices to test a special point, and only one point on the floor.  One of the simplest 
ways is to pick the origin of your base frame, whose coordinates are obviously (0, 0, 0) seen 
with respect to the base frame.  Then, convert them to the coordinates referred to the image 
frame via 
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On the other hand, the origin of the base can also be seen and measured on the computer 
screen as an image pixel, say (xp, yp).  Using equation (1), we have 
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This D will be used forever, because it is a constant for each group.  Please don’t pick any 
point having yi = 0 that is referred to the image frame in the above testing process to avoid 
unnecessary singularity. 
 
Note that the above testing process for D is under the assumption that both x- and y-
directions of your image have a common zoom ratio D, which is often a usual case.  If not, 
you have to put D1 in the first equation of (1) and D2 in the second equation of (1) with D1 ≠ 
D2, and then determine them separately.  The inverse mapping solution (4) has also to be 
distinguished between xi and yi with D1 and D2, respectively. 
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5. Redefine a New Base at the Corner of the Barrier for Better Calibration 
 
We now consider more realistically that a new base coordinate frame is defined at the corner 
between the floor and one end of the barrier, as shown in Figure 3.  Suppose that we have no 
knowledge of where the intersection point F is, and we can only find the distance c > 0 
between the end corner point of the barrier and the point Q that is the bottom line of the 
barrier intersecting with the yi – zi plane of the image frame (please think about how to 
determine this c if the total length of the barrier is given). 
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Figure 3 – A New Base Frame is defined at the Corner of the Barrier 

 
 
It is sure that the distance a > 0 from the point Q to the wall will be given.  Then, the 
homogeneous transformation between the image frame and the new base becomes 
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The symbolical form of its inverse can be directly derived without major difficulty by 
utilizing the orthogonal property of the upper-left 3 by 3 corner of (9), and it turns out to be 
 
 

 5





















+−
−
−

== −

1000
cossincos0sin
sincossin0cos

010

)( 1

θθθθ
θθθθ

ha
ha

c

HH i
b

b
i .   (10) 

 
We now start calibrating the camera orientation by observing the origin of the base, i.e., the 
end point of the barrier bottom line on the computer screen and measuring its pixel 
coordinates (xp, yp).  Based on equation (7), we can determine the coordinates of the base 
origin referred to the image frame.  Substituting (10) into (7), we immediately obtain 
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Then, substituting each element of (11) into the second equation of the unique solution (4) 
for the inverse image-object mapping and noticing equations (2) and (8), we have 
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This result is clearly equivalent to the following equation: 
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The solution of (13) for θ becomes 
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After the above calibration process via the observation of the base origin, equation (14) is 
now critical to determine not only the constant slope k and intercept b in (2) even if we don’t 
know where the point F on the floor is, but also the constant zoom ratio D given in (8) by the 
following equation in terms of θ : 
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