Linear Programming: Chapter 2 The Simplex Method

Robert J. Vanderbei

October 17, 2007

Operations Research and Financial Engineering Princeton University Princeton, NJ 08544 http://www.princeton.edu/~rvdb

Simplex Method

An Example.

Rewrite with slack variables

Notes:

- This layout is called a dictionary.
- Setting x_1 , x_2 , and x_3 to 0, we can read off the values for the other variables: $w_1 = 7$, $w_2 = 3$, etc. This specific solution is called a *dictionary solution*.
- Dependent variables, on the left, are called basic variables.
- Independent variables, on the right, are called nonbasic variables.

Dictionary Solution is Feasible

maximize
$$\zeta = -x_1 + 3x_2 - 3x_3$$
 subject to $w_1 = 7 - 3x_1 + x_2 + 2x_3$ $w_2 = 3 + 2x_1 + 4x_2 - 4x_3$ $w_3 = 4 - x_1 + 2x_3$ $w_4 = 8 + 2x_1 - 2x_2 - x_3$ $w_5 = 5 - 3x_1$ $x_1, x_2, x_3, w_1, w_2, w_3, w_4, w_5 \ge 0$.

Notes:

- All the variables in the current dictionary solution are nonnegative.
- Such a solution is called *feasible*.
- The initial dictionary solution need not be feasible—we were just lucky above.

Simplex Method—First Iteration

	Current Dictionary												
obj	=	0.0	+	-1.0	x1 +	3.0	x2 +	-3.0	x 3				
w1	=	7.0		3.0	x1 -	-1.0	x2 -	-2.0	x3				
w2	=	3.0		-2.0	x1 -	-4.0	x2 -	4.0	x3				
w3	=	4.0		1.0	x1 -	0.0	x2 -	-2.0	x3				
w4	=	8.0		-2.0	x1 -	2.0	x2 -	1.0	x3				
w5	=	5.0	[-	3.0	x1 -	0.0	x2 -	0.0	x3				

- If x_2 increases, obj goes up.
- How much can x_2 increase? Until w_4 decreases to zero.
- Do it. End result: $x_2 > 0$ whereas $w_4 = 0$.
- ullet That is, x_2 must become *basic* and w_4 must become *nonbasic*.
- Algebraically rearrange equations to, in the words of Jean-Luc Picard, "Make it so."
- This is a *pivot*.

A Pivot: $x_2 \leftrightarrow w_4$

	Current Dictionary												
obj	=	0.0	+	-1.0	x1 +	3.0	x2 +	-3.0	x3				
w1	=	7.0		3.0	x1 -	-1.0	x2 -	-2.0	x3				
w2	=	3.0		-2.0	x1 -	-4.0	x2 -	4.0	x3				
w3	=	4.0		1.0	x1 -	0.0	x2 -	-2.0	x3				
w4	=	8.0		-2.0	x1 -	2.0	x2 -	1.0	x3				
w5	=	5.0		3.0	x1 -	0.0	x2 -	0.0	x3				

becomes

	Current Dictionary												
obj	=	12.0	+	2.0	x1 +	-1.5	w4 +	-4.5	x3				
w1	=	11.0		2.0	x1 -	0.5	w4 -	-1.5	x 3				
w2	=	19.0		-6.0	x1 -	2.0	w4 -	6.0	x 3				
w3	=	4.0		1.0	x1 -	0.0	w4 -	-2.0	x3				
x2	=	4.0		-1.0	x1 -	0.5	w4 -	0.5	x3				
w5	=	5.0		3.0	x1 -	0.0	w4 -	0.0	x3				

Simplex Method—Second Pivot

Here's the dictionary after the first pivot:

	Current Dictionary												
obj	=	12.0	+	2.0	x1 +	-1.5	w4 +	-4.5	x3				
w1	=	11.0		2.0	x1 -	0.5	w4 -	-1.5	x3				
w2	=	19.0		-6.0	x1 -	2.0	w4 -	6.0	x3				
w3	=	4.0		1.0	x1 -	0.0	w4 -	-2.0	x3				
x2	=	4.0		-1.0	x1 -	0.5	w4 -	0.5	x 3				
w5	=	5.0		3.0	x1 -	0.0	w4 -	0.0	x3				

- Now, let x_1 increase.
- Of the basic variables, w_5 hits zero first.
- So, x_1 enters and w_5 leaves the basis.
- New dictionary is...

Simplex Method—Final Dictionary

	Current Dictionary												
obj	=	46/3	+	-2/3	w5 +	-3/2	w4 +	-9/2	x3				
w1	=	23/3		-2/3	w5 -	1/2	w4 -	-3/2	x3				
w2	=	29		2	w5 -	2	w4 -	6	x3				
w3	=	7/3		-1/3	w5 -	0	w4 -	-2	x3				
x2	=	17/3		1/3	w5 -	1/2	w4 -	1/2	x3				
x1	=	5/3		1/3	w5 -	0	w4 -	0	x3				

- It's optimal (no pink)!
- Click here to practice the simplex method.
- For instructions, click here.

Agenda

• Discuss unboundedness; (today)

• Discuss initialization/infeasibility; i.e., what if initial dictionary is not feasible. (today)

• Discuss degeneracy. (next lecture)

Unboundedness

Consider the following dictionary:

	Current Dictionary												
obj	=	0.0	+	2.0	x1 +	-1.0	x2 +	1.0	x3				
w1	=	4.0		-5.0	x1 -	3.0	x2 -	-1.0	x3				
w2	=	10.0		-1.0	x1 -	-5.0	x2 -	2.0	x3				
w3	=	7.0		0.0	x1 -	-4.0	x2 -	3.0	x3				
w4	=	6.0		-2.0	x1 -	-2.0	x2 -	4.0	x3				
w5	=	6.0	<u>-</u>	-3.0	x1 -	0.0	x2 -	-3.0	x3				

- Could increase either x_1 or x_3 to increase obj.
- Consider increasing x_1 .
- Which basic variable decreases to zero first?
- \bullet Answer: none of them, x_1 can grow without bound, and obj along with it.
- This is how we detect *unboundedness* with the simplex method.

Initialization

Consider the following problem:

Phase-I Problem

- ullet Modify problem by subtracting a new variable, x_0 , from each constraint and
- replacing objective function with $-x_0$

Phase-I Problem

- Clearly feasible: pick x_0 large, $x_1 = 0$ and $x_2 = 0$.
- If optimal solution has obj = 0, then original problem is feasible.
- Final phase-I basis can be used as initial *phase-II* basis (ignoring x_0 thereafter).
- If optimal solution has obj < 0, then original problem is infeasible.

Initialization—First Pivot

Applet depiction shows both the Phase-I and the Phase-II objectives:

Current Dictionary												
obj	=	0.0	+	0.0	x0 +	-3.0	x1 +	4.0	x2			
		0.0	+	-1.0	x0 +	0.0	x1 +	0.0	x2			
w1	=	-8.0	<mark>-</mark> -	-1.0	x0 -	-4.0	x1 -	-2.0	x2			
w2	=	-2.0	<u> </u>	-1.0	x0 -	-2.0	x1 -	0.0	x2			
w3	=	10.0		-1.0	x0 -	3.0	x1 -	2.0	x2			
w4	=	1.0		-1.0	x0 -	-1.0	x1 -	3.0	x2			
w5	=	-2.0	<u>-</u>	-1.0	x0 -	0.0	x1 -	-3.0	x2			

- Dictionary is infeasible even for Phase-I.
- One pivot needed to get feasible.
- Entering variable is x_0 .
- Leaving variable is one whose current value is most negative, i.e. w_1 .
- After first pivot...

Initialization—Second Pivot

Going into second pivot:

Current Dictionary												
obj	=	0.0	+	0.0	w1 +	-3.0	x1 +	4.0	x2			
		-8.0	+	-1.0	w1 +	4.0	x1 +	2.0	x2			
x0	=	8.0	-	-1.0	w1 -	4.0	x1 -	2.0	x2			
w2	=	6.0	-	-1.0	w1 -	2.0	x1 -	2.0	x2			
w3	=	18.0	-	-1.0	w1 -	7.0	x1 -	4.0	x2			
w4	=	9.0	[-	-1.0	w1 -	3.0	x1 -	5.0	x2			
w5	=	6.0	-	-1.0	w1 -	4.0	x1 -	-1.0	x2			

- Feasible!
- Focus on the yellow highlights.
- Let x_1 enter.
- Then w_5 must leave.
- After second pivot...

Initialization—Third Pivot

Going into third pivot:

	Current Dictionary												
obj	=	-4.5	+	-0.75	w1 +	0.75	₩5 +	3.25	x2				
		-2.0	+	0.0	w1 +	-1.0	w5 +	3.0	x2				
x0	=	2.0	-	0.0	w1 -	-1.0	w5 -	3.0	x2				
w2	=	3.0	-	-0.5	w1 -	-0.5	w5 -	2.5	x2				
w3	=	7.5		0.75	w1 -	-1.75	w5 -	5.75	x2				
w4	=	4.5		-0.25	w1 -	-0.75	w5 -	5.75	x2				
x1	=	1.5		-0.25	w1 -	0.25	w5 -	-0.25	x2				

- x_2 must enter.
- x_0 must leave.
- After third pivot...

End of Phase-I

Current dictionary:

Current Dictionary												
obj	=	-7/3	+	-3/4	w1 +	11/6	w5 +	0	x0			
		0	+	0	w1 +	0	w5 +	0	x0			
x2	=	2/3	-	0	w1 -	-1/3	w5 -	0	x0			
w2	=	4/3	-	-1/2	w1 -	1/3	w5 -	0	x0			
w3	=	11/3	-	3/4	w1 -	1/6	w5 -	0	x0			
w4	=	2/3	-	-1/4	w1 -	7/6	w5 -	0	x0			
x1	=	5/3	-	-1/4	w1 -	1/6	w5 -	0	x0			

- Optimal for Phase-I (no yellow highlights).
- \bullet obj = 0, therefore original problem is feasible.

Phase-II

Current dictionary:

Current Dictionary												
obj	=	-7/3	+	-3/4	w1 +	11/6	w5 +	0	x0			
		0	+	0	w1 +	0	w5 +	0	x0			
x2	=	2/3		0	w1 -	-1/3	w5 -	0	x0			
w2	=	4/3		-1/2	w1 -	1/3	w5 -	0	x0			
w3	=	11/3		3/4	w1 -	1/6	w5 -	0	x0			
w4	=	2/3		-1/4	w1 -	7/6	w5 -	0	x0			
x1	=	5/3		-1/4	w1 -	1/6	w5 -	0	x0			

For Phase-II:

- Ignore column with x_0 in Phase-II.
- Ignore Phase-I objective row.

 w_5 must enter. w_4 must leave...

Optimal Solution

	Current Dictionary												
obj	=	-9/7	+	-5/14	w1 +	-11/7	w4 +	0	x0				
		0	+	0	w1 +	0	w4 +	0	x0				
x2	=	6/7	-	-1/14	w1 -	2/7	w4 -	0	x0				
w2	=	8/7	-	-3/7	w1 -	-2/7	w4 -	0	x0				
w3	=	25/7	-	11/14	w1 -	-1/7	w4 -	0	x0				
w5	=	4/7	-	-3/14	w1 -	6/7	w4 -	0	x0				
x1	=	11/7	-	-3/14	w1 -	-1/7	w4 -	0	x0				

- Optimal!
- Click here to practice the simplex method on problems that may have infeasible first dictionaries.
- For instructions, click here.