Section 2 — Roots of Equations

In this section, we will look at finding the roaiéfunctions. The basic root-finding problem
involves many concepts and techniques that willdeful in more advanced topics.

Algebraic and Transcendental Functions

A function of the formy = f(x)is algebraic if it can be expressed in the form:
fy'+f y"r+f oyl +fy +f,=0

where f, is anith-order polynomial irx. Polynomials are a simple class of algebraictions
that are represented by

f.(X) =a, + ax+a,x’ +ax’ +..+ax"
Wheren is the order of the polynomial and theare constants. For example,

f,(X) =1- 237x+ 75x°
fo(x) =5x° = x> +7x°

A transcendental function is one that is not algehr These types of functions include
trigonometric, logarithmic, exponential or othenétions. Examples include

f(x)=Inx*-1
f(x) = e % sin@x- 05)

There are two distinct areas when it comes to figdhe root of functions:
1. Determination of the real roots of algebraic amsh$cendental functions, and usually
only a single root, given its approximate location
2. Determination of all of the real and complex rootgolynomials

2.1 Graphical Methods

Graphical methods are straightforward — simply brége functiorf(x) and see where it crosses
thex-axis. This method will immediately yield a rougbpeaoximation of the value of the root,
which can be refined through finer and more dedagjiephs. It is not necessarily precise, but it
is very useful in order to determine a startingpéor more sophisticated methods.



2.2 Closed Methods

The following methods work on “closed” or boundeatrdhins, defined by upper and lower
values that bracket the root of interest.

2.2.1 Bisection Method

If f(x) is real and continuous in the

interval fromx; to x,, andf(u) andf(x,) f(x)
have opposite signs, then there must be at P
least one real root betwegrandx,,.

Thebisection methogor binary

chopping interval halvingor Bolzano’s
Method divides the interval between the
upper and lower bound in half to find the
next approximate roog,

_XI +Xu
X = 5

which replaces the bound of the interval, either x,, whose function value has the same sign
asf(x). The method proceeds until the termination daters met

Pseudocode — Bisection method

FUNCTION Bisection(xl, xu, xr, ea, imax)
DIM iter, es, fxl, fxu, fxr, xrold
iter=0
xI=f(xI)
fxu=f(xu)
xrold=xI+(xu-xI)/3
DO

iter = iter+1
xr = (xu + xl)/2 * Bisection method
fxr = f(xr)
IF xr = 0 then
es = ABS(xr - xrold)
ELSE



es = ABS((xr - xrold)/xr)
END IF
“if fxr and fxu have different signs, replace lowe r bound
IF fxr*fxu < 0 THEN
Xl = xr
fxI = fxr
ELSE // replace upper bound
XU = Xr
fxu = fxr
END IF
xrold = xr
UNTIL iter >imax ORes <ea
Bisection = xr
END Bisection

Examples:
1. Find all of the real roots of
a. f(x) =sin(1X) + cos(X) ; 0<x<5
f(x) = -0.6¢ + 2.4 + 5.5
f(x)=x°-1;0<x<1.3
f(x) = 4C — 6¢ + 7x-2.3
. f(X) = -26 + 8% — 91 + 44¢ - &' + X°

®aooT

2.2.2 False Position Method

The bisection method works fairly
well, but convergence can be
improved if the root lies close to one
of the bounds. Consider the figure
shown. By similar triangles,

f(x)

]

f(x) _ f(x)

= <

X =X X =Xy X T

Solving forx, gives

X = )ng(XI)_)q f(Xu) =X - f(Xu)(XI _Xu)
B ICORR{CH T f) = f(x)

This new root estimate replaces the boxynadr x; whose function value has the same sign as
f(x;). The termination criterion is the same as forliisection method.



The false position method is generally more effitidaan bracketing, but not always (consider,
for example, the functiof(x) = x>-1 betweerx = 0 andx = 1.3). The false position method can
tend to be one-sided, leading to slow convergeticis appears to be a problem, try the
modified false position methodn this technique, if one bound is fixed for ta&wccessive
iterations, bisect the interval once and procedt thie false position method.

2.3 Open Methods

The bracketing and false position methods are &dbsmethods, that is, they “close” an interval
and converge on the root from both ends of tharwal. Open methods require only one
(sometimes two) starting values that do not brathketoot, making them self-starting and more
efficient. However, they can diverge and even maway from the root that is sought.

2.3.1 Simple Fixed-Point Iteration

Some functions can be manipulated to be of the fomy(x), either algebraically or by addinxg
to both sides ofx)=0. If this is the case, one can converge on abgdterating

Xi+1 = g(xi)
with termination criterion

- Xi+1 B XI
Xi+1

While this method is easy to implement, it has sgwdrawbacks. Convergence can be slow; at
best it is linear. Also, the method can divergighwonvergence determined by the sign of the

first derivative ofg(x): if |g'(X)| <1 then the method converges|gf(x) > 1then fixed-point
iteration diverges.

Pseudocode — Fixed Point Iteration

FUNCTION FixedPoint(x0, es, imax, iter, ea)

xr =x0
iter =0
DO

iter = iter + 1

xr = g(xrold) * fixed point iteration

IF iter>1 then

IF xr = 0 then
es = ABS(xr - xrold)

2-4



ELSE
es = ABS((xr - xrold)/xr)
END IF
END IF
xrold=xr
END DO
FixedPoint = xr
END FixedPoint

2.3.2 Newton-Raphson Method

Newton-Raphson is the most widely
used method of the root-finding f(x)
formulas. The tangent to the curve at
the pointx;, f(x) is used to determine
the next estimate for the root. The
slope of the curve at the poigtcan

be written as

rx) =5
X~ Xy
so that
f(x)
Xi+1 = X| - r
f'(x)
with termination criterion
£, = X ~ X
Xi+1

Newton-Raphson is quadratically convergent, théis~E;>. The method is very fast and very
efficient. Care must be taken, however, since
* N-R can diverge if the tangent to the curve takesvay from the root
* N-R can converge slowly if multiple roots existwd@ methods exist to deal with multiple
roots:

)
i+l 1 f!(xl)



wherem s the multiplicity of the root, or

_ f(x)f'(%)
i+1_Xi_ 2 "
[/ = F(x) (%)

* It must be noted that Newton-Raphson method needsalytical function to work since
the derivatives must be explicitly determined.

2.3.3 Secant Method

This method is similar to Newton-Raphson, substigua backward finite-difference
approximation for the derivative:

f '(Xi) ~ f(x)i(—‘l) : ):(Xi)

So that

X, =X - F(X) (X0 = %)
f(xi4) = f(x)

The secant method requires two points to startandx;. It also may diverge, similar to the
Newton-Raphson method.

2.3.4 Modified Secant Method

Instead of using a finite difference approximatadrihe derivative in Newton-Raphson, estimate
the derivative using a small perturbation of théejpendent variable:

f(xi +d(i)_ f(xi)
X

f'(x)=

& 1 (x)
f(x + ) - f(%)

X =X~

2.3.5 Multiple Roots



Multiple roots, for exampl&x)=(x-a)(x-a)(x-b)cause difficulties when searching for roots.
Bracketing methods do not work with multiple ropagy?). In additionf'(x)=0 at the root,
causing problems for the Newton-Raphson and tharesethods.

2.4 Roots of Polynomials

Finding all of the roots of a polynomial is a commqroblem in numerical analysis. Before
delving into the methods, let’s first examine a#itt ways to evaluate and manipulate
polynomials.

Evaluation of Polynomials

Consider the following polynomial:

() = a,X° +a,x’ + ax+a,

Evaluating the function as it is written involvesniiltiplications and three additions. However,
if it is written

f3(X) = ((ax+a,)x+a,)x+a,

it can be evaluated with only three multiplicati@rsl three additions. In pseudocode, given a
vector of coefficienta() ,

DO FOR j=1to 0 STEP -1

df=df*x+p
p=p*x+a()
END DO

Note that in the pseudocode above, derivative @ptilynomialdf , is evaluated at the same
time as the function.

Polynomial Deflation

Recall that polynomials can be divided in a marsm@ilar to basic arithmetic, sometimes
referred to asynthetic division



X+6
(x—4))x* +2x-24
- (x* - 4x)
6Xx —24
- (6x—24)
0

So that ¢+ 2x - 24) = k- 4)(x + 6). In the example here, i { 4) was not a factor of the
polynomial, there would have been a remainder.

Using this idea, once we find a root ofrah-order polynomial we can divide it outdflating

the polynomial) and continue work with a new polymal of ordem-1. However, this process

is very sensitive to round-off errokorward deflationis where the roots are found from smallest
to largestpackward deflations where the roots are found and the polynomitihtezl from

largest to smallestRoot polishings a technique where the polynomial is deflatethasoots

are found, and then those roots are used as betiar guesses for a second attempt, often in the
opposite direction.

Conventional Methods
Since the roots of polynomials are often complbis bhas to be a consideration for any root-
finding method applied. Bracketing methods dowotk at all for complex roots. Newton-

Raphson (and its alternative methods) works welbihplex arithmetic is implemented, with all
of the same divergence possibilities already dsetis

2.4.1 Muller's Method

Similar to the Secant Method, which projects a tm®ugh two function values, Mller’s
Method projects a parabola through three valuestinate the root. Fit a parabola of the form

f(x)=a(x-x,)*+b(x-x,)+c
wherex; is the root estimate, to intersect three poins:f(X)], [X1, ()] and e, f(¢)]

f(X,) = a(x, _Xz)2 +b(x, = X,) +cC
(%) = a(x =%,)* +b(x —X,) +¢
f(x,) =a(x, —%,)* +b(x, = x,)+c=c



now let

hy =% =%,
h =%, =%
g, =106~ 10%)
X, = Xy
51 — f(xz)_ f(xl)
X, =%
so that
a= 9, ~ 9
hl_hO
b=ah +3,
c=f(x,)

To find the new root estimates, apply the alternate form of the quadratic formula

-2c
X, =X, = ————
> b++/b? -4ac
or

-2c
X = X, +

which yields either two real roots or a complexjogate pair. By convention, the sign taken to
be the same sign aswhich always yields the root estimate closex,toThen
e If only real roots are considered, for the nextat®n choose the two points closest to the
new root estimatg; and apply the method again to refine the rootresdt.
e If complex roots are possible then proceed in secgigthat isx; — Xo, X2 — X1, X3 — X2
and go through the method again to determine areibt estimate.

Pseudocode — Miiller's Method

SUB Muller(xr, h, eps, maxit)
X2 = Xr
X1 = xr + h*xr
X0 = Xr - h*xr
DO
iter = iter +1



hO =x1 - x0
hl=x2-x1
do = (f(x1) - f(x0)) / hO
dl = (f(x2) - f(x1)) / h1
a=(dl1-do)/(hl1+ h0)
b=a*hl+dl
c = f(x2)
rad = SQRT(b*b - 4*a*c)
IF |b+rad| > |b-rad| THEN
den=b + rad
ELSE
den=b-rad

END IF
dxr =-2*c / den
Xr = X2 + dxr
PRINT iter, xr
IF (|dxr| < eps*xr OR iter > maxit) EXIT
x0=x1
X1 =x2
X2 = Xr

END DO

END Muller

2.4.2 Bairstow’s Method
If we have a general polynomial
f.(X) =a, + ax+a,x* +..+ax"

that is divided by a factok{t), it yields a polynomial that is one order lower
f,(X) =b, +hx+h,x* +...+ b x"*

where

b, =a,
b =a +b,t

andi =n-1to 0. Iftis a root of the original polynomial, théa= 0.
Bairstow’s Method divides the polynomial by a quaitr factor, & —rx —s) to yield

f ,(X)=b, +bx+hb,x*+...+b x"?



with remainder
R=Db(x-r)+Db,
and

b, =a,
b -1 = a'n—l + rbn

n

b =a +rb,,, +sh,,

wherei =n-2 to 0. The idea behind Bairstow’s Method is tiwel the remainder to zero. To do
this, bothb; andby must be zero. Expand both in first-order Taykmies:

b(r +Ar,s+As) =D, +‘Z—b1Ar +%As
r

0s
b, (r + Ar,s+As) =D, +%Ar +%As
or 0S
so that
%Ar +%AS = _bl
or 0s
By ooy
or 0s
Now let
c, =b,

Cn—l = bn—l + r.Cn
Ci = bi + rCi+1 + SQ+2

wherec, =db,/dr, c2=0b,/ds=0db,/or, c, =0db, /ds, etc., so that

C,Ar +C,As=—-b
C,Ar +C,As = —D,



Solve these two equations fr andAs, then use them to improve the initial guessasasfds.
At each step, the approximate errors are

When both of these error estimates fall below &i§pd value, then the root can be identified as

X:rw:\/r2+4s

2
and the deflated polynomial with coefficiefigemains. Three possibilities exist:

1. The polynomial is third-order or higher. In thisse, apply the method again to find the
root(s).

2. The remaining polynomial is quadratic — solve fue two remaining roots with the
guadratic formula.

3. The polynomial is linear. In this case, the lasitrisx = -s/r

Pseudocode — Bairstow’s Method

SUB Bairstow(a, nn, es, rr, ss, maxit, re, im, ier)
DIMENSION b(nn), c(nn)
r=rr

S =SS
n=nn
ier=0
eal=1
ea2=1
DO
IF n<3 OR iter>= maxit EXIT
iter=0
DO
iter = iter +1
b(n) = a(n)
b(n-1) = a(n-1) + r*b(n)
c(n) = b(n)

c(n-1) = b(n-1) + r*c(n)
DOi=n-2,0,-1
b(i) = a(i) + r*b(i+1) + s*b(i+2)
c(i) = b(i) + rxc(i+1) + s*c(i+2)



END DO

det = ¢(2)*c(2) - c(3)*c(1)

IF det <> 0 THEN
dr = (-b(1)*c(2) + b(0)*c(3))/det
ds = (-b(0)*c(2) + b(1)*c(1))/det
r=r+dr
s=s+ds
IF r<>0 THEN eal = ABS(dr/r)*100
IF s<>0 THEN ea2 = ABS(ds/s)*100

ELSE
r=r+1
s=s+1
iter=0
END IF
IF eal <= es AND ea2 <=es OR iter >= maxit EXIT
END DO
CALL QuadRoot(r, s, r1, i1, r2, i2)
re(n) =rl
im(n) =il
re(n-1) =r2
im(n-1) = i2
n=n-2
DOi=0,n
a(i) = b(i+2)
END DO
END DO

IF iter < maxit THEN
IFn=2THEN

ELSE

END IF
ELSE

ier=1
END IF

End Bairstow

r=-a(l)/a(2)

s = -a(0)/a(2)

CALL Quadroot(r, s, rl, i1, r2, i2)
re(n) =rl

im(n) =il

re(n-1) =r2

im(n-1) = i2

re(n) = -a(0)/a(1)
im(n)=0

SUB Quadroot(r, s, rl, i1, r2, i2)

disc = r*r + 4*s

IF disc > 0 THEN
rl = (r + SQRT(disc))/2
r2 = (r - SQRT(disc))/2



ELSE
rl=r/2
r2=rl
i1 = SQRT(ABS(disc))/2
i2=-i1
END IF
END Quadroot



