Section 7 — Ordinary Differential Equations

Differential equations play an important role irgareering since the descriptions of many
physical phenomena are best formulated in terntisenf rates of change. Differential equations
that involve one independent variable are catletinary differential equationghose that

involve more than one are callpdrtial differential equations Differential equations are
classified with respect to their order. Secondeoehuations, for example, include second
derivatives. For example, the position of a masgig-damper system is given by the second-
order equation

2
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Higher-order differential equations can be reducea system of first-order differential
equations. For example, ket dx/dtanddv/dt = d/df, so the second-order equation above
can be replaced with an equivalent system of 2dirder differential equations

dv _ —cv—kx

dt m
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Therefore, we will first focus on the solution akt-order differential equations, and later
discuss the solutions of systems of them.

Consider the first-order ordinary differential ejoa

dy
— = f(x,
™ (xY)

One way to calculate the valueyoét a new positior would be
Vi =Y, *(slopgAx

This concept will be the basis of the first clabsaution techniques to examine.



7.1 Euler's Method

The first derivative gives a direct estimate of shepe:
Y =Y+ f(x y)h

Whereh = Ax andf(x,y) is evaluated at the current poirty). This is Euler’'s (or the Euler-
Cauchy or point-slope) method .

Two main sources of error take place when solviaipary differential equations, truncation
and round-off error. Truncation error results frima approximation of. This in turn has two
parts, docal truncation errorfrom each step andpaopagated truncation errothat

accumulates and is carried through the calculatidme sum of the two is thgtobal truncation
error.

The local truncation error in Euler's methoddgh?®). This can be decreased by taking smaller
steps, and the calculation will be error-free @ thnctionf(x,y) is linear. Thus, Euler’'s method is
afirst-order techniqueand the global error S(h).

7.1.1 Improvements to Euler's Method

The fundamental problem with Euler's method is thatderivative at the beginning of the
interval is used to estimate the slope acrossritieeenterval. Improvements to Euler’'s method
focus on obtaining a more accurate representafiimecaverage slope across the interval.

Huen’s Method

Use the slope at the beginning of the intef@aly;) to find an initial estimate foy at the end of
the interval (theredictor)

Yo=Y+ f(%,y)h
Use this result to calculate the slope at the drndeointerval
Yir = ¥ + f(X, Yio)h

Average these two estimates to yield a better estirof the average slope across the interval
(thecorrector)



h 0
Yia =Y +E[f(xi!yi)+ f(Xi+11yi+1)]

The corrector can be iterated (although it doeshawe to be) to obtain an even more refined
estimate for;. 1. With small step sizes this iteration can quiakdyiverge and yield better
results.

If the derivative is a function of only the indepiemt variabledy/dx = {x), then the predictor
and corrector steps can be combined to yield

=y + OO 108D,

This is equivalent to the trapezoidal rule of nuicedrintegration. The local error is therefore
O(h® with global errotO(h?), a second-order method.
Midpoint or Improved Polygon Method
Euler's method can be used to predict the valueatfthe midpoint of the interval

Yiso =Y + (%, y,)h/2
The slope at the midpoint of the interval is then

iz = F(Xia2s Yisar2)

And can be used to represent the average slopssatm® interval

Yia =Yt F(Xy20 Yisai2)D

Note that this method does not involve a predictoréctor and thus cannot be iterated to
achieve better accuracy. This method is equivatetite open 1-point Newton-Cotes integration
formula, and had local error 6f(h*) with global errolO(h?).



7.2 Runge-Kutta Methods

These are a class of techniques that achieve bgiracy without the use of high order
derivatives. All are of the general form

Vi = Y HAX%, Y, hh

Where th@ncrement functiorg is of the form

p=ak +ak, +...+ak,

k = f(x,¥)

k, = £ + ph,y +a,,kh)

ky = f(X + ph Yy +0,kh+0,,kh)

k, = f(x +p,hy + qn—lelh + Qn—szzh oot qn—l,n—lkn—lh)

The coefficients, p andq are determined by settilyg, equal to terms in a Taylor expansion.
The first-order f=1) Runge-Kutta method reduces immediately to Eaileethod.

7.2.1 Second-Order Runge-Kutta Methods

Using the Taylor expansion and n=2, the secondrd®dage-Kutta methods have the following
form:

Yiaa =Y H(ak, +ak;)h
k, = f(x.,y,)
k, = f(x + ph,y; +a,,kh)

So thatay + a, = 1,a,p1 = %2 andapqp; = %2. All of the second-order Runge-Kutta methloage
local errorO(h®) and global erro®(h?).

Heun’s Method with a single corrector(a; = %2)

Yia =Y H (K 12+Kk, /2)h
k, = f(x, )
k, = f(x +h,y; +kh)



Midpoint Method (a; = 1)
Vi =Y T K0
k= f(x,y;)
k,=f(x +h/2y, +kh/2)
Ralston’s Method (a; = 2/3, minimum bound on the truncation error)
Yia =Y +(k /3+2k, /3)h

k, = f(x,y,)
k, = f(x, +3n/4,y, +3kh/4)

7.2.2 Third-Order Runge-Kutta Method

The third-order Runge-Kutta method has local e@’) and global erro©(h®):

Voo =¥, 3 (k4 +di l)h

k, = f(x,y))

1 1
k,=f(x +=h,y. +=kh
2 (l 2 yl 2k1)

ks = f(x +h,y, = kh+2k,h)
If the slope is a function of only the independeatiable,f(x,y) = f(x), this method reduces to the
Simpon’s 1/3 Rule.
7.2.3 Fourth-Order Runge-Kutta Method

The fourth-order Runge-Kutta has local e®gh”) and global erro©(h?) and is by far the most
popular of the R-K methods:



Yia = Yi +%(k1 +2k, +2k; +k,)h

k= (%, Y)
1 1
K, = f(x +=hy +=kh
2 (| 2 y 2k1)
1 1
k,=f(x +=h,y. +=kh
3 (Xl 2 yl 2 2)

=
=
|

= (% +h,y; + kh)

This method also reduces to the Simpson’s 1/3 Rtie slope is a function of only the
independent variablé(x,y) = f(x). Higher-order Runge-Kutta methods exist, but tue
programming complexity and accuracy requiremereyg Hre seldom used.

7.3 Systems of Simultaneous Ordinary Differential §uations

d
d—f= fL (X Y1 Yorees Vi)

d
£= (% Y1 Yarees Vi)

dy,
—L = f (XY, Yorer ¥,
d)< n( yl y2 y )
Note that we will need n initial conditions to $tdre calculations. These systems of equations
are straight forward to implement, care must benak correctly calculate and apply the slopes
to the variables.

7.4 Adaptive Runge-Kutta Methods

Some ordinary differential equations have functithreg change gradually over part of the
domain, allowing the use of large step sizes, agéns of rapid change which requires the use
of smaller, more precise, steps. Algorithms tltist the step size as necessary are called
adaptive and require an estimate of the local error ah essep to apply adaptive step-size
control.

Two primary approaches exist. The first estiméteserror as the difference in two predictions
using different step sizes. The second estimhtesitror as the differences using two different
orders of the Runge-Kutta method.



7.4.1 Adaptive Runge-Kutta, or Step-Halving, Method

This method involves taking each time step twiceeoa single full step/{) and again as two
half stepsy,). The difference between the two estimates &fissmeasure of the local
truncation error:

A=y,-y,

Not only can this calculation be used for adaptioetrol of the step size, it can also be used to
correct the more precise estimate:

A
Y, < yz"'E

And provide an improved local estimate@h®).
7.4.2 Runge-Kutta Fehlberg

This approach uses the difference between thediftler R-K and the fourth-order R-K methods

to estimate the error at each time step. Thesertetbods are used because they happen to share
some calculations, and only six total function eatibns are required at each time step to
complete both methods. See the text for details.

7.4.3 Step Size Control

Once the local error has been estimated, one caded® increase the step size if the local error
is small or decrease the step size if the locak exxceeds a specified tolerance. One strategy is
given as

a

hnew = hold Aﬂ

present|

Wherea = 0.2 if the step size is increaseg{seni< Aoid) anda = 0.25 if the step size is
decreasedApresent™ Aoid)- AnewiS usually related to a relative error level AQgw = Yscale Wheree
is an overall tolerance level apgdae=y to give fractional relative errors. Another rélaway
to do this is to set



dy
= h—
yscale | Y| + ‘ dX

A far simpler and more useful technique simply @asges the step size s, = ch,when the
relative error is low and decreases the steplsjze= h,,, /cwhen the error is large. Useful

values ofc range generally between 1 (no step size contnal)443. It should be noted that
when the error at a given step is determined timbdarge, that step should be recalculated with
a smaller step until the error falls below the specified tolerarand the solution can proceed.

7.5 Stiffness

“Stiff” systems are those that superimpose rapatiignging components and slowly varying
components at every time step. Most often, thellgphanging components are transients that
die out quickly. The difficulty is that the rapydvarying parts require small time steps, and
since they are always present, adaptive step sizteat doesn’t work.

Instead of the explicit methods examined thusifaplicit methods sometimes work well.
Consider thdackward or implicit Euler's methodavhich evaluates the derivative at a future
time:

dy.,
=\ +_'+h
y|+1 y| dt

If the homogeneous part of the slopdygdt = -ay, then

L=y —ay,h or vy, =—""—
yl+1 yl y|+1 y|+1 1| h

Which is unconditionally stabley,| — Oasi — co . This method iS'brder accurate.

However, implicit formulations grow in complexitg #he order increases, and even more for
nonlinear ODEs. Gear devised a set of implicibfolations that have large stability limits based
on backward difference formulations. These arentbst widely used methods to solve stiff
systems.

7.6 Multistep Methods



Multistep methods do not use information at a gmgint &;, ;) to predict the dependent
variable at a future poit.;. Instead, they use several previous points terdebe a likely
trajectory for the next point.

7.6.1 The Non-Self-Starting Heun Method

Recall that Heun’s method uses Euler's method@edictor (a forward difference)
Yoo =¥ + T, y)h

And the trapezoidal rule as a corrector

f(X,y)+ F(X. Yo) h
2

Yau=Y¥ t

The predictor i€(h? while the corrector i©(h%), thus the predictor is the weak link in the
process, especially since the iterative correstdependent on the accuracy of this initial
prediction. To find a predictor that@h®), use the previous poigit, (a central difference)

Yo =Y+ f(X,y)2h

This is nowO(h®) but uses a step size that is twice as largee Matty, ; is not available at the
beginning of the calculation, so this method isselt-starting.

In general

predictor: y5, =y7 + f(x,y")2h

HCHDERICH N
2

corrector: y), =y"+ j=12...,m

The corrector is iteratemh times, usually not enough to actually convergednly to improve
the prediction. Typicallym=2.

The truncation error per step can be estimated as

E =- Vi = Yina
5

Which can be used to develop modifiers for the jstedand corrector:

9



m (o]
_Yia " VYia

correctomodifier 1y, <y c

predictormodifier :  y%, « v, +g(yim -y°)

Note that the predictor modifier uses values fromgrevious step. The use of these modifiers is
optional but can speed up convergence.

Step Size Control

Constant step size Easy to implement but choice must be made sgnalligh for convergence
within m=2 iterations. Re-run the problem, halving thep sige each time, until convergence is
reached.

Variable step size Monitor the number of iterations for convergenteorrector and adjust
so thatm=2. Alternatively, double or halve the step simajntaining the number of iterations to
converge the corrector.

7.6.2 Higher-Order Multistep Methods

Higher-order multistep methods are based on opdrtlased Newton-Cotes or Adams
integration formulas. Adams formulas use seveoraitp to estimate the integral only in the last
segment of the interval, leading to slightly mocewacy.

Milne's Method

This method uses a 3-point Newton-Cotes open farasla predictor

(o] m 4h m m m
Yia = Yis +?(2fi - fL+2f15)

And a 3-point Newton-Cotes closed formula as aeztor
j = m h m m -1
Yin = yi—1+§(fi—l+4fi + fi+1

There are, however, stability problems with thisrector. Using a more stable corrector leads to
Hamming's methad

j 1 m m j— m m
Y = g[gyi -y, +3h(f I +2y" - fi—l)]

10



With correctors

112
= - , Ec=-— Y
p 121(y| yl ) 121(y 1 y 1)

Fourth-Order Adams Method

This method uses d'brder Adams-Bashford (open) formula as a predictor

- 55 59 37
o=y " +h(—=f"-—f" +— =
y|+l yl (24 i 24 i-1 24 i— 2 i— 3)
and a 4-order Adams-Moulton (closed) formula as a correcto
4,19 5
+h(— f Pl e S —
y|+1 ( i+l 24 i 24 i 1 i- 2)
with modifiers
251 19
= __ E =——=(y™ —y?°
p 27C( ) c 27c(y|+1 y|+1)

7.7 Boundary Value Problems

Up to now we have dealt withitial-value problemswhere initial conditions specified at one
point are sufficient to determine the constantstgfgration and complete the solution.
Problems that specify conditions at extreme paintsoundaries of the system are called
boundary-value problemsAs an example, consider the heat balance in@ khin rod

2
9T e, - =0 B T

A

Whereh'’ is the heat transfer coefficient that describesrétte of heat dissipation to the
surrounding air and, is the temperature of the surrounding air. Teedthis problem, two
boundary conditions must be specified, for exaniptetemperatures at the ends of the rod

T(x=0)=T, T(x=L)=T,
11



For a 10-m rod witil, =20 C,T; =40 C,T, =200 C andh’ = 0.0l/rﬁ, the solution is

T(X) = 734523°% — 534523 +20C

7.7.1 The Shooting Method

This method treats a boundary-value problem agjaivaent initial-value problem. Specify all
the boundary conditions at= 0 (T; = 40 C and make an initial guesslatdx = 2, then solve
the problem to find the temperaturexat L. If the solution does not match the boundary
condition atx = L, adjust the boundary conditionxat 0 and re-solve the problem.

If the problem is linear (as in this example), ahiteg two solutions and interpolating between
them will supply the necessary boundary condit@ans= 0. If the problem is non-linear, for
example if the following, better, approximation fbe heat transfer from the bar is used

d’T

)<2

+h"(T, -T)* =0

the shooting method can be cast as a generalirmbird problem to determine the appropriate
starting values in order to arrive at the otherrmtary value(s). The shooting method is
straightforward but because of the need to repbasetl/e the problem it is not particularly
efficient.

7.7.2 Finite Difference Methods

Finite difference methods discretize the domaithefsolution and transform the linear
differential equation into a set of simultaneougdr equations. For the heat transfer example
above, divide the rod into equal-length segmenis,tbe example here. The divided-difference
approximation is

d’T ~ Ty =21 +T T, y Ta T,
dx? AX?

X
i=0 =1 =2 =3 j=4 i=5
5 >

A

The differential equation then becomes

12



-I-i+l _AXZT—i2+-I-i—1 + hr(-l-a _-I-I) - o

or
-T,+(@2+ h'AXZ)Ti —Ty = h'AXZTa

Appling this equation to the interior nodes of tbd (assuming that the temperature is known at
the endx=0 andx=L) yields

@2+hAXP)T, =T, = NAXT, +T,
—T, + 2+ W AT, - T, = WAXT,
~T, + (2+NOAX)T, - T, = WAXT,
—T, + 2+ AT, = WAX°T, +T,

The most common boundary condition is where theeddent variable is specified on the
boundary, as in the example above. To apply tfieseé, or Dirichlet, boundary conditions,
replace the variables with their known values dirdieate the equation at that node.

One can also specify the derivative of the dependaable at the boundary nodes. For
example, the heat fluaT/dxcan be specified at= 0 orx = L above. Thesgradient or
Neumannboundary conditions are also approximated witlididifferences. For example, let
the boundary conditiodT/dxbe specified at= 0 above. Taking a central difference
approximation at = 0 gives

dar| _T,-T,

dx|,  2Ax

Substituting this approximation into the finitefdiience equation for node= 0 eliminates the
fictitious node at = -1 and gives

(+h'Ax*)T, - 2T, = h'AX°T, - 2Ax(i|—T
X 0

The system of equations for the nodal temperatines becomes

13



(2+h'AX*)T, - 2T, = h'AX°T, - 2n AT
dx|,
~T, + 2+ NAX)T, - T, = NAXT,
~T, + @+ 0T, - T, = MAXT,
~T, + @+ NAXH)T, - T, = WAX?T,
T, + R+ hAX*)T, =h'AX°T, +T,

These systems of equations can be solved for tkieown temperatures by any of the methods
discussed previously.

7.7.3 Eigenvalue Problems

Eigenvalueg or characteristic-valugproblems are a class of boundary value problemson in
vibrations, elasticity and areas that deal withlzgimng systems. These problems have the
general form

[A- A Ex}=0
Where A are the eigenvalues adare the associated eigenvectors.

Polynomial Method — Develop the set of equatiof»%—)ll ]{X} =0. Expand the determinant of

A- Al , which will be a polynomial whose roots ate Solve for the roots with eitheriMer’s
or Bairstow’s method, deflating in order to find afl the eigenvalues/eigenvectors (there will be
one for each row of).

Power Method — Write the system a8X = AX . For an initial guess, assume that
X ={111.1}", substitute and solve for a new seXofNormalize with respect to the largest

value ofX. Iterate until convergence. Upon convergencentrenalization factor will be the
largest eigenvalue, with eigenvector equaXtaf matrix A is symmetric, it can then be deflated

using Hotelling’s methodA, = A — A, X, X/, whereA, is the original matrix and,, X,are the

largest eigenvalue/eigenvector pair. Proceedigtianner to find the largest several
eigenvalues. This method cannot usually be uséddall of the eigenvalues due to the
accumulation of significant round-off errors.

To find the smallest eigenvalue/eigenvector pgiesform the power method on the inversé\pf
deflating in order to eliminate those already found
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Many more advanced techniques exist for findingevglues.
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